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Abstract—The structure matrix based on semi-tensor 
product can provide formulas for analyzing the 
characteristics of a Boolean network, such as the number of 
fixed points, the number of circles of different lengths, 
transient period for all points to enter the set of attractors 
and basin of each attractor. However, the conventional 
method of semi-tensor product gains the structure matrix 
through complex matrix operations with high computation 
complexity. This paper proposes an optimized algorithm 
which gains the structure matrix through the truth table 
reflecting the state transformation of Boolean networks. The 
effectiveness and feasibility of our optimized approach are 
demonstrated through the analysis of a practical Boolean 
network of the mammalian cell. 
 
Index Terms—semi-tensor product, Boolean network, 
structure matrix, truth table 
 

I. INTRODUCTION 

The Boolean network, introduced firstly by Kauffman 
[1], and then developed by [2][3][4][5][6][7][8] and 
many others, becomes a powerful tool in describing, 
analyzing, and simulating the cell network. It was shown 
that the Boolean network plays an important role in 
modeling cell regulation, because they can represent 
important features of living organisms [9][10]. It has 
received the most attention, not only from the biology 
community, but also physics, system science, etc. 

The structure of a Boolean network is described in 
terms of its cycles and the transient states that lead to 
them. Several useful Boolean networks have been 
analyzed and their circles have been revealed [11][12]. It 
was pointed in [13] that finding fixed points and circles 
of a Boolean network is an NP hard problem. Semi-tensor 

product of matrix (STP), presented by Cheng [14]. Using 
STP, a Boolean network equation can be expressed as a 
conventional discrete time linear system which contains 
complete information of the dynamics of a Boolean 
network. Analyzing the structure matrix of a Boolean 
network, precise formulas are obtained to determine the 
number of fixed points and numbers of all possible 
circles of different lengths. 

But the conventional method to calculate the structure 
matrix of a Boolean network, presented in 
[15][18][19][21], is very complex. In this paper, a 
optimized algorithm is proposed to calculate the structure 
matrix. Unlike existing methods, our approach gets the 
structure matrix of a Boolean network not through the 
complex matrix operations but through the truth table 
which reflects the state transformation of the Boolean 
network. Compared with the conventional method, our 
approach can greatly reduce the calculation complexity. 
The methods for analyzing the characteristics of a 
Boolean network are given. The analysis of a practical 
Boolean network of the mammalian cell shows that our 
approach is effective and efficient. 

The rest of the paper is organized as follows. Section II 
gives a brief introduction to semi-tensor product of 
matrices, matrix expression of logic and dynamics of 
Boolean network. The conventional method to calculate 
the structure Matrix of a Boolean Network is given in 
Section III and our approach is proposed in Section IV. 
Section V gives the methods to analyze the characteristics 
of Boolean networks through the structure matrix. 
Section VI gives a practical Boolean network of the 
mammalian cell to show the effectiveness and feasibility 
of our approach. Finally, some conclusions are drawn in 
Section VII. 

II. EXPRESSION OF BOOLEAN NETWORKS IN SEMI-TENSOR 
PRODUCT 

A. Semi-tensor Product 

This section is a brief introduction to semi-tensor 
product (STP) of matrices. STP of matrices is a 
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generalization of conventional matrix product, which 
extends the conventional matrix product to any two 
matrices. It plays a fundamental rule in the following 
discussion. We restrict it to some concepts and basic 
properties used in this paper. In addition, only left semi-
tensor product for multiplying dimension case is involved 
in the paper. We refer to [14][15][16][17] for right semi-
tensor product, arbitrary dimensional case and much 
more details. Throughout this paper “semi-tensor 
product” means the left semi-tensor product for 
multiplying dimensional case.  

