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Abstract—With the analysis of the technology of phase space 
reconstruction, a modeling and forecasting technique based 
on the Radial Basis Function (RBF) neural network for 
chaotic time series is presented in this paper. The predictive 
model of chaotic time series is established with the adaptive 
RBF neural networks and the steps of the chaotic learning 
algorithm with adaptive RBF neural networks are expressed. 
The network system can enhance the stabilization and 
associative memory of chaotic dynamics and generalization 
ability of predictive model even by imperfect and variation 
inputs during the learning and prediction process by 
selecting the suitable nonlinear feedback term. The 
dynamics of network become chaotic one in the weight space. 
Simulation experiments of chaotic time series produced by 
Lorenz equation are proceeded by a RBF neural  
network.The experimental and simulating results indicated 
that the forecast method of the adaptive RBF neutral 
network compared with the forecast method of back 
propagation (BP) neutral network based on the chaotic 
learning algorithm has faster learning capacity and higher 
accuracy of forecast．The method provides a new way for 
the chaotic time series prediction. 
 
Index Terms—Chaos Theory, Phase Space Reconstruction, 
Time Series Prediction, RBF Neural network, Algorithm 
 

I. INTRODUCTION 

Since the phase space reconstruction theory proposed 
by Packard et al. in 1980, many scholars at home and 
abroad to set off a climax of chaotic time series 
prediction. Prediction for chaotic time series is to 
approximate the unknown nonlinear functional mapping 
of a chaotic signal. The laws underlying the chaotic time 
series can be expressed as a deterministic dynamical 
system. Farmer and Sidorowich suggest reconstructing 
the dynamics in phase space by choosing a suitable 
embedding dimension and time delay [1]. Takens’ 
theorem ensures that the method is reliable, based on the 
fact that the interaction between the variables is such that 
every component contains information on the complex 
dynamics of the system [2]. 

The neural network [3-6]. not only has the self-
adaptive, parallelism and fault tolerance characteristics, 
but also has the ability to approximate any nonlinear 
function. Based on these advantages, the neural network 
model of the nonlinear system has a very wide range of 

applications [7-10]. In recent years, particular interest has 
been put into predicting chaotic time series using neural 
networks because of their universal approximation 
capabilities. Most applications in this field are based on 
feed-forward neural networks, such as the Back 
Propagation (BP) network [11-13], Radial Basis Function 
(RBF) network [14-15], Recurrent neural networks 
(RNNs) [16-18], FIR neural networks [19-20] and so on. 
It is widely used tool for the prediction of time series [21-
23].  

The RBF neural network model structure is easy to 
understand, training process stability, training speed is 
fast, training result is high accuracy and generalization 
ability is strong. In this paper, the chaotic algorithm is 
proposed to a RBF neural network filtering predictive 
model and the model is proposed to make prediction of 
chaotic time series. The network system can enhance the 
stabilization and associative memory of chaotic dynamics 
and generalization ability of predictive model even by 
imperfect and variation inputs by selecting the suitable 
nonlinear feedback term. The dynamics of network 
become chaotic one in the weight space. The model is 
tested for the chaotic time series which venerated with 
Lorentz system by on-line method. The experimental and 
simulation results indicated that the adaptive filtering has 
a good self-suitable prediction performance and can be 
successfully used to predict chaotic time series.  

II. ESTABLISHMENT OF ADAPTIVE RBF NEURAL 

NETWORK FILTERING PREDICTIVE MODEL BASED ON 

CHAOTIC ALGORITHM 

A. Model of Chaotic Time Series Prediction 

Takens theorem considers evolution of any component 
of the system is decided by other components interacting 
with this component, therefore, the information of 
relevant component imply in the development process of 
this component, so the original rules of the system can be 
extracted and restored from a group of time-series data of 
a certain component. The one-dimensional time series is 
embedded to multi-dimensional phase space through 
reconstruction and the new system with same dynamic 
characteristics as original system can be obtained through 
the selection of a suitable embedding dimension m  and 
time delayτ . The usual method of selecting time delay 
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τ includes autocorrelation function method, multiple 
correlation function method, mutual information method. 
Embedding dimension m  is calculated by the methods of 
GP algorithm, pseudo-nearest-point method, correlation 
integral method and Cao method. 

