

AT-Mine: An Efficient Algorithm of Frequent
Itemset Mining on Uncertain Dataset

Le Wanga,b,Lin Fenga,b, *, and Mingfei Wu a,b

a School of Computer Science and Technology, Faculty of Electronic Information and Electrical Engineering, Dalian
University of Technology, Dalian, Liaoning, China 116024.

b School of Innovation and Experiment, Dalian University of Technology, Liaoning, China 116024.
Email: lelewater@gmail.com; fenglin@dlut.edu.cn; merphy.wmf@gmail.com

Abstract—Frequent itemset/pattern mining (FIM) over
uncertain transaction dataset is a fundamental task in data
mining. In this paper, we study the problem of FIM over
uncertain datasets. There are two main approaches for FIM:
the level-wise approach and the pattern-growth approach.
The level-wise approach requires multiple scans of dataset
and generates candidate itemsets. The pattern-growth
approach requires a large amount of memory and
computation time to process tree nodes because the current
algorithms for uncertain datasets cannot create a tree as
compact as the original FP-Tree. In this paper, we propose
an array based tail node tree structure (namely AT-Tree) to
maintain transaction itemsets, and a pattern-growth based
algorithm named AT-Mine for FIM over uncertain dataset.
AT-Tree is created by two scans of dataset and it is as
compact as the original FP-Tree. AT-Mine mines frequent
itemsets from AT-Tree without additional scan of dataset.
We evaluate our algorithm using sparse and dense datasets;
the experimental results show that our algorithm has
achieved better performance than the state-of-the-art FIM
algorithms on uncertain transaction datasets, especially for
small minimum expected support number.

Index Terms—data mining, frequent itemset, frequent
pattern, uncertain dataset

I. INTRODUCTION

Frequent itemsets mining (FIM) over transaction
dataset is an important and common topic in data mining.
The algorithm Apriori [1] was first proposed to discover
frequent itemsets from market basket data. Since then,
FIM algorithms were constantly proposed for various
application domains, such as those for complete frequent
itemsets [1, 2, 3, 4, 5, 6, 7], for maximal frequent itemsets
[8, 9, 10, 11, 12], for closed frequent itemsets [13, 14, 15]
and for frequent sequential patterns [16] and high uitlity
itemsets [17, 18, 19, 20]. These algorithms concern
precise transaction datasets, that is, all items can be
described with a certain value. However, many real-world
applications generate or require uncertain transaction
datasets in which items can only be described with an
existential probability. For example, some diseases can

not be definitely diagnosed by a set of symptons - they
can only be ascertained as a probability value; the
locations of a moving object obtained through RFID or
GPS devices are not precise [21, 22]; the shopping habits
mined from an e-commerce website are also probability
values for predicting what a customer will buy in the
future.

Table 1 shows an example of uncertain transaction

dataset, each transaction of which represents that a
customer might buy a certain item with a probability. The
value associated with each item is called the existential
probability of the item. For instance, the first transaction
T1 in Table 1 shows that a customer might purchase “a”,
“b”, “d” and “f” with 80%, 70%, 90% and 50% chances
in the future respectively.

In recent years, FIM over uncertain datasets has
become an important topic in data mining [23, 24, 25, 26,
27, 28, 29, 30, 31, 32]. The existing algorithms can be
classified into two main categories: the level-wise
approach and the pattern-growth approach. The
algorithms U-Apriori [31], MBP [28] and IMBP [26]
employ the level-wise approach, and all these algorithms
generate candidates and require multiple scans of the
dataset. The algorithms UH-Mine [30], UFP-Growth [30],
and UF-Growth [25, 29] employ the pattern-growth
approach. UH-Mine is based on the algorithm H-Mine [5];
UF-Growth is based on the classical algorithm FP-
Growth [2] and employs the same method as FP-Growth
for mining frequent itemsets on uncertain transaction
itemsets. Both UH-Mine and UF-Growth cannot create a
tree as compact as FP-Tree for maintaining transaction
itemsets, thus they require a large amount of memory and
computational time to process tree nodes, especially on

TABLE I.
AN EXAMPLE OF UNCERTAIN DATASET

TID Transaction itemset

T1 (a: 0.8), (b: 0.7), (d: 0.9), (f: 0.5)

T2 (c: 0.8), (d: 0.85), (e: 0.4)

T3 (c: 0.85), (d: 0.6), (e: 0.6)

T4 (a: 0.9) , (b: 0.85), (d: 0.65)

T5 (a: 0.95), (b: 0.7), (d: 0.8) , (e: 0.7)
T6 (b: 0.7), (c: 0.65), (f: 0.45)

Manuscript received January 12, 2013; revised February. 11, 2013;
accepted March 1, 2011.
This work was supported by National Natural Science Foundation of
P.R. China (61173163, 51105052), Program for New Century Excellent
Talents in University (NCET-09-0251); and Liaoning Provincial
Natural Science Foundation of China (Grant No. 201102037).
Corresponding Author: Lin Feng; E-mail: fenglin@dlut.edu.cn.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1417

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.6.1417-1426

large datasets. UFP-Growth [30] also builds the UFP-
Tree in the same manner as FP-Growth, and the UFP-
Tree is as compact as the original FP-Tree. However
UFP-Mine generates candidates, and identifies frequent
itemsets by additional scan of dataset.

So our thought is to build a tree as compact as the
original FP-Tree and avoid generating candidates. To
achieve this goal, we propose a tree structure named AT-
Tree (Array based Tail node Tree) and a new algorithm
named AT-Mine. AT-Mine needs just two scans of
dataset. In the first scan, it finds frequent items and
arranges them in descending order of support number. In
the second scan, it constructs an AT-Tree using
transaction itemsets like the method of FP-Growth, while
maintains the probability information of each transaction
to a tail node and an array. Then AT-Mine can directly
mine frequent itemsets from AT-Tree without additional
scan of datasets. The experimental results show that AT-
Mine is more efficient than the algorithms MBP, UF-
Growth and CUFP-Mine.

