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Abstract—The aim of this paper is solving the predicate 
calculus formal system based on 1-level universal AND 
operator. Firstly, universal logic and propositional calculus 
formal deductive system (0 1]hUL−

∈ ,  are introduced. Secondly, 

a predicate calculus formal deductive system (0 1]hUL−
∈ ,∀  

based on 1-level universal AND operator is built. Thirdly, 
the soundness theorem and deduction theorem of system 

(0 1]hUL−
∈ ,∀  are given, which ensure that the theorems are 

tautologies and the reasoning rules are valid in 
system (0 1]hUL−

∈ ,∀ .  

 
Index Terms—universal logic, predicate calculus formal 
system, universal AND operator 
 

I.  INTRODUCTION 

How to deal with various uncertainties and evolution 
problems have been critical issues for further 
development of artificial intelligence [1,2]. Mathematical 
logic is too rigid and it can only solve certainty problems, 
therefore, non-classical logic and modern logic develop 
rapidly, for example, fuzzy logic and universal logic.  

Considerable progresses have been made in logical 
foundations of fuzzy logic in recent years, especially for 
logic system based on t-norm and its residua [3]. Some 
well-known logic systems have been built up, such as, the 
basic logic (BL) [4, 5] introduced by Hajek; the monoidal 
t-norm based logic [6, 7] introduced by Esteva and Godo; 
a formal deductive system L* introduced by Wang [8-10], 
Universal logic proposed by He [11], and so on.  

Universal logic is a new continuous-valued logic 
system in studying flexible world’s logical rule, which 
uses generalized correlation and generalized 
autocorrelation to describe the relationship between 
propositions, more studies can be found in [12-14]. For a 
logic system, the formalization’s studies are very 
important, which include propositional calculus and 
predicate calculus. The propositional calculus formal 
systems are studied in [15-18]. But the studies of 
predicate calculus formal systems of universal logic are 
relatively rare, so we will mainly study the predicate 

calculus formal system in this paper, which can enrich the 
formalization’s studies of universal logic.  

Some predicate calculus formal deductive systems are 
built for fuzzy logic systems, for example, the predicate 
calculus formal deductive systems of Schweizer-Sklar t-
norm in [19, 20]. The predicate calculus formal deductive 
systems of universal logic have been studies in [21-24], 
which mainly focus on the 0-level universal AND 
operator. In this paper, we focus on the formal system of 
universal logic based on 1-level universal AND operator. 
We will build predicate formal system (0 1]hUL−

∈ ,∀ for 1-

level universal AND operator, and its soundness and 
deduction theorem are given.  

The paper is organized as follows. After this 
introduction, Section II contains necessary background 
knowledge about BL and UL. Section III we will build the 
predicate calculus formal deductive system (0 1]hUL−

∈ ,∀  for 

1-level universal AND operator. In Section IV the 
soundness and deduction theorem of system (0 1]hUL−

∈ ,∀  

will be given. The final section offers the conclusion. 

II.  PRELIMINARIES 

A. The Basic Fuzzy Logic BL and BL-algebra 
The languages of BL [3] include two basic connectives 

→  and & , one truth constant 0 . Further connectives are 
defined as follows:  

ϕ ψ∧  is ( )&ϕ ϕ ψ→ ,  
ϕ ψ∨  is (( ) ) ( ) )ϕ ψ ψ ψ ϕ ϕ→ → ∧ → → ,  

ϕ¬  is 0ϕ → ,  
ϕ ψ≡  is ( ) ( )&ϕ ψ ψ ϕ→ → .  

The following formulas are the axioms of BL:  
 (i) ( ) (( )( ))ϕ ψ ψ χ ϕ χ→ → → →               
 (ii) ( )&ϕ ψ ϕ→                       
 (iii) ( ) ( )& &ϕ ψ ψ ϕ→                  
 (iv) ( ) ( ( ))& &ϕ ϕ ψ ψ ψ ϕ→ → →        
 (v) ( ( )) (( ) )&ϕ ψ χ ϕ ψ χ→ → → →         
 (vi) (( ) ) ( ( ))&ϕ ψ χ ϕ ψ χ→ → → →        
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 (vii) (( ) ) ((( ) ) )ϕ ψ χ ψ ϕ χ χ→ → → → → →   

 (viii) 0 ϕ→                                 

The deduction rule of BL is modus ponens.  
Definition 1 [3] A BL-algebra is an algebra 

( 0 1)L L= ,∩,∪,∗,⇒, ,  with four binary operations and 

two constants such that ( 0 1)L,∩,∪, ,  is a lattice with the 

greatest element 1 and the least element 0 (with respect to 
the lattice ordering ≤ ), ( 1)L,∗,  is a commutative 

semigroup with the unit element 1, i.e. ∗  is commutative, 
associative and 1 x x∗ =  for all x, the following 
conditions hold for all x y z, , :   

 (i) ( )z x y≤ ⇒  iff x z y∗ ≤   

 (ii) ( )x y x x y∩ = ∗ ⇒   

 (iii) ( ) ( ) 1x y y x⇒ ∪ ⇒ = .   

B. Universal Logic 
Universal logic was proposed by He [11], which thinks 

that all things in the world are correlative, that is, they are 
either mutually exclusive or mutually consistent, and we 
call this kind of relation generalized correlation.  

The basic principles of universal logic show as follows:  
A core objective. The objective is that any one of 

modern logics should include one or some dialectical 
contradictions, and which should exclude the logical 
contradictions. And different advanced logics have 
different dialectical contradictions. 

Two basic methods. There are two ways to include 
dialectical contradictions (or uncertainty) in general. 
Firstly, the logical scope narrows to the sub-space that 
adapts to just include the dialectical contradictions (or 
uncertainty). Secondly, the logic system express the 
impact of the dialectical contradictions (or uncertainties) 
through continuously variable flexible parameters and 
functions  in the logic operation model.  