The chaotic time series prediction is based on the 
Takens' delay-coordinate phase reconstruct theory. If the 
time series of one of the variables is available, based on 
the fact that the interaction between the variables is such 
that every component contains information on the 
complex dynamics of the system, a smooth function can 
be found to model the portraits of time series. If the 
chaotic time series are{ }( )x t , then the reconstruct state 

vector is 
( ) ( ( ), ( ), , ( ( 1) ))t x t x t x t mτ τ= + + −x  

where m  ( 2,3, )m =  is called the embedding 

dimension ( 2 1m d= + , d  is called the freedom of 
dynamics of the system), and τ  is the delay time. The 
predictive reconstruct of chaotic series is a inverse 
problem to the dynamics of the system essentially. There 
exists a smooth function defined on the reconstructed 
manifold in mR  to interpret the 
dynamics ( ) ( ( ))x t T F x t+ = , where T ( 0)T > is forward 

predictive step length, and ( )F ⋅  is the reconstructed 

predictive model. 

B. RBF Neural Network Function Approximation Theory 

Takens embedding theorem states that there is a 
smooth mapping F  of the F makes:  

( ) ( ( ))x t F x tτ+ =                            (1) 

that is,  
( ), ( ), , ( ( 2) ) {[ ( ), ( ), , ( ( 1) ]}x t x t x t m F x t x t x t mτ τ τ τ+ − − = − − −

For purposes of calculation, equation (1) can be rewritten 
as:  

( ) [ ( ), ( ), , ( ( 1) ]x t F x t x t x t mτ τ τ+ = − − −            (2) 

where, f  is the mapping from MR  to LR . Chaos theory 

suggests that the chaotic time series is short-term forecast, 
and the essence of prediction is how to get a good 

approximation f  on the function f . Chaotic time series 

determined by the internal regularity, this regularity 
comes from the non-linear, it exhibits the time series in 
the time delay state, this feature makes the system seem 
to have some kind of memory capacity. The same time, it 
is difficult to demonstrate such a regularity by using the 
analytic methods; this type of information processing 
happens to be the neural network, and the Kolmogorov 
continuity theorem in the neural networks theory   
provides a theoretical guarantee for the neural network 
nonlinear function approximation. 

Theorem (Kolmogorov continuity theorem) Let ( )xϕ  

be a non-constant and bounded monotonically increasing 
a continuous function; M  is a compact sub-set of nR , 
and 1 2( ) ( , , , )nf x f x x x=  is the continuous real value 

function on M , then for 0ε∀ > , exists a positive integer 
N and real numbers C , makes:  

1 2
1 1

( , , , ) ( )
N n

n i ij j j
i j

f x x x C xϕ ϖ θ
= =

= −∑ ∑                (3) 

meet:  

1 2 1 2max ( , , , ) ( , , , )n n
M

f x x x f x x x ε− <           (4) 

By the above theorem, the nonlinear time series 
prediction process using neural network can be 
considered as dynamic reconfiguration, which is an 
inverse process. Namely, the existence of a three-layer 
network, the hidden unit output function, the network 
input and output function is linear, three-layer network 
input and output relation f can approximate p. 

Therefore, the theorem from mathematics is to ensure 
the feasibility of chaotic time series prediction by neural 
network. 

C. Realized Architecture of Adaptive RBF Neural 
Network Filtering Predictive Model 

After reconstructing the phase space, the RBF neural 
networks adopt three layers networks of Figure 1. Where 
the input layer has m  nerve cells, the first layer feed to 
the second layer directly and it do not need the power 
processing. ir  ( 1, 2, ,i L= ) is the reference vector and 

kϖ  ( 1, 2, ,i L= ) is the adjustable parameters in the 

adaptive RBF neural network filtering. Thus, the adaptive 
RBF neural network filtering is more flexible in studying 
the nonlinear functions. The differentiation between the 
networks and the traditional neural networks is that the 
activation function is a RBF function but not the Sigmoid 
function. The activation function usually choose the 
Gauss function, the spline function ( ( ))if d k ,  

where ( ) ( ) ( )i id k x k r k= − . In the adaptive RBF neural 

network filtering, ( )y k is expressed as  
1

2
0

ˆ( ) ( ( ) ( ( )))
L

i i
i

y k f k f d kϖ
−

=

= ∑ ,  

0, 2, , 1i L= − ,  

where  2 ( )f ⋅ is the activation function of output signal. 

