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Abstract—To investigate the oscillatory and asymptotic 
behavior for a certain class of second order nonlinear 
neutral perturbed dynamic equations on time scales. By 
employing the time scales theory and some necessary 
analytic techniques, and introducing the class of parameter 
functions and generalized Riccati transformation, some new 
sufficient conditions for oscillation of such dynamic 
equations on time scales were established. The results not 
only improve and extend some known results in the 
literature, but also unify the oscillation of second order 
nonlinear neutral perturbed differential equations and 
second order nonlinear neutral perturbed difference 
equations. In particular, the results are essentially new 
under the relaxed conditions for the parameter function. 
Some examples are given to illustrate the main results. 
Dynamic equations on time scales are widely used in many 
fields such as computer, electrical engineering, population 
dynamics, and neural network, etc.  
 
Index Terms—oscillation, nonlinear neutral perturbed 
dynamic equation, time scales, Riccati transformation. 
 

I. INTRODUCTION 

The theory of time scales, which has recently received 
a lot of attention, was introduced by Stefan Higher in his 
Ph.D. thesis [1] in 1988 in order to unify continuous and 
discrete analysis. Not only can this theory of so-called 
“dynamic equations” unify the theories of differential 
equations and of difference equations, but also it is able 
to extend these classical cases “in between”, e.g., to so-
called q-difference equations. Several authors have 
expounded on various aspects of this new theory, see the 
survey paper by Agarwal [2] and references cited therein. 
A book on the subject of time scales by Bohner and 
Peterson [3] summarizes and organizes much of the time 
scale calculus. A time scalesT  is an arbitrary nonempty 
closed subset of the real numbers . There are many 

interesting time scales and they give rise to plenty of 
applications, the cases when the time scale is equal to 
reals or the integers represent the classical theories of 
differential and of difference equ-ations. Another useful 
time scale a time scale 0, [ ( ), ( ) ]na b n a b n a b a+∞

= + + +∪P is 

wi-dely used to study population in biological 
communities, electric circuit and so on [3]. 

In recent years, there has been much research activity 
concerning the oscillation and nonoscillation of solutions 
of some dynamic equations on time scales, and we refer 
the reader to the papers [4-17] and references cited 
therein. Regarding neutral dynamic equations, Argarwal 
et al [6] considered the second order neutral delay 
dynamic quation 

     { ( )[( ( ) ( ) ( )) ] } ( , ( )) 0t x t c t x t f t x tγα τ δΔ Δ+ − + − = .  (1) 

where 0γ > is an odd positive integer, τ andδ are positi-

on constants, ( ) 0tα Δ > , and proved that the oscillation 

of (1) is equivalent to the oscillation of a first order delay 
dynamic inequality. Saker [7] considered (1) where 1γ ≥ , 

is an odd positive integer, the condition ( ) 0tα Δ > is 

abolished and established some new sufficient conditions 
for oscillation of (1). However the results established in 
[6-7] are only valid for the time scales , , or , ,h q  

where { : , , 1}kq t t q k q= = ∈ > . 

Sahiner et al [8] considered the general equation 

       { ( )[( ( ) ( ) ( ( )) ] } ( , ( ( ))) 0t x t c t x t f t x tγα τ δΔ Δ+ + = .  (2) 

on a time scale T , where 1γ ≥ and ( ) , ( )t t t tτ δ≤ ≤ , and 

followed the argument in [6-7] by reducing the oscillation 
of (2) to the oscillation of a first order delay dynamic 
inequality and established some sufficient conditions for 
the oscillation. However one can easily see that the two 
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examples presented in [8] to illustrate the main results are 
valid only when =T and cannot be applied when T = . 
Agarwal, O′Regan and Saker [3]considered (2) where γ ≥  

1 is an odd positive integer and ( ) 0,tα Δ > and established 

some new oscillation criteria by employing the Riccati 
transformation technique which can be applied on any 
time scale T  and improved the results in [6, 8]. 

Bohner and Saker [9] considered perturbed nonlinear 
dynadynamic  equation 

           { ( )(( ( )) ) } ( , ) ( , , )t x t F t x G t x xγ σ σα Δ Δ Δ+ = .  (3) 

on a time scales T . Where 0γ >  is an odd positive 

integer, using Riccati transformation techniques, they 
obtained some sufficient conditions for the solution to be 
oscillatory or converge to zero. 

Following this trend, we shall study the oscillation for 
the second-order neutral nonlinear perturbed dynamic 
equations of the form  

 
{ ( )(( ( ) ( ) ( ( ))) ) }

( , ( ( ))) ( , ( ( )), ),

t x t c t x t

F t x t G t x t x

γα τ
δ δ

Δ Δ

Δ

+

+ =
  (4) 

and 

 
{ ( )(( ( ) ( ) ( ( ))) ) }

( , ( ( ))) ( , ( ( )), ).

t x t c t x t

F t x t G t x t x

γα τ
δ δ

Δ Δ

Δ

−

+ =
  (5) 

on an arbitrary time scales T , where γ is a quotient of 

positive odd integer, , cα is a positive real-valued rd-

continuous function defined on a time scales T  and the 
following conditions are satisfied:  

 (H1) 00 ( ) 1c t c≤ ≤ < , 
0

1( ( ))t t t γα+∞ Δ = ∞∫ , for all t∈T ;  

 (H2) ,τ δ : T →T  satisfies ( ) ,t tτ ≤ for all t∈T , either 

( )t tδ ≥ or ( )t tδ ≤  for all suffici-ently large t , and 

lim ( )
t

tτ
→∞

= lim ( )
t

tδ
→∞

= ∞ ;  

 (H3) , :p q →T are rd-continuous function, such that 

( ) ( ) 0q t p t− > , for all t∈T ;  

 (H4) :F × →T and 2:G × →T are functions 
such that ( , ) 0uF t u > and ( , , ) 0uG t u v > , for all u∈ −  

{0} , v∈ , t∈T ;  

 (H5) ( , ) ( )F t u u q tγ ≥ , and ( , , ) ( )G t u v u p tγ ≤  for all 

, {0}u v∈ − , t∈T . 