The contributions of this paper are summarized as
follows:

(1) We propose a new tree structure named AT-Tree
(Array based Tail node Tree) for maintaining
important information related to an uncertain
transaction dataset;

(2) We also give an algorithm named AT-Mine for
FIM over uncertain transaction datasets based on
AT-Tree;

(3) Both sparse and dense datasets are used in our
experiments to compare the performance of the
proposed algorithm against the state-of-the-art
algorithms based on level-wise approach and
pattern-growth approach, respectively.

The rest of this paper is organized as follows: Section
2 is the description of the problem and definitions;
Section 3 describes related works; Section 4 describes our
algorithms AT-Mine; Section 5 shows the experimental
results; and Section 6 gives the conclusion and discussion.

II. PROBLEM DEFINITIONS

Let D = {T1, T2, …, Tn} be an uncertain transaction
dataset which contains n transaction itemsets and m
distinct items, i.e. I= {i1, i2, …, im}. Each transaction
itemset is represented as {i1:p1, i2:p2, …, iv:pv}, where {i1,
i2, …, iv} is a subset of I, and pu (1≤u≤v) is the existential
probability of item iu in a transaction itemset. The size of
dataset D is the number of transaction itemsets and is
denoted as |D|. An itemset X = {i1, i2, …, ik}, which
contains k distinct items, is called a k-itemset, and k is the
length of the itemset X.

We adopt some definitions similar to those presented
in the previous works [1, 23, 28, 29, 30, 31, 32].
Definition 1: The support number (SN) of an itemset X in
a transaction dataset is defined by the number of
transaction itemsets containing X.
Definition 2: The probability of an item iu in transaction
Td is denoted as p(iu,Td) and is defined by

 (,)u d up i T p= (1)

For example, in Table 1, p({a},T1) = 0.8, p({b},T1) =
0.7, p({d},T1) = 0.9, p({f},T1) = 0.5.
Definition 3: The probability of an itemset X in a
transaction Td is denoted as p(X, Td) and is defined by

,

(,) (,)
u d

d u di X X T
p X T p i T

∈ ⊂
=∏

(2)
 For example, in Table 1, p({a, b},T1) = 0.8×0.7 = 0.56,

p({a, b},T4) = 0.9×0.85=0.765, p({a, b},T5) =
0.95×0.7=0.665.
Definition 4: The expected support number (expSN) of
an itemset X in an uncertain transaction dataset is denoted
as expSN(X) and is defined by

,

() (,)
d d

dT X T D
expSN X P X T

⊇ ∈
=∑

(3)
 For example, expSN({a, b}) = p({a, b},T1) + p({a,

b},T4) + p({a, b},T5) = 0.56+0.765+ 0.665 = 1.99.
Definition 5: Given a dataset D, the minimum expected
support threshold η is a predefined percentage of |D|;

correspondingly, the minimum expected support number
(minExpSN) is defined by

| |minExpSN D η= × (4)

In the papers [23, 25, 26, 29, 30, 31], an itemset X is
called a frequent itemset if its expected support number is
not less than the value minExpSN. Mining frequent
itemsets from an uncertain transaction dataset means
discovering all itemsets whose expected support numbers
are not less than the value minExpSN.
Definition 6: The minimum support threshold λ is a
predefined percentage of |D|; correspondingly, the
minimum support number (minSN) in a dataset D is
defined by

| |minSN D λ= × (5)

III. RELATED WORK

Most of algorithms of FIM on uncertain datasets can
be classified into two main categories: the level-wise
approach and the pattern-growth approach. The main idea
of the level-wise algorithms comes from Apriori [1]
which is the first level-wise algorithm for FIM. It is to
iteratively generate candidate (k+1)-itemsets from
combinations of frequent k-itemsets (k≥1), and calculate
expected support numbers of candidates by one scan of
dataset. Its main shortcoming is that it needs multiple
scans of dataset and generates candidate itemsets.

The main idea of the pattern-growth approach comes
from the algorithm FP-Growth [2] which is the first
pattern-growth algorithm. It is also an iteration approach,
but it does not mine frequent itemsets by the combination
method like Apriori. It finds all frequent items under the
condition of frequent k-itemset X, and generates frequent
(k+1)-itemsets by the union of each one of those frequent
items and X (k≥1). It maintains all transaction itemsets to
a FP-Tree [2] with two scans of dataset. It will generate a
conditional tree (which is also called prefix FP-Tree or
sub FP-Tree) for each frequent itemset X. Thus it will
find all frequent items under the condition of X by
scanning this conditional tree instead of the whole dataset.

1418 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

FP-Tree is created by the following rules: (1) transaction
itemsets are rearranged in descending order of support
numbers of items and are inserted to a FP-Tree; (2)
transaction itemsets will share the same node when the
corresponding items are the same.

A. Level-wise Approach

In 2007, the algorithm U-Apriori was proposed for
discovering frequent itemsets from uncertain datasets
[31]. It is based on the algorithm Apriori. U-Apriori is a
classical level-wise algorithm for FIM on uncertain
datasets. It starts by finding all frequent 1-itemsets with
one scan of dataset. Then in each iteration, it first
generates candidate (k+1)-itemsets using frequent k-
itemsets (k ≥1), and then identifies real frequent itemsets
from candidates with one scan of dataset. The iteration
goes on until there is no new candidate. One important
shortcoming of U-Apriori is that it generates candidates
and requires multiple scans of datasets; and the situation
may become worse with the increase of the number of
long transaction itemsets or decrease of the minimum
expected support threshold.

In 2011, Wang et al. [28] proposed the algorithm
MBP for FIM on uncertain datasets. The authors
proposed one strategy to speed up the calculation of the
expected support number of a candidate itemset: MBP
will stop calculating the expected support number of a
candidate itemset if the itemset can be determined to be
frequent or infrequent in advance. Thus it can achieve a
better performance than the algorithm U-Apriori.