Three Break directions. There are three different 
break directions for the constraints of various modern 
logics relative to that of standard logic: the number of 
truth value of proposition, the dimension of truth value 
space, and the completeness of information reasoning.  

Four logical elements. There are four logical elements 
to construct a logical system: domain, propositional 
connectives, quantifiers and reasoning rules. Universal 
logic discussed the possible forms of these elements, and 
put forward their general expression. 

Universal logic includes four ways to contain 
dialectical contradictions (uncertainties) as follows:  

1) The establishment of flexible domain. 
The uncertainty firstly presents in the uncertainty of 

truth value of proposition. From the view of truth value 
domain and space dimension of proposition variable, the 
scope of uncertainty is fraction dimension space [0, 1]n, 
n>0, which can include integer dimension space [0, 1]n , 
n=2, 3, …, and which can also include 1-dimension 
continuous value space [0, 1]. This gives the possible to 
break the limitations of truth value domain of 1-
dimaention two-valued logic. 

The classical logic is a single granularity from the view 
of individual variable domain, that is, the logical 

properties of whole domain are identical. The future 
development trend of modern logic is introduced the 
concept of granularity computing into the logic. The 
domain is divided into different sub-domains according to 
some kind of equivalence relations, and the logical 
properties of different sub-domain may be different to 
express the uncertainty of domain. This gives the possible 
to break the limitations of single granularity of 1-
dimension two-valued logic. 

From the model domain, the classical logic is the 
single-mode. There are many different modes in the 
current modal logic. In the future continuous variable 
mode may be build, which can accurately describe the 
effect of modal area in uncertainty. This gives the 
possible to break the limitations of single mode of 1-
dimension two-valued logic.  

2) The definition of integrity cluster of operation 
model 

The effect of all kinds of uncertainties on logic 
operations results can be expressed by all kinds of 
continuous-valued proposition conjunction integrity 
cluster of operation model. For example, in the 
propositional universal logics, Firstly, we narrow the 
logical scope to include fitness subspace of the 
contradictions of enemy/friends, loose/strict, light/heavy 
(include one, two or three) through time and space; 
secondly, we introduce two continuous variable flexible 
parameters k, h∈[0, 1] into the logical operation models, 
and use the corresponding adjustment function to 
describe the full impact of the dialectical contradictions 
(or uncertainty) for the proposition conjunction 
computing model. Finally, we get the various types of 
propositional logics. It is obvious that if we can reduce 
the scope of logic to adapt to accommodate just a 
dialectical contradiction (or uncertainty) of the sub-space 
by time and space, then continuously variable flexible 
parameters and adjustment functions are introduced into 
the logic operation model, which can include effectively 
and deal with the dialectical contradictions (or 
uncertainties) in mathematics dialectical logic. This is 
foundation for continuous-valued logical algebra that will 
discuss below. 

3) Defining a variety of flexible quantifiers to express 
the uncertainty of constraints (ranges).  

The flexible quantifiers are: the universal quantifier ∀; the 

existential quantifier ∃; the threshold quantifier ♂k 
symbolizing the threshold of propositional truth; the 
hypothesis quantifier $k symbolizing hypothesis 
proposition; the scope quantifier ∮ k constraining the 
scope of individual variables; the position quantifier ♀k 
indicating the relative position of an individual variable 
and a specific point; the transition quantifier ∫k changing 
the distribution transitional feature of the predicate truth. 
k∈[0, 1] is a variable parameter, which express the 
change of constraints. When k=1, the constraints are the 
largest (strong), and when k=0, the constraints are the 
smallest (weak). So in this way the logic not only 
describe the uncertainty of constraints, but also control 
the degree of reasoning rules by adjusting the degree of k 
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value. For example, in the scope quantifier ∮k, k can be 
changed continuously to express the uncertainty of the 
scope of individual variables. In special case, k=1 
indicates the universal quantifier∀; k>0 indicates 
existential quantifier ∃, k＝! indicates the only existential 
quantifier ∃!; k＝0 indicates the constraints of no scope 
quantifier. 

4) All kinds of continuous-valued reasoning model 
Because the truth value of flexible proposition, 

computing model and quantifiers of proposition 
conjunction are flexible, the reasoning rules based on 
them such as deductive reasoning, inductive reasoning, 
analogical reasoning, assuming reasoning, the evolution 
of reasoning are also flexible. The flexible reasoning 
rules are different from standard logic, which can coexist 
in a reasoning process. They transform each other by 
changing flexible parameters, and in which deductive 
reasoning mode is the most basic mode. Therefore, the 
theoretical framework can describe the unity of opposites 
and transformation process of contradictions, which 
provides the possibility to the symbolization and 
mathematization of dialectical logic. 

The operators of universal logic as following:  
1) Not operation:  
NOT operation model N (x) is unary operation on [0, 

1]→[0, 1], which satisfies the following Not operation 
axiom. 

Boundary condition N1: N (0)＝1, N (1)＝0. 
Monotonicity N2: N (x) is monotonously decreasing, 

iff ∀x, y∈[0, 1], if x<y, then N (x)≥N (y). 
The expression N3＝ ite{0|x＝1; 1} is maximal Not 

operator. The expression N0＝ite{1|x＝0; 0} is minimal 
Not operator. The expression N1＝1－x is central Not 
operator. 

1-level universal NOT operators are 
mapping 1[0 1] [0 1] ( ) (1 )n nN N x k x /: , → , , , = − , which is 

usually denoted by k¬ ; the real number n has relation 

with the coefficient of generalized autocorrelation k as:  

21 logn k= − / ,                             (1) 

where [0 1] [0 )k n∈ , , ∈ ,+∞ .  

Maximal Not operator is N3＝N (x, 1), and central Not 
operator is N1＝N (x, 0.5), and minimal Not operator is 
N0＝N (x, 0) (see Figure 1). 