Definition 1: 1. Let X  be a row vector of dimension 
np , and Y  be a column vector with dimension p . Then 
we split X  into p equal-size blocks as 1 2, , , pX X X , 
which are 1 n×  rows. Define the STP, denoted by × , as 
in (1). 
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2. Let nmMA ×∈  and p qB M ×∈ . If either n  is a 
factor of p , say pnt =  and denote it as tA B≺ , or  
p is a factor of n , say ptn =  and denote is as 

BA t , then we define the STP of A and B , denoted 
by C A B= × , as the following: C  consists of qm×  
blocks as ( )ijC C=  and each block is in (2). 

ij i
jC A B= × , 1, ,i m= , 1, ,j q= .      (2)  

where iA  is the i-th row of A  and jB  is the j-th column 
of B . 

We use some simple numerical examples to describe it. 

Example 1. Let [1 2 3 1]X = −  and 
1
2

Y
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Then 
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B. Matrix Expression of Logic 

In this section, the matrix expression of logic will be 
given. In a logical domain, we usually set "true" as "1" 
and "false" as "0". Then a logical variable is defined as 

{0,1}x D∈ = . There are several fundamental binary 

functions such as ¬ , ∧ , ∨ , ↔ , → , ∨ , ↑  and ↓ . 
Their truth table is as TABLE I.  

To use matrix expression each element can be 
identified in D with a vector as 1

21 ~ δ  and 2
2~0 δ , 

where ( )i
n nCol Iδ = . Therefore, That a n-ary logical 

operator (or function) is a mapping: : nf D D→  can be 
formed as 

2
: nf Δ → Δ . 

Theorem 1: Let 1( , , )nf x x  be a logical function in 
vector form as

2
: nf Δ → Δ . Then there exists a unique 

2 2nfM
×

∈L , called the structure matrix of f , such that 
in (3). 

1( , , )n ff x x M x= × , where 1
n
i ix x== ×     (3) 

Therefore, the structure matrix of Negation, 
Conjunction, Disjunction, Equivalence and Implication 
are as in (4) - (11). 

[ ]122δ=¬M                           (4) 

[ ]22212δ=∧M                      (5) 

[ ]2 1 1 1 2M δ∨ =                       (6) 

[ ]2 1 2 2 1M δ↔ =                      (7)  

[ ]2 1 2 1 1M δ→ =                       (8) 

TABLE I.   

TRUTH TABLE OF ¬ , ∧ , ∨ , ↔ , → , ∨ , ↑  AND ↓  

p  q  p¬  p q∧  qp ∨ qp ↔ p q→ qp ∨ p q↑  qp ↓
0 0 1 0 0 1 1 0 1 1 
0 1 1 0 1 0 1 1 1 0 
1 0 0 0 1 0 0 1 1 0 
1 1 0 1 1 1 1 0 0 0 
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[ ]2 2 1 1 2M δ∨ =                      (9) 

[ ]2 2 1 1 1M δ↑ =                     (10) 

[ ]2 2 2 2 1M δ↓ =                     (11) 

Theorem 2: Let 1( , , ) : n k
nF x x D D→  be a logical 

mapping: 
2 2

: n kF Δ → Δ .Then there exists a unique 

2 2k nFM
×

∈L  called the structure matrix of F , such in 
(12). 

1( , , )n FF x x M x= ×                     (12) 

C. Dynamics of Boolean Networks 

The Boolean networks play an important role in 
modeling cell regulation, because they can represent 
important features of living organisms. The dynamics of 
the Boolean networks will be given in this section. 

Definition 2[15][18][20]: A Boolean network is a set 
of nodes nAAA ,,, 21 , which interact with each other 
in a synchronous manner. At each given time t=0, 1, 2, …, 
a node has only one of two different values: 1 or 0. Thus 
the network can be described by a set of equations as in 
(13). 

1 1 1 2

2 2 1 2

1 2

( 1) ( ( ), ( ), , ( ))
( 1) ( ( ), ( ), , ( ))

( 1) ( ( ), ( ), , ( ))

n

n

n n n

A t f A t A t A t

A t f A t A t A t

A t f A t A t A t

+ =⎧
⎪ + =⎪
⎨
⎪
⎪ + =⎩

      (13) 

Where if , ( 1,2, , )i n= , are n-ary logic functions. 