In 2012, Sun et al. [26] modified the algorithm MBP,
and gave an approximate algorithm (called IMBP) for
FIM on uncertain datasets. The performance of IMBP
outperforms MBP in terms of running time and memory
usage. However its accuracy is not stable, and becomes
lower on dense datasets.

B. Pattern-growth Approach

In 2007, Leung et al. [29] proposed a tree-based
algorithm UF-Growth for FIM on uncertain transaction
dataset. Firstly, it also constructs a UF-Tree using
transaction itemsets like the method of FP-Growth;
secondly, it mines frequent itemsets from the UF-Tree by
the pattern-growth approach. It creates a UF-Tree by two
scans of dataset. In the first scan, it finds all frequent 1-
itemsets, arranges frequent 1-itemsets in descending order
of support numbers and maintains them in a header table.
In the second scan, removes infrequent items from each
transaction itemset, re-arranges the remaining items of
each transaction itemset in order of the header table, and
inserts the sorted itemset to a global UF-Tree. It only
merges nodes that have the same item and the same
probability when transaction itemsets are inserted to a
UF-Tree. For example, for two transaction itemsets
{a:0.50, b:0.70, c:0.23} and {a:0.55, b:0.80, c:0.23},
they will not share the node “a” when they are inserted to
a UF-Tree by lexicographic order because the
probabilities of item “a” are not equal in these two
itemsets. Thus UF-Growth requires a large amount of
memory to store UF-Tree.

Leung et al. [25] improved the algorithm UF-Growth

to reduce the size of UF-Tree. The improved algorithm
considers that the items with the same k-digit value after
the decimal point have the same probability. For example,
when two transaction itemsets {a:0.50, b:0.70, c:0.23}
and {a:0.55, b:0.80, c:0.23} are inserted to a UF-Tree
by lexicographic order, they will share the node “a” if k is
set as 1 because both probability values of the two item
“a” are considered to be 0.5; if k is set as 2, they will not
share the node “a” because the probabilities of “a” are
0.50 and 0.55 respectively. The smaller k is, the lesser
memory the improved algorithm requires. However, the
improved algorithm still cannot build a UF-Tree as
compact as the original FP-Tree; moreover, it may lose
some frequent itemsets.

UH-Mine [30] is a pattern-growth algorithm. The
main difference between UH-Mine and UF-Growth is
that UF-Growth adopts a prefix tree structure while UH-
Mine adopts a hyperlinked array based structure called H-
struct [5] (which can also be considered as a tree). UH-
Mine requires two scans of dataset for creating the
structure H-struct: in the first scan, it creates a header
table which maintains sorted frequent 1-items; in the
second scan, it removes infrequent items from each
transaction itemset, re-arranges the remaining items in the
order of the header table, and inserts the sorted
transaction itemset into an H-struct tree without sharing
nodes with other transaction itemsets. The header table
maintains the hyperlink of all nodes with the same item
name when the itemsets are inserted into an H-struct tree.
It will achieve a good performance on small datasets.
However, the H-struct does not share any node and is not
a compact tree, and this will impact the performance of
FIM, especially for large datasets.

The authors of the paper [30] also extend the classical
algorithm FP-Growth to get the algorithm UFP-Growth
for FIM on uncertain datasets. UFP-Growth firstly
generates candidates by the UFP-Tree, and then identifies
frequent itemsets through additional scan of datasets. Its
performance is also impacted by the generation of
candidate itemsets.

C. The Algorithm CUFP-Mine

In 2011, Lin et al. [23] proposed the algorithm CUFP-
Mine for FIM on uncertain transaction datasets. CUFP-
Mine creates a tree named CUFP-Tree to maintain
transaction itemsets. A CUFP-Tree is created by two
scans of dataset. In the first scan, it creates a header table
for maintaining sorted frequent 1-itemsets; in the second
scan, when an item Zi in transaction itemset Z ({Z1, Z2,…,
Zi,.., Zm}) is inserted into a tree, CUFP-Mine generates all
supersets of item Zi using items Z1, Z2,…, Zi, and
maintains all supersets and their corresponding
probabilities to a node corresponding to Zi. CUFP-Mine
only accumulates the probability of each superset if there
is a corresponding node on the tree for item Zi. The idea
of CUFP-Mine is that it finds frequent itemsets through
scanning supersets of each node and calculating expected
support number of each superset. CUFP-Mine generates
all combinations of items in an itemset, and maintains
these combinations to tree nodes. Thus CUFP-Mine
requires a large amount of computation time and memory

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1419

© 2013 ACADEMY PUBLISHER

when the length of itemsets is not very short or on large
datasets.

IV. THE ALGORITHM AT-MINE

The proposed algorithm AT-Mine mainly consists of
two procedures: (1) creating an AT-Tree; (2) mining
frequent itemsets from the AT-Tree. We describe the
structure of an AT-Tree in Section 4.1, give an example
of the construction of an AT-Tree in Section 4.2, and
elaborate the algorithm AT-Mine with an example in
Section 4.3.

A. Structure of an AT-Tree

Definition 9: Let itemset X = {i1, i2, i3, …, iu} be a sorted
itemset, and the item iu is called tail-item of X. When the
itemset X is inserted into a tree T in accordance with its
items’ order, the node N on the tree that represents this
tail-item is defined as tail node of itemset X, and other
nodes that represent items i1, i2, …, iu-1 are defined as
normal nodes. The itemset X is called tail-node-itemset
for node N.
Definition 10: Let an itemset X contain itemset Y. When
itemset X is added to a prefix tree of itemset Y, the
probability of itemset Y in itemset X, p(Y, X), is defined
as the base probability of itemset X on the tree T, and is
denoted as BP(X, Y):

(), (,)BP Y X p Y X= (8)

Figure 1. Structure of nodes on an AT-Tree

The node structure on an AT-Tree is illustrated in
Figure 1. There are two types of nodes: one is normal
node, as shown in Figure 1(a), where Name is the item
name of each node; the other type is tail node, as shown
in Figure 1(b), where Tail_info is the supplemental
information that includes 4 fields: (1) bp: a list that keeps
base probability values of all tail-node-itemsets; (2) len:
the length of the tail-node-itemset; (3) Arr_ind: a list of
index values of an array each element of which records
probability values of items in each sorted transaction
itemset (see Substep 5.2 in Section 4.2.1 and Step 5 in
Section 4.2.2, etc.); (4) Item_ind: a list of index values of
an array that records probability values of each item in a
sorted transaction itemset (see Substep 10.5 and 10.7 in
Section 4.3.2, etc., Item_ind is just used in a sub AT-
Tree).