)(0 kϖ

)(1 kϖ

)(2 kϖ

)(kLϖ

)(ˆ ky

)(kx

1−z

1−z

1−z

0r

1r

2r

Lr

∑ 

 

 
input            hidden layer                     output 

Figure 1. Structure of adaptive RBF neural network filtering 

Generally, the learning of the RBF neural network 
filtering has three steps. If the gradient method and the 
Gauss activation function are adopted, the regulate 
formulas of RBF are shown as:  
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  (5)  

0,2, , 1i L= − . 
The RBF neural network system can enhance the 

stabilization and associative memory of chaotic dynamics 
and generalization ability of predictive model even by 
imperfect and variation inputs by selecting the suitable 
nonlinear feedback term. The dynamics of network 
become chaotic one in the weight space. Thus, the 
regulate formula ( )kϖ  is shown as 

( 1) ( ) 2 ( ) ( ( )) ( ( ) ( 1))i i i i Ik k e k f d k g k kϖϖ ϖ μ ϖ ϖ+ = + + − −
                           (6) 

where 2( ) tanh( ) exp( ),g x ax bx= − ( ) ( 1)i ix k kϖ ϖ= − − . 

That the feedback function ( )g x  is chose is because 

that ( )g x can get the difference feedback function 

corresponding to the dissimilar parameter, such as the 
staircase function, δ  function and so on. If the feedback 
function is seen as the motion-promoting force, the 
different feedback parameters a and b  corresponding to 
the amplitude and width of the motion-promoting force. 
The paper [18] was detailed to discuss the influences by 
selecting the suitable learning and predictive process. The 
simulation results indicated that the network system can 
enhance the stabilization and associative memory of 
chaotic dynamics and generalization ability of predictive 
model even by imperfect and variation inputs during the 
learning and prediction process by selecting the suitable 
nonlinear feedback term. 

III. DETERMINATION METHOD OF THE OPTIMAL DELAY 

TIME AND MINIMUM EMBEDDING DIMENSION 

A. Determination Method of the Optimal Delay Time τ  

During Phase Space Reconstruction in the Takens 
embedding theorem does not make limited to the delay 
time τ .In theory, when the observational data point is an 
infinitely long, the effect of embedded not too large. 
However, in actual operation, τ is caused a great impact. 
If τ  is too small, the chaotic attractor cannot be fully 
expanded, redundant error is larger; if τ  is too large, the 
no related error is larger. Therefore, in order for complex 
nonlinear systems, using the mutual information method 
to determine the optimal delay time τ , the mutual 
information method using a minimal value of the mutual 
information function to determine the optimal delay time 
τ , its expression is as follows:  

,
,

,

( )
( , ) ( ) ln i j

t t i j
i j i j

P r
M x x P r

PPτ− = ∑                     (7) 

where, iP  is the probability of point tx  in the i  time 

interval; , ( )i jP r  is the joint probability of the point tx  in 

t  moment fall into the i  time interval and the t τ+  
moment fall into the j  time intervals. 