We note that in all the above results the conditions 
0 ( ) 1c t≤ < , 1γ ≥ and ( )t tδ ≤  are required. And some 

authors utilized the kernel function ( )mt s− or the general 

class of functions ( , )H t s and obtained some oscillation 

criteria, but the condition ( , )sH t sΔ 0≤ is required. In this 

paper the study is free of these restrictions and contains 
the cases when 0 1, ( ) ,t tγ δ< < ≥ and 1 ( ) 0c t− < ≤ . In 

particular, by utilizing the general class of functions 
( , )H t s , we shall derive some sufficient conditions for 

the solutions of (4) and (5) to be oscillatory or converge 

to zero when the condition ( , ) 0sH t sΔ ≤ is relaxed. Our 

results are different from the existing results for neutral 
equations on time scales that were established in [6-11, 
13-17]. Also, we give some examples to illustrate the 
main results. 

Since we are interested in the oscillatory and asympto-
tic behavior of solutions near infinity, we assume that 
sup = ∞T , and define the time scale interval 0[ , )t ∞ T  by 

0 0[ , ) : [ , )t t∞ = ∞ ∩T T . By a solution of (4), we mean a 

nontrivial real-valued function x (t) satisfying (4) 
for 0t t≥ . A solution x (t) of (4) is said to be oscillatory if 

it is neither eventually positive nor eventually negative, 
otherwise it is called nonoscillatory. Equation (4) is said 
to be oscillatory if all its solutions are oscillatory. Our 
attention is restricted to those solutions of (4) which exist 
on some half line 0[ , )t ∞ and satisfy sup{| ( ) |: } 0xx t t t≥ > , 

for any 0xt t≥ . 

The paper is organized as follows. In next section, we 
present some basic formula and lemma concerning the 
calculus on time scales. In Section 3, we will use Riccati 
transformation techniques and the general class of 
functions ( , )H t s and give some sufficient conditions for 

the oscillatory behavior of solutions of (4) and (5). In last 
section, we give some examples to illustrate our main 
results. 

Through this paper, we let 

( ) 1

1

( ) max[0, ( )], ( ) ( ( ) ( ))(1 ( ( ))) ,

( )
( ) max[0, ( )], ( , ) : ,

( )

t

u
t

u

d t d t Q t q t p t c t

s s
d t d t t u

s s

γ

δ γ

γ

δ

α
ρ

α

+

−

= = − −

Δ∫= − =
Δ∫

 

and for sufficiently largeT ∗ ,  

1, ( ) ,
( , )

( , ), ( ) .

t t
t T

t T t tγ

δ
β

ρ δ
∗

∗

≥⎧
= ⎨

≤⎩
 

II. SOME PRELIMINARIES ON TIME SCALES 

A time scalesT  is an arbitrary nonempty closed subset 
of the real numbers . In this paper, we only consider 
time scales interval of form 0[ , )t ∞ T , onT  we define the 

forward jump operatorσ and the graininess μ by 

{ }( ) : inf :t s s tσ = ∈ >T and ( ) : ( ) .t t tμ σ= −  

A point t∈Twith ( )t tσ = is called right-dense, while t 

is referred to as being right-scattered if ( )t tσ > . A 

function :f →T is said to be rd-continuous if it is 

continu-ous at each right-dense point and if there exists a 
left limit in all left-dense points. The (Δ derivative) f Δ of 

f  is defined by 

( )

( ( )) ( )
( ) lim ,

( )s t
s U t

f t f s
f t

t s

σ
σ

Δ

→
∈

−
=

−
 where ( ) \{ ( )}U t tσ= T . 
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The derivative and the forward jump operator are 
related by the useful formula 

,f f fσ μ Δ= +  where : .f fσ σ=  

We will also make use of the following product and 
quotient rules for the derivative of the product f g and the 
quotient ( 0)f g ggσ ≠ of two differentiable functions f  

and g :  

   ( ) ,f g f g f gσΔ Δ Δ= + and 
f f g f g

g ggσ

Δ Δ Δ⎛ ⎞ −
=⎜ ⎟

⎝ ⎠
.  (6) 

By using the product rule, the derivative of ( )f t =  

( )mt α−  for m∈ andα ∈ T  can be calculated as 

 
1

1

0
( ) ( ( ) ) ( ) .

m
v m v

v
f t t tσ α α

−
Δ − −

=
= − −∑   (7) 

For a, b∈ T and a differentiable function f , the 

Cauchy integral of f Δ is defined by 

( ) ( ) ( )b
a f t t f b f aΔ
∫ Δ = − . 

The integration by parts formula follows from (6) and 
reads 

( ) ( ) ( ) ( ) | ( ) ( )b bb

aa a
f t g t t f t g t f t g t tσΔ ΔΔ = − Δ∫ ∫ . 

To prove our main results, we will use the formula  

 1 1

0
( ( )) [ (1 ) ] ( )x t hx h x dh x tγ σ γγΔ − Δ= + −∫ .  (8) 

which is a simple consequence of Keller′s chain rule [2]. 
Also, we need the following lemma [5]. 

Lemma 1 Assume A and B are nonnegtive constants, λ 
1,>  then  

1 ( 1) .AB A Bλ λ λλ λ− − ≤ −  

The reader is referred to [2] for more detailed and 
extensive developments in calculus on time scales. 

III. MAIN RESULTS 

First, we state the oscillation criteria for (4). 
Set 

 ( ) ( ) ( ) ( ( )).y t x t c t x tτ= +   (9) 

Theorem 1 Assume that (H1) - (H5) hold, Furthermore, 
suppose that there exists a positive Δ−differentiable 
function ( )g t such that for all sufficiently large ,T ∗ and 

for all (T) Tδ ∗> , we have 

 1

1

limsup ( ( , ) ( ) ( )

( )(( ( )) )
) .