B. Construction of an AT-Tree

The structure of AT-Tree is designed to efficiently
store the related information on tail nodes. It is
constructed by two scans of dataset. In the first scan, a
header table is created to maintain sorted frequent items.

In the second scan, the probability values of frequent
items in each transaction itemsets are stored to a list
according to the order of the header table; the list is then
added to an array (and its corresponding sequence
number in the array is denoted as ID); the frequent items
in each transaction itemset are inserted to an AT-Tree
according to the order of the header table; the length of
the itemset and the number ID are stored to the
corresponding tail node. When the transaction itemsets
are added to an AT-Tree, they are rearranged in
descending order of support numbers of items, and share
the same node/nodes if their prefix items/itemsets are
identical. Thus the AT-Tree is as compact as the original
FP-Tree. Moreover, AT-Tree does not lose probability
information with respect to the distinct probability values
of the transaction itemsets.

B.1 The construction algorithm of a global AT-Tree

A global AT-Tree is the first AT-Tree that maintains
itemset information of the whole dataset. The
construction algorithm is described as follows:

CreateTree(D, η)

INPUT: An uncertain database D consisting of n
transaction itemsets and a predefined minimum expected
support threshold η .

OUTPUT: An AT-Tree T.
Step 1: Calculate the minimum expected support number

minExpSN, i.e. | |minExpSN D η= × ; count the

expected support number and support number of
each item by one scan of dataset.

Step 2: Put those items whose expected support numbers
are not less than minExpSN to a header table, and
sort the items in the header table according to the
descending order of their support numbers; finish
the algorithm if the header table is null.

Step 3: Initially set the root node of the AT-Tree T as null.
Step 4: Remove the items that are not in the header table

from each transaction itemset, and sort the
remaining items of each transaction itemset
according to the order of the header table, and get a
sorted itemset X.

Step 5: If the length of itemset X is 0, process the next
transaction itemset; otherwise insert the itemset X
into the AT-Tree T by the following substeps:
Substep 5.1: Store the probability value of each

item in itemset X sequentially to a list; save the
list to an array (which is denoted as ProArr);
the corresponding sequence number of the list
in the array is denoted as ID.

Substep 5.2: If there has not been a tail node for the
itemset X, create a tail node N for this itemset,
where N.Tail_info.len is the length of itemset X,
and N.Tail_info.Arr_ind={ID}; otherwise,
append the sequence number ID to
N.Tail_info.Arr_ind.

Step 6: Process the next transaction itemset.

1420 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

Figure 2. Construction of an AT-Tree

B.2 An Example of Constructing a Global AT-Tree

The uncertain dataset in Table 1 is used as an example
here to illustrate the construction of the AT-Tree. This
dataset concludes 6 transaction itemsets and 6 distinct
items. The minimum support threshold is set as 20%.
Step 1: Calculate the minimum expected support number

as 1.2 (6*20%); count the expected support number
and support number of each item by one scan of
database.

Step 2: Create a header table, as shown in Figure 2(a).
Each link in the header table records all nodes of a
corresponding item on a tree (not shown in the
Figures for simplicity).

Step 3: Initially set the root node of an AT-Tree as null.
Step 4: Remove the infrequent item “f” from the

transaction itemset T1, and sort the remaining items
according to the order of the header table, the
resulting is {d:0.9, b:0.7, a:0.8}.

Step 5: Maintain probability value of each item to a list
{0.9, 0.7, 0.8}, and append the list to an array ProArr,
as shown in Table 2; the corresponding ID of the list in
the array ProArr is 1; then insert the first sorted
itemset into the AT-Tree, and the resulting AT-Tree is
shown in Figure 2(b). On the tail node “a”, “3”
represents the length of the tail-node-itemset (len), and
“{1}” represents the index number of the array
ProArr in Table 2.

Step 6: Process the next transaction T2, get the sorted
transaction itemset {d:0.85, c:0.8, e:0.4}. Since the
path “root-d” can be shared, insert a normal node

“c” and a tail node “e”. The resulting AT-Tree is
shown in Figure 2(c).

Step 7: Process the next transaction T3, get the sorted
transaction itemset {d:0.6, c:0.85, e:0.6}. Since the
path “root-d-c-e” can be shared and the node “e” on
the path is a tail node, just append the corresponding
ID in ProArr of Table 2 to the Tail_info.Arr_ind of
the tail node “e”. The resulting AT-Tree is shown in
Figure 2(d).

Step 8: Process the remaining transactions one by one.
The resulting AT-Tree is shown in Figure 2(e).

C. Mining Frequent Itemsets from a Global AT-Tree

After an AT-Tree is constructed, the algorithm AT-
Mine can directly mine frequent itemsets from the tree
without additional scan of dataset. The details of the
mining approach are described below.

C.1 The Mining Algorithm

The algorithm AT-Mine is similar to the algorithm
FP-Growth: it creates and processes sub trees (prefix
trees or conditional trees) recursively. But the condition
of generating frequent itemsets is different from FP-
Growth. The detailed steps of the mining algorithm are as
follows:

Mining (T, H, minExpSN)
INPUT: An AT-Tree T, a header table H, and a

minimum expected support number minExpSN.
OUTPUT: The frequent itemsets (FIs).