 
Figure 1. Not operator model integrity cluster and its generator integrity 

cluster 

2) AND operation 

AND operation model T (x, y) is binary operation in [0, 
1]2→[0, 1], which satisfies the following operation 
axioms: x, y, z∈[0, 1] 

Boundary condition T1   T (0, y)＝0, T (1, y)＝y. 
Monotonicity T2 T (x, y) increases monotonously 

along with x, y. 
Association law T3      T (T (x, y), z)＝T (x, T (y, z)).  
Upper bound T4         T (x, y)≤min (x, y) 
0-level universal AND operators are 

mapping [0 1] [0 1] [0 1]T : , × , → , , 
1 1( ) [( 1) ]m m mT x y h x y /, , = Γ + − , which is usually denoted 

by h∧ ; the real number m has relation with the 

coefficient of generalized correlation h as:  

(3 4 ) (4 (1 ))m h h h= − / − ,                                         (2) 

[0 1]h m R∈ , , ∈ . And 1[ ]xΓ  denotes x is restricted in 

[0 1], , if 1x >  then its value will be 1, if 0x < , its value 

will be 0.  
1-level universal AND operators are mapping 

1 1[0 1] [0 1] [0 1] ( ) [( 1) ]mn mn mnT T x y h k x y /: , × , → , , , , = Γ + −
which is usually denoted by h k,∧ . The relation m and h is 

as same as (2), the relation of n and k is the same as (1).  
There are four special cases of T (x, y, h) (see Figure 2) 

as follows:  
Zadeh AND operator  T (x, y, 1)＝T3＝min (x, y)  
Probability AND operator    T (x, y, 0.75)＝T２＝xy  
Bounded AND operator    T (x, y, 0.5)＝T1＝max (0, 

x+y-1)  
Drastic AND operator    T (x, y, 0)＝T0＝ite{min (x, 

y)|max (x, y)＝1; 0} 

 

Figure 2. AND operator model figure for special h 

3) OR operation:  
OR operation model S (x, y) is binary operation in [0, 

1]2→[0, 1], which satisfies the following operation 
axioms: x, y, z∈[0, 1]. 

Boundary condition S (1, y)＝1, S (0, y)＝y. 
Monotonicity S (x, y) increases monotonously along 

with x, y. 
Association law S (S (x, y), z)＝S (x, S (y, z)). 
Lower bound  S (x, y)≥max (x, y). 
The Dualization law holds between S (x, y, k, h) and T 

(x, y, k, h). 
N (S (x, y, k, h), k)＝T (N (x, k), N (y, k), k, h) 
N (T (x, y, k, h), k)＝S (N (x, k), N (y, k), k, h) 
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There are four special cases of S (x, y, h) (see Figure 3) 
as following:  

Zadeh OR operator   S (x, y, 1)＝S3＝max (x, y)  
Probability OR operator    S (x, y, 0.75)＝S２＝x＋y－

xy  
Bounded OR operator     S (x, y, 0.5)＝S1＝min (1, x＋

y)  
Drastic OR operator    S (x, y, 0)＝S0＝ite{max (x, 

y)|min (x, y)＝0;1} 

 
Figure 3. OR operator model figure for special h 

4) IMPLICATION operation 
IMPLICATION operation model I (x, y) is binary 

operation in [0, 1]2→[0, 1], which satisfies the following 
operation axioms: x, y, z∈[0, 1]. 

Boundary conditions I1  I (0, y, h, k)＝1, I (1, y, h, k)
＝y, I (x, 1, h, k)＝1. 

Monotonicity I2  I (x, y, h, k) is monotone increasing 
along with y, and is monotone decreasing along with x. 

Continuity I3  When h, k∈ (0, 1), I (x, y, h, k) is 
continuous along with x, y. 

Order-preserving property I4  I (x, y, h, k)＝1, iff x≤y 
(except for h＝0 and k＝1). 

Deduction I5  T (x, I (x, y, h, k), h, k)≤y (Hypothetical 
consequence). 

0-level universal IMPLICATION operators are 
mapping  

[0 1] [0 1] [0 1] ( ) {1| 0 0I I x y h ite x y m and: , × , → , , , , = ≤ ; | ≤

 }1 10 [(1 ) ]}m m my x y /= ;Γ − + , which is usually denoted by 

h⇒ . The relation m and h is the same as (1).  

1-level universal IMPLICATION operators are 
mapping [0 1] [0 1] [0 1] ( ) {1 0I I x y h ite x y: , × , → , , , , = | ≤ ; |  

1 10 0 [(1 ) ]}mn mn mnm and y x y /≤ = ;Γ − + , which is usually 

denoted by h⇒ . The relation m and h is the same as (1), 

the relation of n and k is the same as (2). 
There are four special cases of I (x, y, h) (see Figure 4) 

as following:  
Zadeh IMPLICATION operator     I (x, y, 1)＝I3＝

ite{1|x≤y; y} 
Probability IMPLICATION operator (Goguen 

Implication) I (x, y, 0.75)＝I２＝min (1, y/x)  
Bounded IMPLICATION operator (Lukasiewicz 

Implication) I (x, y, 0.5)＝I1＝min (1, 1－x＋y)  
Drastic Implication operator     I (x, y, 0)＝I0＝ite{y|x

＝1; 1} 

 

Figure 4. IMPLICATION operator model figure for special h 

C. Universal Logic System (0 1]hUL ∈ ,  

The languages of 0-level UL system (0 1]hUL ∈ ,  are based on 

two basic connectives → and & and one truth constant 0 , 

which semantics are 0-level universal AND, 0-level 
universal IMPLICATION and 0 respectively (see [15]).  