( 1) ( )

t

Tt
s T g s Q s

s g s
s

g s

γ

γ γ

β

α
γ

∗

→∞

Δ +
+

+

−∫

Δ = ∞
+

  (10) 

Then every solution of (4) is oscillatory on 0[ , )t ∞ T . 

proof Suppose (4) has a nonoscillatory solution x (t). 
without loss of generality, there exists some 1 0t t≥ , 

sufficiently large such that ( ) 0,x t > ( ( )) 0,x tτ >  ( ( ))x tδ  

0> for all 1t t≥ . Hence In the view of (9), by (H1) we 

get ( ) 0.y t >  from (4) and by (H2) - (H5), we have that 

( ) ) ( ( ) ( )) ( ( )) 0y q t p t x tγ γα δΔ Δ ≤ − − < ,  

and using the same proof of Theorem 1 [4], there exists 

2 1t t≥ such that for all 2t t≥ , we have  

  ( ) 0, ( ) 0,

( ( ) ) ( ( ) ( ))(1 ( ( ))) ( ( )) 0.

y t y t

y q t p t c t y tγ γα δ δ

Δ

Δ Δ

> >⎧
⎨

≤ − − − <⎩
 (11)  

By the definition of ( )Q t , we get 

 ( ( ) ) ( ) ( ( )) 0.y Q t y tγ γα δΔ Δ ≤ − <   (12) 

Make the generalized Riccati substitution 

 
( )( ( ))

( ) ( )
( )

t y t
w t g t

y t

γ

γ

α Δ

= .  (13) 

By the product and quotient rules, we have for all 2t t≥  

( )( ( )( ( )) ) ( )
( ) ( ( )( ( )) )

( ) ( )

( )( ( )( ( )) )

( )

( ) ( )( ( ))
( )( ( )( ( )) ) .

( ) ( ) ( )

g t t y t g t
w t t y t

y t y t

g t t y t

y t

g t g t y t
t y t

y t y t y t

γ
γ σ

γ γ

γ

γ

γ
γ σ

γσ γ γσ

α α

α

α

ΔΔ Δ
Δ Δ

Δ Δ

Δ Δ
Δ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

= +

−

 (14) 

From (12) - (14), we obtain 

    

( ( )) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ( ))
.

( ) ( )

y t g t
w t g t Q t w t

y t g t

g t w t y t

g t y t

γ

σ
σ

σ γ

σ γ

δ Δ
Δ

Δ

⎛ ⎞
≤ − +⎜ ⎟

⎝ ⎠

−

  (15) 

First consider the case when ( )t tδ ≥ . For all large t, 

from ( ) 0y tΔ > , we have 

( ( ))
1

( )

y t

y t

δ
≥ ,  

which implies that  

( ) ( ) ( ) ( ( ))
( ) ( ) ( ) ( )

( ) ( ) ( )

g t g t w t y t
w t g t Q t w t

g t g t y t

σ γ
σ

σ σ γ

Δ Δ
Δ ≤ − + − .  (16) 

Next consider the case when ( )t tδ ≤ , for all large t. By 

using ( )y γα Δ is strictly decreasing on 2[ , )t ∞ , we can 

choose 3 2t t≥ such that 2( )t tδ ≥ , for 3t t≥ . Then we 

obtain 
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1

( ) 1

1

( ) 1

( ( ) ( )) )
( ) ( ( ))

( )

( ( ( ))( ( ( ))) ) ,
( )

t

t

t

t

s y s
y t y t s

s

s
t y t

s

γ γ

δ γ

γ γ
δ γ

αδ
α

α δ δ
α

Δ

Δ

− = Δ∫

Δ
≤ ∫

 

and hence 

      
1

( ) 1

( ) ( ( ( ))( ( ( ))) )
1

( ( )) ( ( )) ( )
t

t

y t t y t s

y t y t s

γ γ

δ γ

α δ δ
δ δ α

Δ Δ
≤ + ∫ .  (17) 

Also, for 3t t≥ , we can see that 

1

2

1

2

( )

2 1

( )

1

( ( ) ( )) )
( ( )) ( ( )) ( )

( )

( ( ( ))( ( ( ))) ) ,
( )

t

t

t

t

s y s
y t y t y t s

s

s
t y t

s

γ

γ

γ
δ

γ

δγ
γ

αδ δ
α

α δ δ
α

Δ

Δ

> − = Δ∫

Δ
≥ ∫

 

and therefore 

1

2

1

( )

1

( ( ( ))( ( ( ))) )

( ( )) ( )
t

t

t y t s

y t s

γγ
δ

γ

α δ δ
δ α

−Δ ⎛ ⎞Δ
≤ ∫⎜ ⎟
⎝ ⎠

. 

From (17) and the above inequality, we have 

 
2 2

( ) 1

1 1

( )
( )

( ( )) ( ) ( )
t t

t t

y t s s

y t s s
δ

γ γδ α α
−Δ Δ

≤ ∫ ∫ ,   (18) 

therefore we get the desired inequality  

 2

( ( ))
( , ),

( )

y t
t t

y t

δ ρ≥  for 3t t≥ .  (19) 

Using (19) in (15), when ( )t tδ ≤ , we get 

 
2

( )
( ) ( , ) ( ) ( ) ( )

( )

( ) ( ) ( ( ))
.

( ) ( )

g t
w t t t g t Q t w t

g t

g t w t y t

g t y t

γ σ
σ

σ γ

σ γ

ρ
Δ

Δ

Δ

≤ − +

−
  (20) 

From (16), (20) and the definition of 2( , )t tβ , we have 

 
2

( )
( ) ( , ) ( ) ( ) ( )

( )

( ) ( ) ( ( ))
.

( ) ( )

g t
w t t t g t Q t w t

g t

g t w t y t

g t y t

σ
σ

σ γ

σ γ

β
Δ

Δ

Δ

≤ − +

−
  (21) 

By (8), we obtain 

1 1

0

1

1

( ( )) [ (1 ) ] ( )

( ( )) ( ), 0 1,

( ( )) ( ), 1.

y t hy h y dh y t

y t y t

y t y t

γ σ γ

σ γ

γ

γ

γ γ
γ γ

Δ − Δ

− Δ

− Δ

= + −∫
< ≤⎧

≥ ⎨
≥⎩

 

Since ( )y γα Δ is strictly decreasing on 2[ , )t ∞ , we get 

1 1

1

1 1

1

( ( )) ( ( )) ( ( ))
, 0 1,

( )
( ( ))

( ( )) ( ( )) ( ( ))
, 1.