Step 1: Process the items in the header table one by one
from the last item by the following steps (denote the
currently processed item as Z).

Step 2: Append item Z to the current base-itemset (which
is initialized as null); each new base-itemset is a
frequent itemset.

Step 3: Let Z.links in the header table H contain k nodes
whose item name is Z; we denote these k nodes as N1,
N2, …, Nk; because item Z is the last one in the
header table, all these k nodes are tail nodes, i.e.,
each of these nodes contains a Tail_info.
Substep 3.1: Create a sub header table subH by

scanning the k branches from these k nodes to
the root.

Substep 3.2: If the sub header table is null, go to
Step 4.

Substep 3.3: Create sub AT-Tree subTree =
CreateSubTree(Z.link, subH).

Substep 3.4: Mining(subTree, subH, minExpSN).
Step 4: Remove item Z from the base-itemset.
Step 5: For each of these k nodes (which we denote as Ni,

1≤i≤k), modify its Tail_info by the following
substeps:
Substep 5.1: Alter Ni.Tail_info.len values:

Ni.Tail_info.len = Ni.Tail_info.len -1.
Substep 5.2: Move Ni.Tail_info to the parent of

node Ni.
Step 6: Process the next item of the header table H.

Subroutine: CreateSubTree(link, subH)
INPUT: A list link which records tree nodes with the

same item name, and a header table subH.
OUTPUT: An AT-Tree subT.

TABLE II.
PROBABILITY LIST (PROARR)

ID probabilities
1 {0.9, 0.7, 0.8}
2 {0.85, 0.8, 0.4}
3 {0.6, 0.85, 0.6}
4 {0.65, 0.85, 0.9}
5 {0.8, 0.7, 0.95, 0.7}
6 {0.7, 0.65}

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1421

© 2013 ACADEMY PUBLISHER

Step 1: Initially set the root node of the tree subT as null.
Step 2: Process each node in the list link by the following

steps (denote the currently processed node as N).
Step 3: Get the tail-node-itemset of node N (denote it as

itemset X).
Step 4: Remove those items that are not in the header

table subH from itemset X, and sort the remaining
items in itemset X according to the order of the
header table subH.

Step 5: If the length of the sorted itemset (denoted as k)
is 0, process the next node of the list link; otherwise
insert the sorted itemset X into the AT-Tree subT by
the following substeps:
Substep 5.1: Get the original sequential ID of each

item of the itemset X in the corresponding list
of ProArr: item_ind = {d1, d2, .., dk} (k is the
length of itemset X).

Substep 5.2: Make a copy of N.Tail_info; denote the
copy as nTail_info.

Substep 5.3: Alter nTail_info as the following:
(1) nTail_info.len = k.
(2) nTail_info. Item_ind = item_ind.
(3) if nTail_info.bp is null, set nTail_info.bp[j]

to be the probability of item Z, i.e.
ProArr[nTail_info.Arr_ind[j]]; otherwise,
set nTail_info.bp[j] to be the product of
nTail_info.bp[j] and the probability of item
Z (1 ≤ j ≤ bp.size; the array ProArr is
created when the global tree is created in
Substep 5.1 in Section 4.2.1).

C.2 An Example of Mining Frequent Itemsets from a
Global AT-Tree

Figure 3. An Example of mining frequent itemsets from uncertain
dataset

The global AT-Tree in Figure 2(e) and its
corresponding header table H in Figure 2(a) are used as
an example here to illustrate the detailed processes of
mining frequent itemsets. The minimum expected support
number is 1.2.
Step 1: Process the item “e” in the header table H by the

following steps 2-3.
Step 2: Append item “e” to the current base-itemset

(which is initialized as null), and generates a new
frequent itemset {e}.

Step 3: Scan the branches containing the node “e” to
create sub header table:
Substep 3.1: In Figure 2(e), there are 2 nodes “e”.

From the path “root-d-b-a-e” and Table 2, the
expected support numbers of itemsets {ed}, {eb}

and {ea} are calculated as 0.56 (0.7*0.8), 0.49
(0.7*0.7) and 0.665 (0.7*0.95), respectively;
from the path “root-d-c-e”, the expected
supports of itemset {ed} and {ec} are
calculated as 0.7 (0.4*0.85+0.6*0.6) and 0.83
(0.4*0.8+0.6*0.85).

Substep 3.2: Because the total expected support
numbers of itemset {ed} is bigger than 1.2, the
sub header table is not null, create a sub tree
(prefix tree or conditional tree) for the base-
itemset {e}, and get a new frequent itemset
{ed}.

SubStep 3.3: Remove the item “e” from the base-
itemset, pass the Tail_info of nodes “e” to their
parents, and modify Tail_info.len as
Tail_info.len -1; the result is shown in Figure
3(a).

Step 4: Process the next item “c” in the header table H by
the following steps 5-6.

Step 5: Append item “c” to base-itemset, and get a new
frequent itemset {c}.

Step 6: Scan the branches containing node “c” to create
the sub header table:
Substep 6.1: In Figure 3(a), there are 2 nodes “c”.

From the path “root-d-c” and Table 2, the
expected support numbers of itemset {cd} is
calculated as 1.19 (0.8*0.85+0.85*0.6); from
the path “root-b-c”, the expected support of
itemset {cb} is calculated as 0.455 (0.65*0.7).

Substep 6.2: Because the total expected support
numbers of itemsets {cd} and {cb} are smaller
than 1.2, the sub header table is null.

SubStep 6.3: Remove the item “c” from the base-
itemset, pass the Tail_info of nodes “c” to their
parents; the result is shown in Figure 3(b).

Step 7: Process the next item “a” in the header table in
Figure 2(a) as the following steps 8-10.

Step 8: Append item “a” to the base-itemset, and get a
new frequent itemset {a}.

Step 9: Scan the branches containing node “a” to create
the sub header table:
Substep 9.1: In Figure 3(b), there is one node “a”.