Axioms of the system (0 1]hUL ∈ ,  are as following:  

 (i) ( ) (( )( ))φ ψ ψ χ φ χ→ → → →               
 (ii) ( )&φ ψ φ→                       
 (iii) ( ) ( )& &φ ψ ψ φ→                  
 (iv) ( ) ( ( ))& &φ φ ψ ψ ψ φ→ → →        
 (v) ( ( )) (( ) )&φ ψ χ φ ψ χ→ → → →         
 (vi) (( ) ) ( ( ))&φ ψ χ φ ψ χ→ → → →        
 (vii) (( ) ) ((( ) ) )φ ψ χ ψ φ χ χ→ → → → → →   

 (viii) 0 φ→                           

 (ix) ( ) (( 0) (( ) ( )))& & &φ φ ψ φ ψ φ φ φ ψ ψ ψ→ → → ∨ ∨ → ∧ → .  
The deduction rule of (0 1]hUL ∈ ,  is modus ponens.  

Definition 2 [15] A Ł GΠ algebra is a BL-algebra in 
which the identity  

( ) (( 0) (( ) ( ))) 1x x y x y x x x y y y⇒ ∗ ⇒ ⇒ ∪ ∪ ⇒ ∗ ∩ ⇒ ∗ =  
is valid.  

For each (0 1]h∈ , , ([0 1] min max 0 1)h h, , , ,∧ ,⇒ , ,  which is 

called Ł GΠ  unit interval is a linear ordering Ł GΠ  algebra 

with its standard linear ordering.  
Theorem 1 [16] (Soundness) All axioms of (0 1]hUL ∈ ,  are 

1-tautology in each PC (h). If φ  and ϕ ψ→  are 1-tautology 
of PC (h) then ψ  is also a 1-tautology of PC (h). 
Consequently, each formula provable in (0 1]hUL ∈ ,  is a 1-

tautology of each PC (h), i.e. φΓ , then φΓ .  

Theorem 2 [16] (Completeness) The system (0 1]hUL ∈ ,  is 

complete, i.e. If φ , then φ . In more detail, for each 
formula φ ϕ , the following are equivalent:  

 (i) φ  is provable in (0 1]hUL ∈ , , i.e. φ ; 

 (ii) φ  is an L-tautology for each Ł GΠ -algebra L ;  
 (iii) φ  is an L-tautology for each linearly ordered Ł GΠ -

algebra L ;  
 (iv) φ  is a tautology for each Ł GΠ  unit interval, i.e. 
φ .  

D. Universal Logic System (0 1]hUL−
∈ ,  

Definition 3 [17]Axioms of (0 1]hUL−
∈ ,  are those of (0 1]hUL ∈ ,  

plus  
( )φ φ− − ≡    (Involution)                      
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( ) ( )φ ψ ψ φΔ → →Δ − → −   (Order Reversing)      
φ φΔ ∨ ¬Δ                                        
( ) ( )φ ψ φ ψΔ ∨ → Δ ∨ Δ                             
φ φΔ →                                       
φ φΔ → ΔΔ                                      
( ) ( )φ ψ φ ψΔ → → Δ → Δ                          

where φ¬  is 0φ → . Deduction rules of (0 1]hUL−
∈ ,  are those 

of (0 1]hULΔ
∈ , , that is, modus ponens and generalization: from 

ϕ  derive ϕΔ .  

Definition 4 [17] A Ł GΔΠ -algebra is a structure 

0 1L L=< ,∗,⇒,∩,∪, , ,Δ >  which is a Ł GΠ algebra 
expanded by an unary operation Δ  in which the 
following formulas are true:  

( 0) 1x xΔ ∪ Δ ⇒ =   

( )x y x yΔ ∪ ≤ Δ ∪Δ   

x xΔ ≤   
x xΔ ≤ ΔΔ   

( ) ( ( ))x x y yΔ ∗ Δ ⇒ ≤ Δ   

1 1Δ =    
Definition 5 [17] A Ł G−Π -algebra is a structure L 

0 1L=< ,∗,⇒,∩,∪, , ,Δ,− >  which is a Ł GΔΠ -algebra 

expanded by an unary operation -, and satisfying the 
following conditions:  

 (1) x x− − =   
 (2) ( ) ( )x y y xΔ ⇒ = Δ − ⇒ −   

 (3) 1x xΔ ∨¬Δ =   
 (4) ( ) ( )x y x yΔ ∨ ≤ Δ ∨ Δ   

 (5) x xΔ ≤   
 (6) x xΔ ≤ ΔΔ   
 (7) ( ) ( ( ))x x y yΔ ∗ Δ ⇒ ≤ Δ   

 (8) 1 1Δ =    
Theorem 3 [17] (Soundness) Each formula provable in 

(0 1]hUL−
∈ ,  is a L-tautology for each Ł G−Π -algebra.  

Theorem 4 [17] (Completeness) The system (0 1]hUL−
∈ ,  is 

complete, i.e. If φ , then φ . In more detail, for each 
formula φ , the following are equivalent:  

 (i) φ  is provable in (0 1]hUL−
∈ , , i.e. ϕ ,  

 (ii) φ  is an L-tautology for each Ł G−Π -algebra L,  

 (iii)φ  is an L-tautology for each linearly ordered Ł G−Π -

algebra L.  

III.  PREDICATE FORMAL SYSTEM (0 1]hUL−
∈ ,∀  

In order to build first-order predicate formal deductive 
system based on 1-level universal AND operator, we give 
the first-order predicate language as following:  

First-order language J consists of symbols set and 
generation rules:  

The symbols set of J consist of as following:  
 (1) Object variables: 1 1 1 2 2 2x y z x y z x y z, , , , , , , , , ;  

 (2) Object constants: 1 1 1a b c a b c, , , , , , , Truth constants: 

0 1, ;  

 (3) Predicate symbols: 1 1 1P Q R P Q R, , , , , , ;  

 (4) Connectives: &,→,Δ,− ;  
 (5) Quantifiers: ∀  (universal quantifier), ∃  

(existential quantifier);  
 (6) Auxiliary symbols: (, ), , .  
The symbols in (1)- (3) are called non-logical symbols 

of language J. The object variables and object constants 
of J are called terms. The set of all object constants is 
denoted by Var (J), The set of all object variables is 
denoted by Const (J), The set of all terms is denoted by 
Term (J). If P is n-ary predicate symbol, 1 2 nt t t, ,,  are 

terms, then 1 2( )nP t t t, , ,  is called atomic formula.  