( )

t y t y t

t
y t

t y t y t

t

σ γ σ γ σ

γ
γ

σ γ γ σ

γ

γ α γ
α

γ α γ
α

− Δ

Δ

− Δ

⎧
< ≤⎪⎪≥ ⎨

⎪ ≥⎪⎩

 

From the last inequality and (21), if 0 1γ< ≤ , we have 

2

1 1

1 1 1

( )
( ) ( , ) ( ) ( ) ( )

( )

( )( ( )) ( )
,

( )( ( )) ( )

g t
w t t t g t Q t w t

g t

g t w t y t

t g t y t

σ
σ

γσ γ σ

γ σ γ

β

γ
α

Δ
Δ

+

+

≤ − + −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

whereas if 1γ > , we find that 

2

1 1

1 1 1

( )
( ) ( , ) ( ) ( ) ( )

( )

( )( ( )) ( )
.

( )( ( )) ( )

g t
w t t t g t Q t w t

g t

g t w t y t

t g t y t

σ
σ

σ γ σ

γ σ γ

β

γ
α

Δ
Δ

+

+

≤ − +

−
 

And by using ( ) 0y tΔ > , we obtain that 

 
2

1

( )
( ) ( , ) ( ) ( ) ( )

( )

( )
( ( )) ,

( )( ( ))

g t
w t t t g t Q t w t

g t

g t
w t

t g t

σ
σ

σ λ
γ σ λ

β

γ
α

Δ
Δ +≤ − +

−
  (22) 

where : ( 1)λ γ γ= + . Define 0A ≥ and 0B ≥ by 

1 ( +1)
1

1 1

( )( ( ))( )( ( ))
: , :

( )( ( )) ( ( ))

t g tg t w t
A B

t g t g t

γσ λ
λ λ

γ σ λ λ

αγ
α λ γ

Δ
− += = ,  

then using Lemma 1, we obtain 

1

1 1

( ) ( )(( ( )) )( )
( ) ( ( )) .

( ) ( )( ( )) ( 1) ( )

g t t g tg t
w t w t

g t t g t g t

γ
σ σ λ

σ γ σ λ γ γ

αγ
α γ

Δ Δ +
+ +

+
− ≤

+
 

From the last inequality and (22), we have 

1

21

( )(( ( )) )
( ) ( , ) ( ) ( )

( 1) ( )

t g t
w t t t g t Q t

g t

γ

γ γ

α
β

γ

Δ +
Δ +

+
≤ −

+
. 

Integrating both sides from 3t to t, we get 

3

1

2 1

3 3

( )(( ( )) )
[ ( , ) ( ) ( ) ]

( 1) ( )

( ) ( ) ( ),

t

t

s g s
s t g s Q s s

g s

w t w t w t

γ

γ γ

α
β

γ

Δ +
+

+
− Δ∫

+
≤ − ≤

 

which leads to a contradiction to (10). This completes the 
proof. 

Corollary 1 Assume that (H1) - (H5) hold, Furthermore, 
suppose that for all sufficiently large ,T ∗  and for ( )Tδ >  

,T ∗  we have 

1

( )
limsup ( ( , ) ( ) )

( 1)
t

Tt

s
s s T Q s s

sγ γ

αβ
γ

∗

+→∞
− Δ = ∞∫

+
. 

Then every solution of (4) is oscillatory on 0[ , )t ∞ T . 

Corollary 2 Assume that (H1) - (H5) hold, Furthermore, 
suppose that for all sufficiently large ,T ∗  and for ( )Tδ >  

,T ∗  we have 

limsup ( , ) ( )t

Tt
s T Q s sβ ∗

→∞
Δ = ∞∫ . 
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Then every solution of (4) is oscillatory on 0[ , )t ∞ T . 

We next study a Philos-type oscillation criteria for (4). 
First, Let us introduce the class of functions ℜ which 
will be extensively used in the sequel. 

Let 2

0{( , ) : }t s t s t= ∈ ≥ ≥D T .The function rdH C∈  

( , )D is said to belong to the classℜ  by H ∈ℜ , if 

 0( , ) 0,H t t t t= ≥ ; 0( , ) 0,H t s t s t> > ≥ ,   (23)  

and H has a continuous Δ − partial derivative ( , )sH t sΔ  

with respect to the second variable. 
Theorem 2 Assume that (H1) - (H5) hold. Let g (t) be 

as defined in Theorem 1, and , ( , )rdH h C∈ D such that 

H ∈ℜ . Furthermore, suppose that there exists a positive 
rd-continuous function ( )tϕ satisfies 

 
0

( , )
( )

( , )

H t s
s

H t t
ϕ≤ ,   (24) 

   ( 1)( ) ( , )
( , ) ( , ) ( ( , ))

( ) ( )
s

g s h t s
H t s H t s H t s

g s g s
γ γ

σ σ

Δ
Δ +− − = ,   (25) 

and for all sufficiently largeT ∗ , we have 

 
0

0

1

1

1
limsup [ ( , ) ( ) ( ) ( , )

( , )

( )( ( , ))
] .

( 1) ( )

t

tt
s T g s Q s H t s

H t t

s h t s
s

g s

γ

γ γ

β

α
γ

∗

→∞

+
−
+

∫

− Δ = ∞
+

  (26) 

Then every solution of (4) is oscillatory on 0[ , )t ∞ T . 