Note that in Boolean networks each function if  has 
only constant, linear, or product terms [12]. 

III. CONVENTIONAL CALCULATION OF STRUCTURE 
MATRIX 

Using Theorem 1 and 2, the dynamics of Boolean 
networks can be expressed as in (14). 

( 1) ( )A t LA t+ =                     (14) 

where 1( 1) ( 1)l
i iA t A t=+ = × + , )()( 1 tAtA i

l
i=×= , L  is the 

structure matrix of F , 2 2l lL
×

∈L .  
By means of the STP, the dynamics of Boolean 

networks can be converted into the equivalent algebraic 
forms. Through the analysis of the structure matrix L , 
we can get the characteristics of the Boolean networks 
such as: (1) fixed points; (2) circles of different lengths; 
(3) transient period; (4) basin of each attractor[15][18]. 
Therefore, how to get the structure matrix L  easily is 
very important. The conventional method to get the 
structure matrix L  is as follows. 

Firstly, a simple example is given to show the structure 
of a Boolean network. 

Example 3: Consider a Boolean network which 
dynamics is described as in (15). 

1 2 3 1

2 1 2 1 3 2

3 1 2 3 2 3

( 1) ( ) ( ) ( )

( 1) ( ( ) ( )) ( ( ) ( ) ( ))

( 1) ( ( ) ( ) ( )) ( ( ) ( ))
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⎪⎪ + = ∧ ∨ ∧ ∧⎨
⎪

+ = ∧ ∧ ∨ ∧⎪⎩

  (15) 

In algebraic form (the notation " "×  is omitted), we can 
have as in (16). 

1 2 3 1

2 1 2

1 3 2

3 1 2

3 2

3

( 1) ( ( ) ( )) ( )
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( 1) (( ( ( ) ( ))

( ( )))( ( ( ))
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    (16) 

There are some propositions in [15][18] to calculate the 
structure matrix L. 

Proposition 1: Let tZ R∈  be a column. Then there exists in 
(17). 

( )tZA I A Z= ⊗                         (17) 

Proposition 2: There exists an unique matrix 
[ , ]m n mn mnW M ×∈ , called the swap matrix, such that for any 

two column vectors . mX R∈ . and nY R∈ .  

[ , ]m nW XY YX=                         (18) 

We refer to [15][18] for constructing swap matrix. 
Proposition 3: Let Δ∈X . Then we have (19). 

2
rX M X= ,    

1 0
0 0
0 0
0 1

rM

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

         (19) 

Where rM  is the power-reducing matrix.  
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0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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Using some theorems in [15][18][23][24] and 
( 1) ( )A t LA t+ = , the structure matrix L  is as in (20). 
We can get the structure matrix by the conventional 

method. But the process is very complex and the biggest 
order of the matrices in the equation (20) is more than 
1024. 

IV. NEW METHOD FOR CALCULATION OF STRUTURE 
MATRIX 

The conventional method to calculate the structure 
matrix L  is very complex. A new method will be 
proposed in this section. 

Definition 3: Form a square matrix by all the present-
state vectors 1( ) ( )l

i iA t A t== × , the matrix is called present-
state matrix, denoted by ( )Q t .There is another matrix 
correspond to ( )Q t , called next-state matrix, denoted by 

( 1)Q t + . 
As )()1( tLAtA =+ , we can derive 

)()1( tLQtQ =+ . It is easy to know that 

2 2( ) l lQ t
×

∈L , and ( )Q t  is a invertible matrix. Then the 

structure matrix 1( 1)[ ( )]L Q t Q t −= + . Further simplify the 
calculation, ( )Q t  can be arrayed to 2l-order identity 
matrix. Therefore, ( 1)L Q t= + . 

For the example 3, we have the truth table as TABLE 
II.  

TABLE II.  
TRUTH TABLE OF EXAMPLE 3 

A3 (t)  A2 (t)  A1 (t)  A3 (t+1)  A2 (t+1)  A1 (t+1) 
0 0 0 0 0 1 
0 0 1 0 1 0 
0 1 0 0 1 1 
0 1 1 1 0 0 
1 0 0 1 0 1 
1 0 1 1 1 0 
1 1 0 0 0 0 
1 1 1 0 0 0 

 
The state vectors’ table is as TABLE III. 

TABLE III.  
STATE VECTORS’ TABLE 

A3 (t)  A2 (t)  A1 (t)  A (t)  
0 0 0 [0 0 0 0 0 0 0 1]T 
0 0 1 [0 0 0 0 0 0 1 0]T 
0 1 0 [0 0 0 0 0 1 0 0]T 
0 1 1 [0 0 0 0 1 0 0 0]T 
1 0 0 [0 0 0 1 0 0 0 0]T 

1 0 1 [0 0 1 0 0 0 0 0]T 
1 1 0 [0 1 0 0 0 0 0 0]T 
1 1 1 [1 0 0 0 0 0 0 0]T 

 
Then, we can get the present-state matrix and next-

state matrix as in (21) and (22). 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

( )
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

Q t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

      (21) 

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

( 1)
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0

Q t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   (22) 

Therefore, we can get the structure matrix ( 1)L Q t= +  
in (23). 

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

( 1)
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0

L Q t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= + = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

    (23) 

We can compare the two structure matrix L  gained in 
Section 3 and our method. And the structure matrix 
which is gained by our approach is correct. 

By our method, it is easy to get the structure matrix 
through the truth table which reflects the transformation 
of the states. Our method to get the structure matrix is 
simpler than the conventional method. 

V. APPLICATION OF STUCTURE MATRIX ON ANALYSIS OF 
BOOLEAN NETWORKS 

Since a Boolean network has only finite states, a 
trajectory will eventually enter into a fixed point or a 
cycle. The fixed points and cycles form the most 
important topological structure of a Boolean network. 
Therefore, there are many methods to analyze the fixed 
points and cycles of Boolean networks. 

Analyzing the structure matrix of the system, easily 
computable formulas are obtained to show the number of 
fixed points, the numbers of circles of different lengths 
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and the states in the circles. The following is a general 
result based on the algebraic form. 

Consider the Boolean network equation 
( 1) ( )A t LA t+ = , and denote by iL , 1, 2, …, 2n  the i-th 

column of the network matrix L . Then there are 
2niL ∈Δ [15][18].  

Definition 4: 1. A state 0 2nx ∈Δ  is called a fixed point 
of Boolean network ( 1) ( )A t LA t+ = , if 0 0Lx x= .  

2. 1
0 0 0{ , , , }kx Lx L x−  is called a circle of Boolean 

network ( 1) ( )A t LA t+ =  with length k , if, 0 0
kL x x= , 

and the elements in set 1
0 0 0{ , , , }kx Lx L x−  are distinct. 

L  can be used for the matrix and its linear mapping. 
So 0x  may be in an L-invariant subspace. In this way, a 
circle (or a fixed point) can be defined on an L-invariant 
subspace. 

The next two theorems [15][18] show how many fixed 
points and circles of different lengths a Boolean network 
has.  

Theorem 3: Consider the Boolean network system (13). 

2n

iδ  is its fixed point, iff in its algebraic form (14) the 
diagonal element iil  of network matrix L  equals 1. It 
follows that the number of equilibriums of system (13), 
denoted by eN , equals the number of i , for which iil = 1. 
Equivalently, in (24). 

( )eN Trace L=                           (24) 

Theorem 4: The number of length s circles, sN , is 
inductively determined by (25). 

1

( )

,

( )
, 2 2 .

e

s
k

k P s n
s

N N

Trace L kN

N s
s

∈

=⎧
⎪⎪ −⎨
⎪ = ≤ ≤
⎪⎩

∑     (25) 

where ( )P s  is the set of proper factors of s , s Z +∈ . For 
instance, (6) {1,2,3}P = . 

Let 0 2n

ix δ= . Then 0 0 0{ , , , }sx Lx L x  is a circle with 
length s , iff si D∈ . 

Consider the Boolean network of the example 3, 
1 2 3 4 5 6 8 0N N N N N N N= = = = = = = , 7 1N = . 

Therefore, there is no fixed point in this network, and 
there is only one circle which length is 7. Moreover, note 
in (26). 

7

0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

       (26)  

Then each diagonal nonzero column can generate the 
circle. Choosed [0 0 0 0 0 0 0 1]TZ = , then  

[0 0 0 0 0 0 1 0]TLZ =  

2 [0 0 0 0 0 1 0 0]TL Z =  

3 [0 0 0 0 1 0 0 0]TL Z =  

4 [0 0 0 1 0 0 0 0]TL Z =  

5 [0 0 1 0 0 0 0 0]TL Z =  

6 [0 1 0 0 0 0 0 0]TL Z =  

2 [0 0 0 0 0 0 0 1]TL Z Z= =  

The vector forms in the circle can be got in TABLE IV.  

TABLE IV.  
VECTOR FORMS IN THE CIRCLE 

A (t)  A3 (t)  A2 (t)  A1 (t) 
[0 0 0 0 0 0 0 1]T 0 0 0 
[0 0 0 0 0 0 1 0]T 0 0 1 
[0 0 0 0 0 1 0 0]T 0 1 0 
[0 0 0 0 1 0 0 0]T 0 1 1 
[0 0 0 1 0 0 0 0]T 1 0 0 
[0 0 1 0 0 0 0 0]T 1 0 1 
[0 1 0 0 0 0 0 0]T 1 1 0 

 
The vector forms can be converted back to the scalar 

form of 1( )A t , 2 ( )A t , and 3 ( )A t . The circle is as 
000 → 001 → 010 → 011 → 100 → 101 → 110 → 000. 
Finally, the state space graph of the network in Example 
3 can be gained as in Figure 1.  

 
Figure 1.  The state space graph 

VI. CASE STUDY: MAMMALIAN CELL 

In this section, a useful example of mammalian cell[22] 
is given to show that our new approach is effective and 
feasible. 

A proper understanding of the structure and temporal 
behaviors of biological regulatory networks requires the 
integration of regulatory data into a formal dynamical 
model. A logical framework enables a more systematic 
and extensive characterization of all the behaviors 
compatible with a given regulatory graph. Furthermore, 
this framework offers enumerative or analytical means to 
identify relevant asymptotical behaviors (stable states, 
state transition cycles). 

The cell cycle involves a succession of molecular 
events leading to the reproduction of the genome of a cell. 
Here, the logical regulatory graph for a mammalian cell 
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cycle network and logical rules associated with the 
regulatory graph (in Figure 2) are given. 

Each node represents the activity of a key regulatory 
element, whereas the edges represent cross-regulations. 
Blunt arrows stand for inhibitory effects, normal arrows 
for activations. 

 

CycD 

UbcH10 

CycE 
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Figure 2.  The state space graph 

The logical equations, which are called dynamics of 
Boolean network in STP, are as in (27). 
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Then we use the methods mentioned above to get 
stable states and state transition cycles. 

There are 10 nodes, so the complete state transition 
graph contains 1024 vertices. The structure matrix L can 
be gained by algorithm1. 

Algorithm1 Algorithm for computing structure matrix L 
L=zeros[1024][1024] 
A=zeros[10] 
begin      
  for k=0 to 1023 do 
    A=int_to_binary (k, 10)  

/*convert k to binary number of 10 bit, */ 
    CycD=A[1];  
    Rb=A[2];  
    E2F=A[3];  
    CycE=A[4];  
    CycA=A[5];  
    p27=A[6];  
    Cdc20=A[7];  
    Cdh1=A[8];  
    UbcH10=A[9];  
    CycB=A[10];  

/*assignment each bit to the variables,  
from high bit to low bit, A[1] is the highest bit*/ 

    CycD=CycD;  
Rb= ( (!CycD) && (!CycE) && (!CycA) && (!CycB))  

|| (p27&& (!CycD) && (!CycB)) ;  
E2F= ( (!Rb) && (!CycA) && (!CycB)) || (p27&& (!Rb)  

&& (!CycB)) ;  
    CycE= (E2F&& (!Rb)) ;  

CycA= (E2F&& (!Rb) && (!Cdc20) && (! (Cdh1 
&&UbcH10))) || (CycA&& (!Rb) && (!Cdc20)  
&& (! (Cdh1&&UbcH10))) ;  

p27= ( (!CycD) && (!CycE) && (!CycA) && (!CycB)) || (p27 
&& (! (CycE&&CycA)) && (!CycD) && (!CycB)) ;  

    Cdc20=CycB;  
    Cdh1= ( (!CycA) && (!CycB)) || (Cdc20) || (p27&& (!CycB)) ;    

UbcH10= (!Cdh1) || ( (Cdh1) && (UbcH10) && ( (Cdc20) || 
(CycA)  

|| (CycB))) ;  
    CycB= ( (!Cdc20) && (!Cdh1)) ;  

/* substitute into the logical equations */ 
i=1024- (CycD*512 + Rb*256 + E2F*128 + CycE*64 + 

CycA*32 
+ p27*16 + Cdc20*8+Cdh1*4 + UbcH10*2 + CycB*1) ;  

    j=1024-k;  
L[i][j]=1;  

  return L 
end 

According to Theorem 3, the characteristics of the 
mammalian cell example, such as the number of fixed 
points, the numbers of circles of different lengths and the 
states in the circles, can be analyzed by algorithms2. 

Through Algorithm1 and Algorithm2, the number of 
stable states or fixed point in the example of mammalian 
cell is 1. The state or fixed point is 0100010100, which 
means only Rb, p27 and Cdh1 active, in the absence of 
CycD. And there is 1 circle with the length of 7 in the 
example of mammalian cell. The states on the circle 
include 1011100100, 1001100000, 1000100011, 
1000101011, 1000001110, 1010000110, and 1011000100. 

 
Algorithm2 Algorithm for computing the number of stable states; 
the numbers of circles of different lengths;  
Input: structure matrix L 
N=zeros[1024] 
begin      
  N[1]=trace (L)  
  if N[1]≠0 then 
    report  the number of stable states is N[1] 
  for i=2 to 1024 do 

T=0 
for j=1 to i/2 do 
   if mod (i, j) =0 then 

             T=T+j*N[j];  
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   return T   
N[i]= (trace (L^i) -T) /i;  
if N[i]>0 then 
 report  the number of circle length of i is N[i] 

 end  

The fixed point and the circle of the mammalian cell 
example are as in Figure 3. 

1011100100 1001100000 1000100011 1000101011

0100010100

1011000100 1010000110 1000001110

 1 fix point

1 circle with the length of 7
 

Figure 3.  The state space graph 

The algorithms in the mammalian cell example in this 
section seem difficult. In fact, it can be easily done in 
computer. We have created a program to handle them.  

VII. CONCLUSION 

Semi-tensor product is an efficient tool for analyzing 
the characteristics of Boolean networks which are 
determined by the structure matrix. Unlike existing 
methods which calculates the structure matrix through 
matrix operations with high computation complexity, an 
optimized approach is proposed in this paper. The 
approach gets the structure matrix of Boolean network 
through the truth table which reflects the state 
transformation of the Boolean network. Compared with 
the conventional methods, our method can greatly reduce 
the calculation complexity. A practical Boolean network 
of mammalian cell shows our approach is effective and 
efficient. 

The structure matrix which is gained in semi-tensor 
product is a sparse matrix. On the other hand, with the 
number of variables in a Boolean network increasing, the 
size of the structure matrix will become larger and larger. 
These cause higher computation complexity. To optimize 
the algorithms in section VI, we need to solve the 
following problems: How to express the structure matrix 
in sparse matrix? How to analyze the fixed points and 
circles in the sparse matrix? They are our future work. 
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