The formula set of J is generated by the following 
three rules in finite times:  

 (i) If P is atomic formula, then P J∈ ;  
 (ii) If P Q J, ∈ , then P &Q P Q P J P J, → ,Δ ∈ ,− ∈ ;  

 (iii) If P J∈ , and Var( )x J∈ , then 

( ) ( )x P x P J∀ , ∃ ∈ .  

The formulas of J can be denoted by 1 1 1φ ϕ ψ φ ϕ ψ, , , , , , . 

Further connectives are defined as following:  
φ ψ∧  is ( )&φ φ ψ→ ,     

φ ψ∨  is (( ) ) ( ) )φ ψ ψ ψ φ φ→ → ∧ → → ,  

φ¬  is 0φ → ,               

 φ ψ≡  is ( ) ( )&φ ψ ψ φ→ → .  

Definition 6The axioms and deduction rules of predicate 
formal system (0 1]hUL−

∈ ,∀  as following:  

 (i)The following formulas are axioms of (0 1]hUL−
∈ ,∀ : 

(U1) ( ) (( ) ( ))φ ψ ψ χ φ χ→ → → → →  

 (U2) ( )&φ ψ φ→   

 (U3) ( ) ( )& &φ ψ ψ φ→   

 (U4) ( ) ( ( ))& &φ φ ψ ψ ψ φ→ → →   

 (U5) ( ( )) (( ) )&φ ψ χ φ ψ χ→ → → →   

 (U6) (( ) ) ( ( ))&φ ψ χ φ ψ χ→ → → →   

 (U7) (( ) ) ((( ) ) )φ ψ χ ψ φ χ χ→ → → → → →   

 (U8) 0 φ→  

 (U9) ( ) (( 0) (( )& &φ φ ψ φ ψ φ φ φ→ → → ∨ ∨ → ∧  

( )))&ψ ψ ψ→  

 (U10) ( )ϕ ϕ− − ≡   

 (U11) ( ) ( )ϕ ψ ψ ϕΔ → → Δ − → −   

 (U12) φ φΔ ∨¬Δ   

 (U13) ( ) ( )φ ψ φ ψΔ ∨ → Δ ∨ Δ   

 (U14) φ φΔ →   

 (U15) φ φΔ → ΔΔ   

 (U16) ( ) ( )φ ψ φ ψΔ → → Δ → Δ   

 (U17) ( ) ( ) ( )x x tφ φ∀ →  (t substitutable for x in ( )xφ )  

 (U18) ( ) ( ) ( )t x xφ φ→ ∃  (t substitutable for x in ( )xφ )  

 (U19) ( )( ) ( ( ) )x xχ φ χ φ∀ → → → ∀  (x is not free in 

χ )  
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 (U20) ( )( ) (( ) )x xφ χ φ χ∀ → → ∃ →  (x is not free in 

χ )  

 (U21) ( )( ) (( ) )x xφ χ φ χ∀ ∨ → ∀ ∨  (x is not free in χ )  

Deduction rules of (0 1]hUL−
∈ ,∀  are three rules. They are:  

Modus Ponens (MP): from φ φ ψ, →  infer ψ ;  

Necessitation: from φ  infer φΔ ;  

Generalization: from φ  infer ( )x φ∀ .  

The meaning of “t substitutable for x in ( )xφ ” and “x 
is not free in χ ” in the above definition have the same 

meaning in the classical first-order predicate logic, 
moreover, we can define the concepts such as proof, 
theorem, theory, deduction from a theory T, T-
consequence in the system (0 1]hUL−

∈ ,∀ . T φ  denotes that 

φ  is provable in the theory T. φ  denotes that φ  is a 

theorem of system (0 1]hUL ∈ ,∀ . Let 

(0 1]Thm( ) { } Ded( ) { }h J T J TUL φ φ φ φ−
∈ ,∀ = ∈ | , = ∈ | . 

Being the axioms of propositional system (0 1]hUL−
∈ ,  are in 

predicate system (0 1]hUL−
∈ ,∀ , then the theorems in 

(0 1]hUL ∈ ,  are theorems in (0 1]hUL−
∈ ,∀ . According the 

similar proof in [3, 16, 17] we can get the following 
lemmas.  

Lemma 1 The hypothetical syllogism holds in 

(0 1]hUL−
∈ ,∀ , i.e. let { }φ ψ ψ χΓ = → , → , then φ χΓ → .  

Lemma 2 (0 1]hUL−
∈ ,∀  proves:  

 (1) φ φ→ ;  

 (2) ( )φ ψ φ→ → ;  

 (3) ( ) (( ) ( ))φ ψ φ γ ψ γ→ → → → → ;  

 (4) ( ( ))&φ φ ψ ψ→ → ;  

 (5) &φ φ φΔ ≡ Δ Δ .  

Lemma 3 If }{ }T φ ψ χ γ= → , → , then 

( ) ( )T & &φ χ ψ γ→ .  

Let J is first-order predicate language, L is linearly 
ordered Ł G−Π algebra, ( ( ) ( ) )P P c cM M r m= , ,  is called a 

L-evaluation for first-order predicate language J, which 
M is non-empty domain, according to each n-ary 
predicate P and object constant c, Pr  is L-fuzzy n-ary 

relation: n
Pr M: →  L, cm  is an element of M.  

Definition 7 Let J be predicate language, M is L-
evaluation of J, x is object variable, P J∈ .  