Proof Suppose (4) has a nonoscillatory solution x (t), 
without loss of generality, say ( ) 0,x t > ( ( )) 0,x tτ >  

( ( )) 0x tδ > , for all 1t t≥ , for some 1 0t t≥ . By (H2) - (H5), 

proceed as in the proof of Theorem 1, we get that (11) 
holds for all 1t t≥ . Again we define ( )w t as in the proof of 

Theorem 1, then there exists 2 1t t≥ , sufficiently large such 

that for all 2t t∗ ≥ and for t t∗≥ , (22) holds and let ( )g tΔ
+  

be replaced by ( )g tΔ in (22), thus 

 
2

1

( )
( , ) ( ) ( ) ( ) ( )

( )

( )
( ( )) .

( )( ( ))

g t
t t g t Q t w t w t

g t

g t
w t

t g t

σ
σ

σ λ
γ σ λ

β

γ
α

Δ
Δ≤ − +

−
  (27) 

Multiplying both the sides of (27), with t replaced by s, 
by H (t, s) and integrating with respect to s from t∗ to t, 
we obtain 

2

1

( , ) ( , ) ( ) ( )

( )
( , ) ( ) ( , ) ( )

( )

( )
( , ) ( ( )) .

( )( ( ))

t

t

t t

t t

t

t

H t s s t g s Q s s

g s
H t s w s s H t s w s s

g s

g s
H t s w s s

s g s

σ
σ

σ λ
γ σ λ

β

γ
α

∗

∗ ∗

∗

Δ
Δ

Δ ≤∫

− Δ + Δ∫ ∫

− Δ∫

 

Integrating by parts formula and using (23) and (25), 
we get 

2

1

1

( , ) ( , ) ( ) ( ) ( , ) ( )

( , ) ( ( , )) ( , ) ( )
[ ( ) ( ( )) ] .

( ) ( )( ( ))

t

t

t

t

H t s s t g s Q s s H t t w t

h t s H t s H t s g s
w s w s s

g s s g s

λ
σ σ λ

σ γ σ λ

β

γ
α

∗

∗

∗ ∗

−

Δ ≤ +∫

− Δ∫
 (28) 

And applying Lemma 1, we obtain 

1

1

1

1

( , )( ( , )) ( , ) ( )
( ) ( ( ))

( ) ( )( ( ))

( ( , )) ( )
.

( 1) ( )

h t s H t s H t s g s
w s w s

g s s g s

h t s s

g s

λ
σ σ λ

σ γ σ λ

γ

γ γ

γ
α

α
γ

−

+
−

+

−

≤
+

 

From the last inequality and (24), (28), we have 

0

0

1

2 1

0

2

( ( , )) ( )1
[ ( , ) ( ) ( ) ( , ) ]

( , ) ( 1) ( )

( ) ( ) ( ) ( , ) ( ) ( ) ,

t

t

t

t

h t s s
s t g s Q s H t s s

H t t g s

t w t s s t g s Q s s

γ

γ γ

α
β

γ

ϕ ϕ β
∗

+
−

+

∗ ∗

− Δ∫
+

≤ + Δ < ∞∫

 

which contradicts with (26). The proof is completed  
Remark 1 If ( , ) 0sH t sΔ ≤ holds for t s≥ 0t≥ , then (24) 

holds (It is easily proved). But, the converse is not true. 
For instance, let 0( , ) ( ) ( ),mH t s t s s t s tμ= − ≥ ≥ , where 

:μ +→T is rd-continuously differential function, 

1m ≥  is an integer. Clearly H ∈ ℜ , and for all t s≥ 0t≥ , 

from (6) and (7), we have 

0 0 0

( , ) ( ) ( )
( ),

( , ) ( ) ( )

m

m

H t s t s s
s

H t t t t t

μ ϕ
μ

−
≤ =

−
 

1
1

0

1

( , ) ( ( )) ( ) ( ) ( ( )) ( )

( ( )) ( ) ( ( )) ( ),

s
m

v m v m

v

m m

H t s t s t s s t s s

m t s s t s s

σ μ σ μ

σ μ σ μ

−
Δ − − Δ

=

− Δ

= − − − + −∑

≤ − − + −
 

by Remark 3.3 in [7]. Clearly the right side of the second 
inequality is not necessarily nonpositive. Therefore 

( , )sH t sΔ is not necessarily nonpositive for 0t s t≥ ≥ . 

In Theorem 2, let g (t) =1 and ( , ) ( )mH t s t s= − , we 

have the following result. 
Corollary 3 Assume that (H1) - (H5) hold, and 1m ≥ , 

for all sufficiently largeT ∗ , we have 

0

1
limsup ( ) ( , ) ( )t m

tmt
t s s T Q s s

t
β ∗

→∞
− Δ = ∞∫ . 

Then every solution of (4) is oscillatory on 0[ , )t ∞ T . 

Next, we state the oscillation criteria for (5). 
Set  

( ) ( ) ( ) ( ( ))z t x t c t x tτ= − . 

Theorem 3 Assume that (H1) - (H5) hold, Furthermore, 
suppose that there exists a positive Δ−differentiable func-
tion ( )g t such that for all sufficiently large ,T ∗ and for all  

(T) Tδ ∗> , we have 
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 1

1

limsup [ ( , ) ( )( ( ) ( ))

( )(( ( )) )
] .

( 1) ( )

t

Tt
s T g s q s p s

s g s
s

g s

γ

γ γ

β

α
γ

∗

→∞

Δ +
+

+

−∫

− Δ = ∞
+

  (29) 

Then every solution of (5) is either oscillatory on 0[ , )t ∞ T  

or tends to zero. 
proof Suppose that x is an eventually positive solution 

of (5), say ( ) 0,x t > ( ( )) 0,x tτ > ( ( )) 0x tδ > for all 1t t≥ for 

some 1 0t t≥ . We consider only this case, because the 

proof for the case that x is eventually negative is similar. 
In the view of (5), by (H2) - (H5), and there exists 