B. Determination Method of the Minimum Embedding m  

In this paper, the commonly used pseudo-near-point 
method to calculate the minimum embedding dimension 
m , set the number of attractor dimension d , then m  is 
just the minimum embedding dimension when the 
attractor is fully open. When m d< , the attractor in the 
phase space cannot be completely open, the attractor will 
produce some projection point in the embedded space, 
the projection point and the other points in the phase 
space will form the closest point. In the original system, 
the 2 points are not true nearest neighbors, so called 
pseudo adjacent points. Assume that any point ( )y t in the 

phase space, the criterion of false neighboring points are 
as follows:  

1
2 2 2

1( ) ( ) ( ) ( )

( ) ( )

m m

m
m m

D t D t x t m x t m

D t D t

τ τ
ρ+ − ′+ − +

= >     (8) 

Where ( )mD t  is the Euclidean distance between the 

points of ( )y t  with its nearest neighbor ( )Ny t  in the 

phase space when the embedding dimension is m . 
According to this criterion, the calculation pseudo-nearest 
neighbor number N  when m from small to large, and 
then calculate the change amount NΔ  when the 
embedding dimension from m  to 1m + . Draw the curve 

from 
N

N

Δ
 to m ; when 0NΔ = , just 

N

N

Δ
 dropped to 0, 

the value *m of m  is seeking the minimum embedding 
dimension. 

IV. ADAPTIVE RBF NEURAL NETWORK RAPID LEARNING 

ALGORITHM 

On the establishment of chaotic time series RBF, 
Network input the number of neurons, hidden layers and 
the number of neurons in the hidden layer are to be 
considered.The following chaotic time series used are 
from Lorenz chaotic sampling time series. The Lorenz 
chaotic sampling time series RBF neural network can be 
constructed: RBF neural network is designed to be three 
layers: input layer, single hidden layer and output layer; 
the number of hidden layer wavelet neural taken as 9 by 
Kolmogorov Theorem, the number of input layer neurons 
equal to the minimum embedding dimension, the number 
of output layer is 1, so that the 4-9-1 structure of Lorenz 
chaotic sampling time series RBF was obtained, 
specifically shown in Figure 1.  
Algorithm The steps of the chaotic time series learning 
and prediction of the adaptive RBF neural network 
filtering predictive model are showed:  

Step1) Based on the Takens' delay-coordinate phase 
reconstruct theory, the number of the input nerve cells 
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M  of the adaptive RBF neural network filtering is 
determined. 

The dimension m  of chaotic time series is 
calculated by the way of G- P algorithms, and 
the delay time τ  is calculated by the self-
correlation method. For the overall description 
of the dynamics characteristic of the original 
system by the Takens' delay-coordinate phase 
reconstruct theory, a chaotic series demand 

2 1m d≥ +  variances at least, so the number of 
the input nerve cells of the adaptive RBF neural 
network filtering is M m= ; The reconstruction 
phase space vector number is 200, Then, the 
200 phase space vectors to make a simple 
normalized, the normalized as  
[ ( ) ( ( ))] /[max( ( )) min( ( ))]x t mean x t x t x t− − , 

1, 2, 200t = , and making the value is owned by a range 
of -1 / 2 to 1/2. 

Step2) The adaptive filtering is initialized and the 
weights are vested the initial values. RBF neural network 
vector weighting parameters w is initialized, where the 
weight vector w in each component take random function 
between 0 and 1; and the learning rate η  is initialized at 

the same time, where 0.0002η = . β  and γ  are  the 

learning rate adjustment factors, 0 1β< < , 1γ > , for 

example, 0.75, 1.05β γ= = . 

Step3) Using the above the initialization network and 
the pretreatment traffic flow time series, the first training 
network is carried out. 

Step4) The error is calculated. If the error is in the 
scope of the permission, the error is calculated and it 
turns into Step4), otherwise it continues; the error 
function formula:  

200
2

1

1
( ) ( ( ) ( ))

2 t

E y t y tθ
=

= −∑                       (9) 

Set the maximum error is max 0.035E = , if maxE E< , 

the storage RBF neural network parameter use w ; 
otherwise, then a second training network will be 
required. 

Step5) Adjust the adaptive learning rate   If A previous 
training error is recorded as 1nE − , the current error is 

recorded as nE , then Calculate the ratio of  nE  to 1nE − , 

Setting constants 1.04k = , if 
1

1.04n

n

E
k

E −

> = , then 

substitute  βη  for η   to reduce learning rate; otherwise, 

replace η   with γη   to increase learning rate. 

Step6) In the adaptive RBF neural network filtering for 
the chaotic time series prediction in Figure 1, 

( ) ( )x k x t= 1, 2, ,t N=  is the input, ˆ ˆ( ) ( )y k x t= is the 

output. 
Introduce nonlinear feedback into the weighting 

formal to adopt Chaos Mechanisms, due to the nonlinear 
feedback is vector form of  weighting variables. In order 

to facilitate understanding, respectively, gives the vector 
w  and its weighting formal, as follows.  

Note  
( 1) ( 1) ( )l l l

ji ji jit t tΔ + = + −w w w ,  

which represents the current value of weighting variables, 
then  

1( 1) ( 1) ( ) ( ) ( )l l l l l
ji ji ji j it t t t tηδ +Δ + = + − = −w w w x  

In order to speed up the learning process, in the right to 
join a momentum term ( )l

ji tαΔw , then 
1( 1) ( ) ( ) ( )l l l l

ji j i jit t t tηδ α+Δ + = − + Δw x w             (10) 

where α is inertia  factor. As a constant, the weight of 
amendments is linear, not introduce chaos mechanism. 
then we Introduce a nonlinear feedback (chaos 
mechanism on the right):  

1( 1) ( ) ( ) ( ( 1))l l l l
ji j i jit t t g tηδ +Δ + = − + Δ +w x w            (11) 

Expand this equation into scalar form as follow:  
1

1

1

1

( 1) ( ) ( ) ( ( ))

( 1 ) ( ) ( ) ( ( ))

( 1 2 ) ( 2) ( 2 ) ( ( 2 ))

( 1 ( 1) ) ( ( 1) ) ( ( 1) )

(

l l l l
ji j i ji

l l l l
ji j i ji

l l l l
ji j i ji

l l l
ji j i

l
ji

w t t x t g w t

w t t x t g w t

w t t x t g w t

w t m t m x t m

g w

ηδ

τ ηδ τ τ τ

τ ηδ τ τ

τ ηδ τ τ

+

+

+

+

Δ + = − + Δ

Δ + + = − + + + Δ +

Δ + + = − + + + Δ +

Δ + + − = − + − + −

+ Δ ( ( 1) ))t m τ

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ + −⎩

   (12) 
where, feedback can take a variety of vector functions, 
for example:  

2( ) tanh( ) exp( )g x px qx= −  

 or  
( ) exp( )g x px q x= − ,  

in the study, 0.7p = , 0.1q = . 

Step7) Using the new learning rate in Step5) and RBF 
network parameters with nonlinear feedback in Step6) to 
calculate the new value, and train network again, then get 
the error and enter into Step4), repeated training until the 
relative error in traffic meet maxE E< . 

Step8) Output of each stored network parameters and 
training error curve. 

V. EXAMPLE ANALYSIS AND CONCLUSIONS 

A. Model and Data 

In this paper, the chaotic time series is the object of 
study of the numerical simulation in Lorenz dynamic 
system. In 1963, the meteorologist Lorenz describe the 
evolution of the weather by three-dimensional 
autonomous equations; when the parameter 10σ = , 

28r = , 
8

3
b = , the long-term changes in the weather 

unpredictable, that is, the system presents a chaotic state, 
and for the first time given a strange attractor. The 
attractors are shown in Figure 2 (a), Figure 2 (b), Figure 2 
(c) and Figure 2 (d):  
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Figure 2. Lorenz attractor in the phase space reconstruction 

Considering Lorenz chaotic system  

Lorenz map:   

  

( )x y x

y rx y xz

z bz xy

σ
•

•

•

⎧ = −⎪
⎪

= − −⎨
⎪
⎪ = − +
⎩

                        (13) 

Where 10σ = , 28r = , 
8

3
b = .The initial value is 

(0) 0x = , (0) 5y = , (0) 5z = − ; and the fixing step length 

of initial value is 0.05s . Time series to the branch x with 
70s  is produced by the Runge-Kutta algorithms and the 
total data is 1200. The embedded dimension of the 
sampling chaotic time series m  is 8 by the G- P 
algorithms. The delay time is 1τ＝  by the self-correlation 
function algorithms and the input dimension of the 
adaptive RBF neural network filtering is 8.The former 
1200 data is trained and other 200 data is predicted by the 
adaptive RBF neural network filtering predictive model. 

B. Evaluation of the Predictive Ability 

The model's predictive ability is generally measure the 
following three indicators: of MAPE (mean absolute 
percentage error), RMSE (root mean square error) and 
RMSPE (root mean square percentage error), they are 
calculated as follows:  

1

1
100

n
i i

i i

y y
MAPE

n y=

−
= ×∑ ,                  (14) 

2

1

1
100

n
i i

I i

y y
RMSPE

n y=

⎛ ⎞−
= × ⎜ ⎟

⎝ ⎠
∑ ,             (15) 

( )2

1

1 n

i i
I

RMSE y y
n =

= −∑                          (16) 

where, iy  is predictive value of the model; iy  is the real 

value; n  is  prediction phases, and MAPE assess the 
predictive capability are as follows: less than or equal to 
10%, then predictive ability is excellent; 10% -20%, then  
the predictive ability is excellent; 20% -50%, more than 
50%, then the prediction is inaccurate. For RMSPE, the 
prediction square vulnerable to the impact of outliers, for 
the larger error given greater weight, but still can be 
modeled on the MAPE to determine the model of the pros 
and cons. RMSPE values range from zero to infinity. 
MAPE and RMSPE are the relative indicator, RMSE is 
the absolute indicator. The RMSE is the smaller, the 
model predictive ability is the stronger. 

C. The Simulation Results 

That the experimental outcome of Lorenz chaotic 
sampling time series, the true value (real line) and the 
predictive value (star line) and the predictive error curve  
are showed in Figure 3., Figure 4. and Figure 5.  
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Figure 3. Lorenz chaotic sampling time series 
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Figure 5. Predictive error curve 

In Figure 3 the sampling chaotic time series number is 
1200 by the Runge-Kutta algorithms. 

The former 1200 datum is used to learn and train the 
adaptive wavelet neural networks every 8 datum. After 
the learned and trained stage, the true value (real line) and 
predictive value (star line) are shown in Figure 4. 

The predictive error curve of the true value and the 
predictive value is very small in Figure 5. 

The true value and the predictive value in the adaptive 
RBF neural network filtering is to find a inner law in the 
series itself, which can avoid the disturbance of some 
subjective factors and enjoys higher reliability. In this 
study, the fusion of chaotic theory with the adaptive RBF 
neural network filtering based on chaotic algorithm 
provides a new method for chaotic time series prediction. 
The experimental  indicated that the network system can 
enhance the stabilization and associative memory of 
chaotic dynamics and generalization ability of predictive 
model even by imperfect and variation inputs during the 
learning and prediction process by selecting the suitable 
nonlinear feedback term. Simulation results for the 
modeling and prediction of chaotic time series show 
better predictive effectiveness and reliability. 

TABLE 1  
PREDICTIVE PERFORMANCE COMPARISON TABLE 

comparative 
indicators 

BP neural network 
prediction 

RBF neural network 
prediction 

MAPE 5.01% 3.71% 
RMSPE 6.13% 4.55% 
RMSE 62.50 46.37 

From Table 1, the mean absolute percentage error of 
Lorenz chaotic sampling time series prediction and actual 
values, BP neural network based on the  learning rate 
variable training algorithm, RBF network based on fast 
learning algorithm, are 5.1% and 3.71%, respectively. 
Similarly, for the RMSPE, the results were 6.13% and 
4.55%; For RMSE, the results were 62.50 and 46.37. Can 
be seen from the data on Lorenz chaotic sampling time 
series RBF network prediction is better than BP neural 
network. 

VI. CONCLUSIONS 

In the paper the chaotic time series RBF neural 
network model was designed. A RBF neural network 
Adaptive learning algorithm based on Chaos mechanism 
was proposed. The method of model selection and 
algorithm design, are considered the chaos of Lorenz 
chaotic sampling time series, which is a theoretical value. 
Simulation results show that the method can reduce 
MAPE, RMSPE, RMSE, and improve the forecast 
accuracy, and show better predictive effectiveness and 
reliability. 
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