 (i) A mapping v: ( )Term J M→  is called M-

evaluation, if for each c∈Const (J), ( ) cv c m= ;  

 (ii)Two M-evaluation v v′,  are called equal denoted 

by xv v′≡  if for each Var( ) \y J x∈ , there is 

( ) ( )v y v y′= .  

 (iii) The value of a term given by M, v is defined by: 

M M
( )

v v
x v x c

, ,
= ;  cm= . We define the truth value 

L

M v
φ

,
 of a formula φ  as following. Clearly, ∗,⇒,Δ  

denote the operations of  L .  

L

1 2 1M M M
( ) ( )n P nv v v

P t t t r t t
, , ,

, , , = ,,   

L L L

M M Mv v v
φ ψ φ ψ

, , ,
→ = ⇒   

L L L

M M Mv v v
&φ ψ φ ψ

, , ,
= ∗   

L L

M M
0 0 1 1

v v, ,
= ; =   

L L

M Mv v
φ φ

, ,
Δ = Δ   

L L

M Mv v
φ φ

, ,
− = −   

L L

M M
( ) inf { }xv v

x v vφ φ ′, ,
′∀ = | ≡   

L L

M M
( ) sup{ }xv v

x v vφ φ ′, ,
′∃ = | ≡   

In order to the above definitions are reasonable, the 
infimum/supremum should exist in the sense of L. So the 
structure M is L-safe if all the needed infima and suprema 

exist, i.e. 
L

M v
φ

,
 is defined for all vφ, .  

Definition 8 Let Jφ ∈ , M be a safe  L-structure for J.  

 (i) The truth value of φ  in M is 
L L

M M
inf{ M evaluation}

v
vφ φ

,
= | − .  

 (ii) A formula φ  of a language J  is an L -tautology if 
L

LM
1φ =  for each safe L-structure M. i.e. 

L

M v
1φ

,
=  for 

each safe L-structure M and each M-valuation of object 
variables.  

Remark For each (0 1] (0 1)h k∈ , , ∈ , , 

([0 1] min max 0 1 )h k h k, ,, , ∧ ,⇒ , , , , ,Δ,−  is a Ł G−Π -algebra. 

So the predicate system (0 1]hUL−
∈ ,∀  can be considered the 

axiomatization for 1-level universal AND operator. 

III.  SOUNDNESS OF SYSTEM (0 1]hUL−
∈ ,∀  

Definition 9 A logic system is soundness if for its each 
theorem φ , we can get φ  is a tautology.  

Theorem 5  (Soundness of axioms) The axioms of 

(0 1]hUL−
∈ ,∀  are  L-tautologies for each linearly ordered 

Ł G−Π -algebra  L.  
Proof. The axioms of (U1)- (U16) are L-tautologies 

can be get as in propositional calculus. We verify (U17)- 
(U21)  

To verify (U17), (U18), let y  is substitutable for x  to 

φ , when xv v′′ ≡  and ( ) ( )v x v y′′ = , there is 
L L

M M
( ) ( )

v v
y xφ φ ′′, ,

= So, 
L L

M M
( ) ( ) inf ( )v vv v

x x xφ φ′≡ ′, ,
∀ =  

L L L

M M M
( ) sup ( ) ( ) ( )vv v v
y x x xφ φ φ′′′ ′, , ,

≤ ≤ = ∃ , then 

M M M
( ) ( ) ( ) ( ) ( ) ( ) 1

v v v
x x y x x yφ φ φ φ

, , ,
∀ → = ∀ → = .  

For (U19), let x not free in χ , then for each M-

valuation w, when xw v≡ , we have 
L L

M M
( )

w v
v xφ

, ,
= . 

We have to prove  
L L L L

M M M M
inf ( ) ( inf )w ww w v w

v vφ φ
, , , ,
⇒ ≤ ⇒ .  
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Let 
L L

M Mv w
v v a

, ,
= = , 

L

M ww
bφ

,
= , thus we must 

prove inf ( ) ( inf )w w w wa b a b⇒ ≤ ⇒ . On the one hand, 

infw w wb b≤ , thus ( inf )w w wa b a b⇒ ≥ ⇒  for each w, 

thus inf ( ) ( inf )w w w wa b a b⇒ ≥ ⇒ . On the other hand if 

( )wz a b≤ ⇒  for each w, then wz a b∗ ≤  for each w, 

infw wz a b∗ ≤ , ( inf )w wz a b≤ ⇒ . Thus ( inf )w wa b⇒  is 

the infimum of all ( )wa b⇒ . So (U19) holds.  

For (U20), we need to verify 
inf ( ) (sup )w w w w wa b a b⇒ = ⇒ . Indeed, supw wa≥ , thus 

(sup ) ( )w w wa b a b⇒ ≤ ⇒ , hence 

(sup ) inf ( )w w w wa b a b⇒ ≤ ⇒ ,  If wz a b≤ ⇒  for all w , 

then ( )wa z b≤ ⇒  for all w, then sup ( )w wa z b≤ ⇒ , 

(sup )w wz a b≤ ⇒ , so supw wa b⇒  is the infimum. So 

(U20) holds.  
Finally we verify (U21), we need to verify 

inf ( ) infw w w wa b a b∨ = ∨ . Indeed, wa a b≤ ∨ , thus 

inf ( )w wa a b≤ ∨ ; similarly, inf inf ( )w w w wb a b≤ ∨ , thus 

inf inf ( )w w wa b a b∨ ≤ ∨ . Conversely, let wz a b≤ ∨  for 

all w , we prove infw wz a b≤ ∨ .  

Case 1: Let infw wa b≤ . Then wz b≤  for each w , 

infw wz b≤  and infw wz a b≤ ∨ .  

Case 2: Let infw wa b≥ . Then for some 0w , 
0wa b≥ , 

thus z a≤  and infw wz a b≤ ∨ .  