2 1t t≥ such that for all 2t t≥ , we have  

 ( ( ) ) ( ( ) ( )) ( ( )) 0z q t p t x tγ γα δΔ Δ ≤ − − < ,   (30) 

then ( )z γα Δ  is strictly decreasing on 2[ , )t ∞ . Hence z (t) 

and ( )z tΔ are of constant sign eventually. We claim that 

( )x t is bounded. If not, there exists { }kt ⊆ 2[ , )t ∞ , such 

that lim , lim ( ) ,k kk k
t x t

→∞ →∞
= ∞ = ∞ and 

0( ) max{ ( ) : }.k kx t x s t s t= ≤ ≤  

Since lim ( )kk
tτ

→∞
= ∞ , we can choose a large k such that 

0( )kt tτ > , and by (H2), we obtain that 

0

0

( ( )) max{ ( ) : ( )}

max{ ( ) : } ( ).
k k

k k

x t x s t s t

x s t s t x t

τ τ= ≤ ≤
≤ ≤ ≤ =

 

Therefore, for all large k,  

0( ( )) ( ) ( ( ))k k kz t x t c x tτ τ≥ − ≥ 0(1 ) ( )kc x t− ,  

and lim ( )kk
z t

→∞
= ∞ . From (H1) and (30), as in the proof of 

Theorem 1 [4], there exists 3 2t t≥ such that for all 3t t≥ , 

we have 

 ( ) 0, ( ) 0z t z tΔ> > .  (31) 

In view of (5), (30) and (31), we get 

 ( ( ) ) ( ( ) ( )) ( ( )) 0z q t p t z tγ γα δΔ Δ ≤ − − < .  (32) 

Now by using the same proof of Theorem 1, we get a 
contradiction with (29). Thus x (t) is bounded and hence z 
(t) is bounded. 

Also, by using (H1) and the same proof of Theorem 1 
in [4], there exist t4 ≥ t3 such that ( ) 0z tΔ > on [t4, ∞). 

There are two cases. 
Case 1 ( ) 0z t >  and ( ) 0z tΔ > . As in the proof of 

Theorem 1, we get a contradiction with (29). 
Case 2 ( ) 0z t <  and ( ) 0z tΔ > . We claim lim ( ) 0

t
x t

→∞
= . 

Assume not, then there exists 5{ } [ , )kt t⊆ ∞ such that 

lim ,kk
t

→∞
= ∞ lim ( ) : 0kk

x t b
→∞

= > and 0( ) max{ ( ) :kx t x s t s= ≤

}.kt≤ But, by ( ( )) ( )k kx t x tτ ≤ , we get  

0 00 ( ) ( )(1 ) (1 ) 0,k kz t x t c b c> ≥ − → − >  as k→∞. 

Which is a contradiction. This completes the proof. 
Corollary 4 Assume that (H1) - (H5) hold, Furthermore, 

suppose that for all sufficiently large ,T ∗  and for ( )Tδ >  

,T ∗  we have 

1

( )
limsup ( ( , )( ( ) ( )) )

( 1)
t

Tt

s
s s T q s p s s

sγ γ

αβ
γ

∗

+→∞
− − Δ = ∞∫

+
. 

Then every solution of (5) is either oscillatory on 0[ , )t ∞ T  

or tends to zero. 
Corollary 5 Assume that (H1) - (H5) hold, Furthermore, 

suppose that for all sufficiently large ,T ∗  and for ( )Tδ >  

,T ∗  we have 

limsup ( , )( ( ) ( ))t

Tt
s T q s p s sβ ∗

→∞
− Δ = ∞∫ . 

Then every solution of (5) is either oscillatory on 0[ , )t ∞ T  

or tends to zero. 
We next study a Philos-type oscillation criteria for (5).  
Theorem 4 Assume that (H1) - (H5) hold. Let g (t) be 

as defined in Theorem 1, and , ( , )rdH h C∈ D such that 

H  ∈ℜ . Furthermore, suppose that there exists a 
positive rd-continuous function ( )tϕ  such that (24), (25) 

hold, and for all sufficiently largeT ∗ , we have 

  
0

0

1

1

1
limsup { ( , ) ( )( ( ) ( )) ( , )

( , )

( )( ( , ))
} .

( 1) ( )

t

tt
s T g s q s p s H t s

H t t

s h t s
s

g s

γ

γ γ

β

α
γ

∗

→∞

+
−
+

−∫

− Δ = ∞
+

  (33) 

Then every solution of (5) is either oscillatory on 0[ , )t ∞ T  

or tends to zero. 
Proof Suppose that (5) has a nonoscillatory solution x 

(t), without loss of generality, say ( ) 0,x t > ( ( )) 0,x tτ >  

( ( )) 0x tδ > , for all 1t t≥ , for some 1 0t t≥ . By (H2) - (H5), 

we obtain that (30) holds for all 1t t≥ , and ( )z t  and 

( )z tΔ are of constant sign eventually. Similar to the proof 

of Theorem 3, we claim that ( )x t is bounded. If not, there 

exists 1{ } [ , )kt t⊆ ∞ , for all large k, there exists 2 1t t≥ , such 

that (31) and (32) hold for 2t t≥ . Again we define ( )w t as 

in the proof of Theorem 1, then there exists 3 2t t≥ , 

sufficiently large such that for 3t t∗ ≥ and for t t∗≥ , we 

find 

   
3

1

( , ) ( )( ( ) ( ))

( ) ( )
( ) ( ) ( ( )) .

( ) ( )( ( ))

t t g t q t p t

g t g t
w t w t w t

g t t g t
σ σ λ

σ γ σ λ

β
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Δ
Δ

−

≤ − + −
  (34) 

And similar to the proof of the theorem 3, we obtain  

0 3
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1
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0 3( ) ( , ) ( )( ( ) ( )) ,t

t s s t g s q s p s sϕ β
∗

− Δ < ∞∫  

which contradicts with (33). Thus x (t) is bounded and 
hence z (t) is bounded.  