From the path “root-d-b-a” and Table 2, the
expected support numbers of itemsets {ad} and
{ab} are calculated as 2.065
(0.8*0.9+0.9*0.65+0.95*0.8) and 1.99
(0.8*0.7+0.9*0.85+0.95*0.7).

Substep 9.2: Because the total expected support
numbers of itemsets {ad} and {ab} are not
smaller than 1.2, the sub header table subH is
{d:2.065:3, b:1.99:3}.

Step 10: Create a sub tree for the base-itemset {a} by the
following substeps:
Substep 10.1: Initially set the root node of the sub

tree subT as null.
Substep 10.2: Get the itemset {db} from the tail-

node-itemset of the tail node “a” in Figure 3(b).
Substep 10.3: Sort the itemset {db} in the order of

the header table subH.
Substep 10.4: Make a copy of Tail_info.Arr_ind,

1422 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

and denote it as arr_ind={1, 4, 5}.
Substep 10.5: Get the list indexes (original

sequential ID in a list) of items “d” and “b” in
the list ProArr[1], which are 1 and 2
respectively, and denote it as item_ind={1, 2}.

Substep 10.6: Get the probability values of itemset
{a} in ProArr[1] and ProArr[4] and ProArr[5]
respectively, and denote them as bp={0.8, 0.9,
0.95}; this is the corresponding base
probabilities in the sub tree subT.

Substep 10.7: Add the sorted itemset {db} to subT;
maintain arr_ind, item_ind, bp and the length
of the itemset {db} to the tail node in subT; the
result is shown in Figure 3(c).

Substep 10.8: Process the tree subT recursively, and
get a new sub tree for the base-itemset {ab}, as
shown in Figure 3(d). Lastly, get frequent
itemsets {ab}, {abd} and {ad} when processing
the sub tree of itemset {a}.

Step 11: Go on processing the remaining items in header
table H.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the
proposed algorithm AT-Mine.

Summarizing the related works in Section 3, we can
conclude that the algorithm MBP is the state-of-the-art
algorithm employing the level-wise approach, UP-
Growth is the state-of-the-art algorithm employing the
pattern-growth approach and CUFP-Mine is a new
proposed algorithm. So we compare AT-Mine with the
algorithms UF-Growth, CUFP-Mine and MBP on both
types of datasets: the sparse transaction datasets and
dense transaction datasets. All algorithms were written in
Java programming language. The configuration of the
testing platform is as follows: Windows XP operating
system, 2G Memory, Intel(R) Core(TM) i3-2310 CPU @
2.10 GHz; Java heap size is 1G.

Table 3 shows the characteristics of 4 datasets used in

our experiments. “|D|” represents the total number of
transactions; “|I|” represents the total number of distinct
items; “ML” represents the mean length of all transaction
itemsets; “SD” represents the degree of sparsity or
density. The synthetic dataset T20I6D300K came from
the IBM Data Generator [1] and the datasets kosarak,
connect and mushroom were obtained from FIMI
Repository [33]; These four datasets originally do not
provide probability values for each item of each

transaction itemset; as suggested by literatures [23, 25, 28,
29], we assign a existential probability of range (0, 1] to
each item. The runnable programs and testing datasets
can be downloaded from the following address:
http://code.google.com/p/at-tree/downloads/list.

A. Evaluation on Sparse Datasets

Tables 4-5 show the total number of tree nodes
generated by AT-Mine, UF-Growth and CUFP, and the
number of candidate itemsets generated by MBP,
respectively, on the sparse datasets. As shown in Tables
4-5, UF-Growth creates much more tree nodes than AT-
Mine. This is because that UF-Growth just merges the
nodes that have the same item name and the same
probability. CUFP-Mine is out of memory on these two
sparse datasets because it generates too many supersets;
UF-Growth is out of memory on kosarak when the
threshold is set 0.01% because it generates too many tree
nodes; MBP is out of memory when the threshold is set
0.03% because it generates too many candidates. Thus we
can infer that AT-Mine has a better performance than
other three algorithms in terms of memory usage.

0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05
10

100

1000

10000

R
u

n
n

in
g

tim
e

 (
s)

Minimum expected support threshold (%)

 AT-Mine
 MBP
 UF-Growth
 CUFP-Mine (Memory Overflow)

TABLE V.
DETAILS ANALYSIS ON THE DATASET KOSARAK

η (%)
trees nodes (#) candidates (#)

AT-Mine UF-Growth MBP
0.1 2,020,568 14,471,137 172,399

0.09 2,208,231 15,724,272 252,348
0.07 2,542,835 19,210,453 419,272
0.05 3,058,380 24,651,644 793,554
0.03 4,580,785 38,083,667

Memory
Overflow 0.01 18,829,877

Memory
Overflow

TABLE IV.
DETAILS ANALYSIS ON THE DATASET T20I6D300K

η (%)
trees nodes (#) candidates (#)

AT-Mine UF-Growth MBP
0.15 4,978,327 7,556,250 374,271
0.13 5,101,077 8,629,034 391,413
0.11 5,438,410 10,282,811 419,770
0.09 6,310,746 12,978,032 467,217
0.07 8,474,124 17,477,552 594,050
0.05 13,189,900 24,946,139 999,799

TABLE III.
DATASET CHARACTERISTICS

Dataset |D| |I| ML SD (%) Type
T20I6D
300K

300,000 1000 20 2 sparse

kosarak 990,002 41,271 8 0.02 sparse
connect 67,557 129 43 33.33 dense

mushroom 8,124 119 23 19.33 dense

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1423

© 2013 ACADEMY PUBLISHER

(a) On the dataset T20I6D300K

0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01
10

100

1000

R
u

nn
in

g
 ti

m
e

(s
)

Minimum expected support threshold (%)

 AT-Mine
 MBP
 UF-Growth
 CUFP-Mine (Memory Overflow)

(b) On the dataset kosarak

Figure 4. Running time comparison on sparse datasets

Figure 4 shows the running time of three algorithms
on two sparse datasets. CUFP-Mine is out of memory on
these two sparse datasets. As shown in Figure 4, the time
performance of our algorithm outperforms UF-Growth,
MBP and CUFP-Mine under different minimum expected
support thresholds. This is because that CUFP-Mine
generates too many supersets and UF-Growth generates
too many tree nodes and MBP generates many candidates,
as shown in Tables 4-5. The time performance of MBP is
dependent on the length of candidate itemsets, the length
of transaction itemsets, and the size of dataset: the higher
these values are, the lower the time performance of MBP
will be. Thus the time performance of MBP decreases
sharply with the decreasing of the threshold. Figure 4
indicates that AT-Mine has achieved a better time
performance; moreover, its time performance is more
stable on sparse dataset.