So we prove the soundness of axioms.  
Theorem 6 (Soundness of deduction rules) (1) For 

arbitrary formulas φ ψ, , safe-structure M and evaluation 

v , 
L L L

M M Mv v v
ψ φ φ ψ

, , ,
≥ ∗ → . In particular, if 

L L

LM M
1

v v
φ φ ψ

, ,
= → =  then 

L

LM
1

v
ψ

,
= .  

 (2) Consequently, 
L L L

M M M
ψ φ φ ψ≥ ∗ → , thus if 

φ φ ψ, →  are then ψ  is 1L -true in  M.  

 (3) If φ  is 1L -true in  M then φΔ  is 1L -true in  M .  

 (4) If φ  is 1L -true in  M then ( )x φ∀  is 1L -true in  M.  

Proof. (1) is just as in propositional calculus.  
To prove (2) put infw w w ww w

a b a aφ ψ= , = , = . We 

have to prove inf ( ) inf infw w w w w w wa b a b⇒ ≤ ⇒ . 

Observe the following:  
inf( ) ( ) ( )w w w w wa b a b a b⇒ ≤ ⇒ ≤ ⇒ ,  

thus inf ( ) inf ( )w w w w wa b a b⇒ ≤ ⇒ . It remains to prove 

inf ( ) infw w w wa b a b⇒ ≤ ⇒ , this is holds from Theorem 

5.  
 (3) If φ  is 1L -true in M then 1L

M Lφ = , so 
L L

M M
1Lv v

φ φ
, ,

Δ = Δ = . Then (3) holds.  

 (4) Being
L L

M M
inf{ }

v
v M evaluationφ φ

,
= | −  

} L

M
inf{ ( ) }M v v v xφ φ′, ′≤ | ≡ = ∀ , So (4) holds.  

So we can get the following soundness theorem.  

Theorem 7 (Soundness) Let L is linearly ordered 
Ł G−Π -algebra and φ  is a formula in J, if φ , then φ  is  

L-tautology, i.e. 
L

LM
1φ = .  

Similarly, we can get the following strong soundness 
theorem.  

Definition 10 Let T be a theory, L be a linearly ordered 
Ł G−Π -algebra and  M a safe L-structure for the language 
of  T. M is an L-model of  T if all axioms of T are 1L -true 

in  M, i.e. 1Lφ =  in each Tφ ∈ .  

Theorem 8 (Strong Soundness) Let T be a theory, L is 
linearly ordered Ł G−Π -algebra and φ  is a formula in J, 

if T φ  ( φ  is provable in T), then 1L
M Lφ =  for each 

linearly ordered Ł G−Π -algebra  L and each L-model  M 
of  T.  

Proof. In fact, from the proof of Theorem 5, for each 
L-model M of T, the axioms are true, and the formulas in 
T are true, from the proof of Theorem 6, the deduction 
rules preserve true. So the theorem holds.  

Theorem 9 (Deduction Theorem) Let T be a theory, 
φ ψ,  are closed formulas. Then ( )T φ ψ∪  iff 

T φ ψΔ → .  

Proof. Sufficiency: Let T φ ψΔ → , from φ  

( ( )Tφ φ∈ ∪  ), then φΔ  by necessitation, so we can get 

ψ  by MP rules.  

Necessity: Let m is the proof length from }T φ∪  to ψ , 

we prove by induction for the length m.  
When 1m = , Axm(C )Tψ φ∈ ∪ ∪ ∀ , if ψ φ= , The 

result holds. If Tψ ∈  or ψ  is axiom, from Lemma2 (2), 

we have ( )ψ φ ψ→ Δ → , then by ( )ψ ψ φ ψ, → Δ → , we 

get φ ψΔ → , thus T φ ψΔ → .  

Assume that the result holds when m k≤ , i.e. we get 

γ  at k  step, then T φ γΔ → . Now Let 1m k= + .  

If ψ  is obtained from MP rule by the above results 

γ γ ψ, →  in the proof sequence, then by induction 

hypothesis, we get ( )T Tφ γ φ γ ψΔ → , Δ → → . 

From Lemma 3, we can get 
( ) ( ( ))T & &φ φ γ γ ψΔ Δ → → . Being 

( ) ( )T &φ φ φΔ Δ ≡ Δ , so ( ( ))T &φ γ γ ψΔ → → . 

From lemma 2 (4) we have ( ( )&γ γ ψ ψ→ → , so we 

get T φ ψΔ →  by the hypothetical syllogism.  

If ψ  is obtained from necessitation rule by the above 

step γ  in the proof sequence, i.e. γ ψΔ = , then by 

induction hypothesis, we get T φ γΔ → . 

( )T φ γΔ Δ → , from (U16) we can get T φ γΔΔ → Δ , 

from (U15) we can get φ φΔ → ΔΔ , thus by the 

hypothetical syllogism we can get T φ γΔ → Δ , i.e. 

T φ ψΔ → .  

If ψ  is obtained from generalization rule by the above 

step γ  in the proof sequence, i.e. ( )x γ ψ∀ = , then by 
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induction hypothesis, we get T φ γΔ → , From 

generalization rule we can get ( )( )T x φ γ∀ Δ → , being 

φ γΔ ,  are closed formula and from (U19), we can get 

( )T xφ γΔ → ∀ , i.e. T φ ψΔ → .  

So the theorem holds.  

IV.  CONCLUSION 

In this paper a predicate calculus formal deductive 
system (0 1]hUL−

∈ ,∀  based on the propositional system 

(0 1]hUL−
∈ ,  for 1-level universal AND operator is built up. 

We prove the system (0 1]hUL−
∈ ,∀  is sound. The deduction 

theorem is also given. Next we will discuss the 
completeness of system (0 1]hUL−

∈ ,∀ . 