Similar to the proof of Theorem in [4], there exists 

4t t∗≥ such that ( ) 0z tΔ > on 4[ , )t ∞ . And then there are 

two cases of Theorem 3. As in the proof of Theorem 3, if 
the case 1 holds, we get a contradiction with (33) ; if the 
case 2 holds, we obtain lim ( ) 0

t
x t

→∞
= . This completes the 

proof.  
In Theorem 4, let g (t) =1 and ( , ) ( )mH t s t s= − , we 

have the following result. 
Corollary 6 Assume that (H1) - (H5) hold, and 1m ≥ , 

for all sufficiently largeT ∗ , we have 

0

1
limsup ( ) ( , )( ( ) ( ))t m

tmt
t s s T q s p s s

t
β ∗

→∞
− − Δ = ∞∫ . 

Then every solution of (5) is either oscillatory on 0[ , )t ∞ T  

or tends to zero. 

IV. EXAMPLES 

In this section, we give some examples to illustrate our 
main results. Define 

0

1 ( ) ,
( )

( , ), ( ) .

t t
t

t t t tγ

δ
ξ

ρ δ
≥⎧

= ⎨
≤⎩

，
 

Note that
0

1( ( ))
t

t t γα∞ Δ = ∞∫ , implies 
( , )

lim 1
( )t

t T

t

β
ξ

∗

→∞
= . 

Example 1 Consider the nonlinear neutral perturbed 
dynamic equation  

 
1 1

( (( ( ) ( ( ))) ) )
1

( , ( ( ))) ( , ( ( )), ),

t x t x t
t

F t x t G t x t x

γ γτ

δ δ

− Δ Δ

Δ

±
+

+ =
  (35)  

for [1, )t∈ ∞ T , where γ is the quotient of odd positive 

integers. Let 

1 2

2 4

2

2 2 2

(1 ( )) 1
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1 (1 ( ))
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1 2 ( ) ( ) ( 1)
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t t t t

k t u
c t G t u v

t t t t u v

γ
γ γ

γ

γ γ

γ

δα
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δ
δ ξ

−

+

+
= = + +

+
= =

+ + +

 

where k is a positive constant. Then 

2( ) 2 ( )Q t k t tξ= .  

Since
0 0

1 1( ( ))
t t

t t t tγ γ γα∞ ∞ −Δ = Δ = ∞∫ ∫ , hence the condi-

tions (H1) - (H5) are clearly satisfied. And,  

1

1
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( 1)

1
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2 ( 1)
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s s T g s Q s s

s

k s

s

γ γ

γ

αβ
γ

γ

∗

+→∞
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if 
1

2 ( 1)k
γ

γ
+

> + . Also,  

1

1
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1
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Δ
= − = ∞∫

+

 

if
1

2 ( 1)k
γ

γ
+

> + . Thus it follows from Corollary 1 that 

every solution of (35) + is oscillatory on [1, )∞ T  if k >  
1

2 ( 1) ,
γ

γ
+

+ and it follows from Corollary 4 that every 

solution of (35) − is either oscillatory on [1, )∞ T or tends 

to zero if k >
1

2 ( 1)
γ

γ
+

+ . 

Example 2 Consider the nonlinear neutral perturbed 
dynamic equation 

 
2 3 5 3

2

1
( (( ( ) ( ( ))) ) )

2 sin
( , ( ( ))) ( , ( ( )), ).

t x t x t
t

F t x t G t x t x

τ

δ δ

Δ Δ

Δ

−
+

+ =
  (36) 

for [2, )t∈ ∞ T , where 2 3 2( ) , =5 3, ( ) 1 2 sint t c t tα γ= = +（ ） 

Let 

4 2 5 31
( , ) ( ) ,

( )
F t u t u u

t tξ
= + +  

and 
11 3

2 4

1
( , , )

2 ( ) ( 2)

u
G t u v

t t u vξ
=

+ +
. 

Then ( ) ( ) 1 2 ( )q t p t t tξ− = . The conditions (H1) - (H5) 

are clearly satisfied. For all 2t s> ≥ , let m=2, we have 

2

22

2

22

2 22

1
limsup ( ) ( , )( ( ) ( ))

1 ( )
limsup

2
1 1 2

limsup[ ] .
2 2

t

t

t

t

t t

t

t s s T q s p s s
t

t s
s

t s
s t

s s
t s t

β ∗

→∞

→∞

→∞

− − Δ∫

−
= Δ∫

−
= Δ + Δ − = ∞∫ ∫

 

Thus it follows from Corollary 6 that every solution of 
(36) is either oscillatory on [2, )∞ T or tends to zero. 

IV. CONCLUSIONS 

To investigate the oscillatory and asymptotic behavior 
for a certain class of second order nonlinear neutral 
perturbed dynamic equations on time scales. This paper 
proposed some new sufficient conditions for oscillation 
of such dynamic equations on time scales were 
established. The results not only improve and extend 
some known results in the literature, but also unify the 
oscillation of second order nonlinear neutral perturbed 
differential equations and second order nonlinear neutral 
perturbed difference equations. In particular, the results 
are essentially new under the relaxed conditions for the 
parameter function. 

ACKNOWLEDGMENT 

1534 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER



This work was supported by a grant from the National 
Natural Science Foundation of China (11161049) and the 
Science Foundation of Zhangjiakou, China (1112027B-1). 

REFERENCES 

[1] S. Hilger, “Analysis on measure chains–A unified appro-
ach to continuous and discrete calculus”, Results Math., 
vol. 18, pp. 18–56, July 1990.  

[2] R.P. Agarwal, M. Bohner, D. O’Regan, and A. Peterson, 
“Dynamic equations on time scales, a survey”, Comput. 
Appl. Math., vol. 141, pp. 1–26, March 2002. 

[3] M. Bohner and A. Peterson, Dynamic Equations On Time 
Scales: An Introduction with Applications. Birkhauser, CA: 
Boston, 2001. 

[4] H. Y. Yang, Q., Ge, and X. P. Yu, “Oscillation criteria for 
second order nonlinear neutral dynamic equations on time 
scales”, Mathematics in Practice and Theory, vol. 38, pp. 
253–256, September 2008. 

[5] D. X. Chen and J. C. Liu, “Oscillation theorems for second 
order nonlinear neutral dynamic equations on time scales”, 
J. Sys. Sci. &  Math. Scis., vol. 9, pp. 1191–1205, Septem-
ber 2010. 

[6] P.R. Agarwal, D. O’Regan, and S. H. Saker, “Oscillation 
criteria for second-order nonlinear neutral delay dynamic 
equations”, Math. Anal. Appl., vol. 300, pp. 203–217, 
March 2004. 

[7] S. H. Saker, “Oscillation of second-order nonlinear neutral 
delay dynamic equations on time scales”, Comput. Appl. 
Math., vol. 187, pp. 123–141, May 2006.  

[8] Y. Sahiner, “Oscillation of second-order neutral delay and 
Mixed-type dynamic equations on time scales”, J. Adv.Diff. 
Equ., vol. 3, pp. 1–9, May 2006. 

[9] M. Bohner, S. H. Saker, “Oscillation Criteria for a 
perturbed nonlinear dynamic equations”, Math. Comp. 
Modelling, vol. 40, pp. 249–260, August 2004. 

[10] J. S. Yang, “Oscillation for a class of second-order 
nonlinear dynamic equations on time scales”, J. of Sichuan 
University, vol. 48, pp. 278–283, March 2011.  

[11] E. Thandapani and V. Piramanantham, “Oscillation criteria 
of second order neutral delay dynamic equations with 
distributed deviating arguments”, Electronic J. of Qualit-
ative Theory of Diff. Equ., vol. 61, pp. 1–15, April 2010.  

[12] S. Petr and T. Bevan, “Applications of maximum 
principles to dynamic equations on time scales”, J. Diff. 
Eqs. & Appl. vol. 16, pp. 373–388, November 2010.  

[13] D. Anderson, “Oscillation and nonoscillation criteria for 
Two-Dimensional time-scale systems of First-Order 
nonlinear dynamic equations. electronic”, J. of Diff. Eqs. 
Vol. 24, pp. 1–13, January 2009. 

[14] J. S. Yang and B. Fang, “Oscillation criteria of a class of 
second-order dynamic equations on time scales”, Appl. 
Math. A J. of Chinese Universities. Vol. 26, pp. 149–157, 
June 2011. 

[15] J. S. Yang, “Asymptotic behavior of second-order nonli-
near dynamic equations on time scales”, J. Inner Mongolia 
University. Vol. 41, pp. 153–156, March 2010. 

[16] X. P. Yu, H. Y. Yang and Y. X. Xu, “Oscillation criteria 
for second-order neutral nonlinear dynamic equations on 
time scales”, Proceedings of the 5th ICMB, Vol. 1, pp. 
353–356, June 2011. 

[17] X. P. Yu, H. Y. Yang and J. M. Zhang, “Oscillation criteria 
for nonlinear neutral  perturbed dynamic equations on time 
scales”, Ann. Diff. Eqs., in press. 

 
 
 

 
Xiuping Yu was born in Yu County, Hebei Province, China 

in April 1966. She graduated from Hebei Normal University, 
Shijiazhuang City, China majoring in mathematics with a B.S. 
degree in 1988. And then she earned a Master’s degree in 
applied mathematics from Hebei University, Baoding City, 
China in 2003. 

At present, she teaches in Department of Mathematics and 
Physics and serves as DIRECTOR of BASIC MATHEMATICS 
SECTION in Hebei Institute of Architecture and Civil 
Engineering, Zhangjiakou City, China. In recent years she has 
participated in quite a few international and domestic academic 
conferences during summer vocations. She was once a major 
member of the 5th International Congress on Mathematical 
Biology and the 2nd International Conference on Information 
Computing and Applications. She has been mainly engaged in 
functional deferential equation and dynamic system. She has 
completed five provincial-level scientific research projects as 
project leader and principal researcher. Her main achievements 
are interval oscillation criteria for high order neutral deferential 
equations with continuous deviating arguments (Ann. Diff. Eqs. 
vol. 22, pp. 411–417, August 2006), and permanence of 
population with Holling II function response in air pollution 
(Mathematics in Practice and Theory, vol. 37, pp. 102–108, 
October 2007). Currently, she has a strong interest in the 
properties and applications of dynamic equations on time scales. 

Prof. Yu is a member of the National Functional Differential 
Equation Society as well as of the National Biological 
Mathematical Society. She also works as a director of Hebei 
Applied Statistics Society. Her paper, interval oscillation 
criteria for high order neutral deferential equations with 
continuous deviating arguments, won an excellence award at the 
9th National Functional Differential Equation Conference. 
Another paper, permanence of population with Holling II 
function response in air pollution got the first prize at the 6th 
Biological Mathematical Conference. The paper, oscillation 
criteria for second order neutral nonlinear dynamic equations on 
time scales was published in Proceedings of the 5th ICMB by 
World Academic Press.  
 

Hua Du was born in Zhangjiakou City, Hebei Province, 
China in December 1981. She graduated from Hebei Normal 
University, Shijiazhuang City, China majoring in computer 
information technology with a B.S. degree in 2006. And then 
she earned a Master’s degree in computer application from 
Capital Normal University, Beijing City, China in 2009. 

At present, she teaches in the Information Science and 
Engineering College of Hebei North University, Zhangjiakou 
City, China. In recent years, she has been mainly engaged in 
information management and computer network.  
 

Hongyu Yang was born in Kangbao Country, Hebei 
Province, China in August 1966. He graduated from Hebei 
Agricultural University, Baoding City, China majoring in 
agricultural machanization with a B.E. degree in 1988. And 
then he earned a Master’s degree in mechanical engineering 
from Chinese Agricultural University, Beijing City, China in 
2012.  

At present, he teaches in Department of Mechanical 
Engineering and serves as DIRECTOR OF DEPARTMENT OF 
MECHANICAL ENGINEERING in Zhangjiakou Vocational 
Technology Institute, Zhangjiakou, China. In recent years he 
has participated in quite a few domestic academic conferences 
during summer vocations. He has been mainly engaged in 
dynamic system.  

 
 

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1535

© 2013 ACADEMY PUBLISHER