B. Evaluation on Dense Datasets

In this section, we test the performance of our
proposed algorithm on dense datasets connect and
mushroom.

Tables 6-7 show the total number of tree nodes
generated by AT-Mine and UF-Growth, and the number
of candidate itemsets generated by MBP, on the dense
datasets. As shown in Tables 6-7, UF-Growth creates too
many tree nodes. For example, on the dataset connect,
UF-Growth generates 163,809,762 nodes while AT-Mine
generates 153,913 nodes when the minimum expected
support threshold is 10%. This is because that UF-
Growth just merges the nodes that have the same item
name as well as the same probability, and it is a very
dense and long dataset. Thus we can infer that our
algorithm has achieved better performance than UF-
Growth in terms of memory usage. MBP not only
maintains candidates, but also maintain the dataset while
our algorithms only maintain tree nodes using compact
trees.

Figure 5 shows the running time of three algorithms
on the dense datasets connect and mushroom. CUFP-
Mine is out of memory on these two dense datasets. As
shown in Figure 5, the time performance of our algorithm
prevails over UF-Growth, MBP and CUFP-Mine under
different minimum expected support thresholds. This is
because that CUFP-Mine generates too many supersets
and UF-Growth generates too many tree nodes and MBP
generates many candidates, as shown in Tables 6-7.
Figure 5 shows that the time performance of AT-Mine
obviously outperforms that of other algorithms on these
two dense datasets; moreover, our time performance is
also more stable on the dense datasets.

15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0
10

100

1000

10000

R
u

nn
in

g
 ti

m
e

(s
)

Minimum expected support threshold (%)

 AT-Mine
 MBP
 UF-Growth
 CUFP-Mine (Memory Overflow)

(a) On the dataset connect

TABLE VI.
DETAILS ANALYSIS ON THE DATASET CONNECT

η (%) trees nodes (#) candidates (#)
AT-Mine UF-Growth MBP

15.0 36,823 32,204,274 5,981
14.0 89,118 33,739,243 6,962
13.0 98,842 35,332,360 7,786
12.0 116,290 48,046,639 8,565
11.0 130,423 106,626,725 12,754
10.0 153,913 163,809,762 19,162

TABLE VII.
DETAILS ANALYSIS ON THE DATASET MUSHROOM

η (%) trees nodes (#) candidates(#)
AT-Mine UF-Growth MBP

7.0 12,041 1,011,721 1,917
6.0 14,420 1,344,369 2,501
5.0 16,243 1,947,609 3,460
4.0 18,685 2,760,249 5,024
3.0 25,884 4,125,745 8,222
2.0 37,395 8,076,099 16,764

1424 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

 AT-Mine
 MBP
 UF-Growth
 CUFP-Mine (Memory Overflow)

7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0

0

10

20

30

40

50

60

R
un

ni
ng

 ti
m

e
(s

)

Minimum expected support threshold (%)
(b) On the dataset mushroom

Figure 5. Running time comparison on dense datasets

VI. CONCLUSION AND DISCUSSION

In this paper, we propose a novel tree structure named
AT-Tree to maintain transaction itemsets of an uncertain
dataset, and a corresponding algorithm named AT-Mine
to mine frequent itemsets. AT-Mine requires two scans of
dataset to create an AT-Tree. In the first scan, it creates a
header table to maintain sorted frequent items in the
descending order of support numbers of items. In the
second scan, it maintains probability values of frequent
items in each transaction itemsets to an array; it inserts
frequent items in each transaction itemsets to an AT-Tree;
it maintains probability information of each transaction
itemsets to the tail node. So the AT-Tree is as compact as
the original FP-Tree, and it does not lose the probability
information of each transaction itemsets. Thus, AT-Mine
can find frequent itemsets from AT-Tree without
additional scan of dataset.

Experiments were performed on sparse and dense
datasets. We compared our proposed algorithm with
some state-of-the-art level-wise and pattern-growth
algorithms. The experimental results show that the
proposed algorithm has better performance on dense
datasets and large sparse datasets, and their time
performance is stable on both dense and sparse datasets
along with the decreasing of the minimum expected
support threshold.

REFERENCES

 [1] R. AGrawal and R. Srikant, Fast algorithms for mining
association rules in large databases, in International
Conference on Very Large Data Bases. 1994, pp.487-487.

[2] J. Han, J. Pei and Y. Yin, Mining frequent patterns without
candidate generation, in ACM SIGMOD International
Conference on Management of Data. 2000, pp.1-12.

[3] G. Grahne and J. Zhu, "Fast algorithms for frequent itemset
mining using FP-trees," IEEE Transactions on Knowledge
and Data Engineering, Vol.17, no.10, pp.1347-1362, 2005.

[4] M. Song and S. Rajasekaran, "A transaction mapping
algorithm for frequent itemsets mining," IEEE
Transactions on Knowledge and Data Engineering, Vol.18,
no.4, pp.472-481, 2006.

[5] J. Pei, et al., "H-Mine: Fast and space-preserving frequent
pattern mining in a large databases," IIE Transactions
(Institute of Industrial Engineers), Vol.39, no.6, pp.593-
605, 2007.

[6] P. Paranjape-Voditel and U. Deshpande, "A DIC-based

distributed algorithm for frequent itemset generation,"
Journal of Software, Vol.6, no.2, pp.306-313, 2011.

[7] L. Zhou and Z. Zhang, "Efficient mining algorithms of
finding frequent datasets," Journal of Software, Vol.7, no.4,
pp.727-732, 2012.

[8] R.C. Agarwal, C.C. Aggarwal and V.V.V. Prasad, Depth
first generation of long patterns, in ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining. 2001, pp.108-118.

[9] R.J. Bayardo Jr., Efficiently mining long patterns from
databases, in ACM SIGMOD International Conference on
Management of Data. 1998, pp.85-93.

[10] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T.
Yiu, "MAFIA: A maximal frequent itemset algorithm,"
IEEE Transactions on Knowledge and Data Engineering,
Vol.17, no.11, pp.1490-1504, 2005.

[11] D.I. Lin and Z.M. Kedem, "Pincer search: A new algorithm
for discovering the maximum frequent set," IEEE
Transactions on Knowledge and Data Engineering, Vol.3,
no.14, pp.553- 566, 2002.

[12] H. Li, N. Zhang and Z. Chen, "A simple but effective
maximal frequent itemset mining algorithm over streams,"
Journal of Software, Vol.7, no.1, pp.25-32, 2012.

[13] J. Wang, J. Han and J. Pei, CLOSET+: Searching for the
best strategies for mining frequent closed itemsets, in ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD '03). 2003, pp.236-245.

[14] B. Vo, T. Hong and B. Le, "DBV-Miner: A Dynamic Bit-
Vector approach for fast mining frequent closed itemsets,"
Expert Systems with Applications, Vol.39, no.8, pp.7196-
7206, 2012.

[15] J. Wang, J. Han, Y. Lu, and P. Tzvetkov, "TFP: An
efficient algorithm for mining top-k frequent closed
itemsets," IEEE Transactions on Knowledge and Data
Engineering, Vol.17, no.5, pp.652-664, 2005.

[16] C.H. Wei and R. Gob, "Discovering patterns in categorical
time series using IFS," Computational Statistics and Data
Analysis, Vol.52, no.9, pp.4369-4379, 2008.

[17] J.Y. Hu and A.M. Silovic, "High-utility pattern mining: A
method for discovery of high-utility item sets," PATTERN
RECOGNITION, Vol.40, no.11, pp.3317-3324, 2007.

[18] C.F. Ahmed, S.K. Tanbeer, B.S. Jeong, and Y.K. Lee,
"Efficient Tree Structures for High Utility Pattern Mining
in Incremental Databases," IEEE Transactions on
Knowledge and Data Engineering, Vol.21, no.12, pp.1708-
1721, 2009.

[19] V.S. Tseng, C.W. Wu, B.E. Shie, and P.S. Yu. UP-Growth:
An efficient algorithm for high utility itemset mining, in
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2010, pp.253-262.

[20] V.S. Tseng, B. Shie, C. Wu, and P.S. Yu, "Efficient
Algorithms for Mining High Utility Itemsets from
Transactional Databases," IEEE Transactions on
Knowledge and Data Engineering, no.99(PrePrints), 2012.

[21] A. Prasad Sistla, O. Wolfson, S. Chamberlain, and S. Dao,
"Querying the uncertain position of moving objects,"
Vol.1399, pp.310-337, 1998.

[22] N. Khoussainova, M. Balazinska and D. Suciu, Towards
correcting input data errors probabilistically using integrity
constraints, in MobiDE 2006: 5th ACM International
Workshop on Data Engineering for Wireless and Mobile
Access. 2006, pp.43-50.

[23] C.W. Lin and T.P. Hong, "A new mining approach for
uncertain databases using CUFP trees," Expert Systems
with Applications, Vol.39(4), pp.4084–4093, 2012.

[24] C.C. Aggarwal and P.S. Yu, "A survey of uncertain data
algorithms and applications," Knowledge and Data

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1425

© 2013 ACADEMY PUBLISHER

Engineering, IEEE Transactions on, Vol.21, no.5, pp.609-
623, 2009.

[25] C.K. Leung, M.A.F. Mateo and D.A. Brajczuk, A tree-
based approach for frequent pattern mining from uncertain
data, in 12th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2008). 2008, pp.653-
661.

[26] X. Sun, L. Lim and S. Wang, "An approximation algorithm
of mining frequent itemsets from uncertain dataset,"
International Journal of Advancements in Computing
Technology, Vol.4, no.3, pp.42-49, 2012.

[27] T. Calders, C. Garboni and B. Goethals, Approximation of
frequentness probability of itemsets in uncertain data, in
IEEE International Conference on Data Mining (ICDM
2010). 2010, pp.749-754.

[28] L. Wang, D.W. Cheung, R. Cheng, S. Lee, and X. Yang,
"Efficient Mining of Frequent Itemsets on Large Uncertain
Databases," IEEE Transactions on Knowledge and Data
Engineering, no.99(PrePrints), 2011.

[29] C.K. Leung, C.L. Carmichael and B. Hao, Efficient mining
of frequent patterns from uncertain data, in International
Conference on Data Mining Workshops (ICDM Workshops
2007). 2007, pp.489-494.

[30] C.C. Aggarwal, Y. Li, J. Wang, and J. Wang, Frequent
pattern mining with uncertain data, in 15th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD '09). 2009, pp.29-37.

[31] C. Chui, B. Kao and E. Hung, Mining frequent itemsets
from uncertain data, in 11th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD 2007).
2007, pp.47-58.

[32] Y. Liu, "Mining frequent patterns from univariate uncertain
data," Data and Knowledge Engineering, Vol.71, no.1,
pp.47-68, 2012.

[33] B. Goethals. Frequent itemset mining dataset repository,
http://fimi.cs.helsinki.fi/data/. Accessed June 2011,2011.

1426 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