ACKNOWLEDGMENT 

This work is partially supported Scientific Research 
Program Funded by Shaanxi Provincial Education 
Department (Program No. 12JK0878) and Doctor 
Scientific Research Foundation Program of Xi'an 
Polytechnic University. 

REFERENCES 

[1] M. Gueffaz, S. Rampacek, C. Nicolle, “Temporal Logic To 
Query Semantic Graphs Using The Model Checking 
Method”, Journal of Software, vol. 7(7), pp. 1462-1472, 
2012. 

[2] W. Jiang, “The Application of the Fuzzy Theory in the 
Design of Intelligent Building Control of Water Tank”, 
Journal of Software, vol 6(6), pp. 1082-1088, 2011. 

[3] E. P. Klement, R. Mesiar, E. Pap, Triangular Norms, 
Kluwer Academic Publishers, Dordrecht/London, 2000. 

[4] P. Hajek, Metamathematics of Fuzzy Logic, Kluwer 
Academic Publishers, Dordrecht/London, 1998. 

[5] R. Cignoli, F. Esteva, L. Godo, A. Torrens, “Basic fuzzy 
logic is the logic of continuous t-norms and their residua”, 
Soft computing, vol. 4, pp. 106-112, 2000. 

[6] F. Esteva, L.Godo, “Monoidal t-normbased logic: towards 
a logic for left-continous t- norms”, Fuzzy Sets and Systems, 
vol. 124, pp. 271–288, 2001. 

[7] U. Hohle, “Commutative, residuated l-monoids”, in: Non-
Classical Logics and Their Applications to Fuzzy Subsets, 
U. Hohle, E. P. Klement, (eds.), Kluwer Academic 
Publishers, Dordrecht/London, pp. 53-106 , 1995. 

[8] G.J. Wang, Non-classical Mathematical Logic and 
Approximate Reasoning, Science Press (in Chinese), 
Beijing, 2000. 

[9] D.W. Pei, G. J. Wang, “The completeness and applications 
of the formal system L*”, Science in China (Series F) vol. 
45, pp. 40–50, 2002. 

[10] D.W. Pei, “First-order Formal System K* and its 
Completeness”, Chinese Annals of Mathematics (Series A), 
vol. 23 (6), pp. 675–684, 2002. 

[11] H.C. He, et al, Universal Logic Principle, Science Press (in 
Chinese), Beijing, 2001. 

[12] H.C. He, et al, “Continuous-valued logic algebra-Studies 
on the basic of mathematical dialectical propositional 
logic”, IEEE International Conference on GrC, IEEE Press, 
pp: 194-199, 2010. 

[13] J.L. Chen, H.C. He, C.X. Liu, M.X. Luo. “Integrity studies 
on 0-level universal operation models of flexible logic”, 
Journal of Beijing University of Posts and 
Telecommunications, vol. 34 (4): 10-13, 2011. 

[14] Y.F. Fan, H.C. He, L.R. Ai, “N-norm on [0, ∞) and method 
for calculating generalized self-correlation coefficient k”, 
Journal of Northwestern Polytechnical University, vol. 28 
(2): 270-275, 2010. 

[15] Y.C. Ma, H.C. He, “A Propositional Calculus Formal 
Deductive System (0 1]hUL ∈ ,  of Universal Logic”, 

Proceedings of 2005 ICMLC, IEEE Press, pp: 2716-2721, 
2005. 

[16] Y.C. Ma, H.C. He, “The Axiomatization for 0-level 
Universal Logic”, Lecture Notes in Artificial Intelligence, 
vol. 3930, pp. 367-37, 2006. 

[17] Y.C. Ma, H.C. He, “Axiomatization for 1-level Universal 
AND Operator”, The Journal of China Universities of 
Posts and Telecommunications, vol. 15 (2), pp. 125-129, 
2008. 

[18] Y.C. Ma, Q.Y. Li, “A Propositional Deductive System of 
Universal Logic with Projection Operator”, Proceedings of 
2006 ISDA, IEEE Press, pp: 993-998, 2006. 

[19] Q.Y. Li, Y.C. Ma, “The predicate system based on 
schweizer-sklar t-norm and its soundness”, Journal of 
Computational Information Systems, vol. 7 (15), p 5600-
5607, 2011. 

[20] Q.Y. Li, T, Cheng, The Predicate System Based on 
Schweizer-Sklar t-norm and Its Completeness. Lecture 
Notes in Electrical Engineering, vol. 107: 201-209, 2011,  

[21] Y.C. Ma, H.C. He, “Predicate Formal System 

[0.75 1]hUL ∈ ,∀ and and its completeness　 ”, Computer 
Engineering and Applications, vol. 46 (34): 17-20, 2010. 

[22] Y.C. Ma, H.C. He, “Predicate Formal System 

[0.75 1]hUL ∈ ,∀ and its Soundness　 ”, Computer Science, vol. 

38 (5): 178-180, 2011. 
[23] Y.C. Ma, H.C. He, “Predicate formal system based on 0-

level universal AND operator and its soundness”, 
Application Research of Computers, vol. 28 (1): 84-86, 
2011.  

[24] Y.C. Ma, H.C. He, “Predicate Formal System Based on 0-
level Universal and Operator and its Completeness”, 
Journal of Chinese Computer Systems, vol. 32 (10): 2105-
2108, 2011. 
 

Yingcang Ma, is a professor in school 
of science, Xi'an Polytechnic University. 
He received  the PhD. degree from  
School of Computer Science, 
Northwestern Polytechnical University, 
in July 2006. His main researchinterests 
are in the areas of fuzzy set, rough set 
and non-classical mathematical logic. 
 

 
 
Hucan He, male, Professor and Ph.D. 
tutor from the Department of Computer 
Science and Engineering of 
Northwestern Polytechnical University, 
interested in the foundation and 
application of AI, universal logic and 
uncertainties reasoning. 

1440 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER




