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Abstract—Frequent itemset/pattern mining (FIM) over 
uncertain transaction dataset is a fundamental task in data 
mining. In this paper, we study the problem of FIM over 
uncertain datasets. There are two main approaches for FIM: 
the level-wise approach and the pattern-growth approach. 
The level-wise approach requires multiple scans of dataset 
and generates candidate itemsets. The pattern-growth 
approach requires a large amount of memory and 
computation time to process tree nodes because the current 
algorithms for uncertain datasets cannot create a tree as 
compact as the original FP-Tree. In this paper, we propose 
an array based tail node tree structure (namely AT-Tree) to 
maintain transaction itemsets, and a pattern-growth based 
algorithm named AT-Mine for FIM over uncertain dataset. 
AT-Tree is created by two scans of dataset and it is as 
compact as the original FP-Tree. AT-Mine mines frequent 
itemsets from AT-Tree without additional scan of dataset. 
We evaluate our algorithm using sparse and dense datasets; 
the experimental results show that our algorithm has 
achieved better performance than the state-of-the-art FIM 
algorithms on uncertain transaction datasets, especially for 
small minimum expected support number. 
 
Index Terms—data mining, frequent itemset, frequent 
pattern, uncertain dataset 

I. INTRODUCTION 

Frequent itemsets mining (FIM) over transaction 
dataset is an important and common topic in data mining. 
The algorithm Apriori [1] was first proposed to discover 
frequent itemsets from market basket data. Since then, 
FIM algorithms were constantly proposed for various 
application domains, such as those for complete frequent 
itemsets [1, 2, 3, 4, 5, 6, 7], for maximal frequent itemsets 
[8, 9, 10, 11, 12], for closed frequent itemsets [13, 14, 15] 
and for frequent sequential patterns [16] and high uitlity 
itemsets [17, 18, 19, 20]. These algorithms concern 
precise transaction datasets, that is, all items can be 
described with a certain value. However, many real-world 
applications generate or require uncertain transaction 
datasets in which items can only be described with an 
existential probability. For example, some diseases can 

not be definitely diagnosed by a set of symptons - they 
can only be ascertained as a probability value; the 
locations of a moving object obtained through RFID or 
GPS devices are not precise [21, 22]; the shopping habits 
mined from an e-commerce website are also probability 
values for predicting what a customer will buy in the 
future.  

 
Table 1 shows an example of uncertain transaction 

dataset, each transaction of which represents that a 
customer might buy a certain item with a probability. The 
value associated with each item is called the existential 
probability of the item. For instance, the first transaction 
T1 in Table 1 shows that a customer might purchase “a”, 
“b”, “d” and “f” with 80%, 70%, 90% and 50% chances 
in the future respectively.  

In recent years, FIM over uncertain datasets has 
become an important topic in data mining [23, 24, 25, 26, 
27, 28, 29, 30, 31, 32]. The existing algorithms can be 
classified into two main categories: the level-wise 
approach and the pattern-growth approach. The 
algorithms U-Apriori [31], MBP [28] and IMBP [26] 
employ the level-wise approach, and all these algorithms 
generate candidates and require multiple scans of the 
dataset. The algorithms UH-Mine [30], UFP-Growth [30], 
and UF-Growth [25, 29] employ the pattern-growth 
approach. UH-Mine is based on the algorithm H-Mine [5]; 
UF-Growth is based on the classical algorithm FP-
Growth [2] and employs the same method as FP-Growth 
for mining frequent itemsets on uncertain transaction 
itemsets. Both UH-Mine and UF-Growth cannot create a 
tree as compact as FP-Tree for maintaining transaction 
itemsets, thus they require a large amount of memory and 
computational time to process tree nodes, especially on 

TABLE I.   
AN EXAMPLE OF UNCERTAIN DATASET 

TID Transaction itemset 

T1 (a: 0.8), (b: 0.7), (d: 0.9), (f: 0.5) 

T2 (c: 0.8), (d: 0.85), (e: 0.4) 

T3 (c: 0.85), (d: 0.6), (e: 0.6) 

T4 (a: 0.9) , (b: 0.85), (d: 0.65) 

T5 (a: 0.95), (b: 0.7), (d: 0.8) , (e: 0.7)
T6 (b: 0.7), (c: 0.65), (f: 0.45) 
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large datasets. UFP-Growth [30] also builds the UFP-
Tree in the same manner as FP-Growth, and the UFP-
Tree is as compact as the original FP-Tree. However 
UFP-Mine generates candidates, and identifies frequent 
itemsets by additional scan of dataset. 

So our thought is to build a tree as compact as the 
original FP-Tree and avoid generating candidates. To 
achieve this goal, we propose a tree structure named AT-
Tree (Array based Tail node Tree) and a new algorithm 
named AT-Mine. AT-Mine needs just two scans of 
dataset. In the first scan, it finds frequent items and 
arranges them in descending order of support number. In 
the second scan, it constructs an AT-Tree using 
transaction itemsets like the method of FP-Growth, while 
maintains the probability information of each transaction 
to a tail node and an array. Then AT-Mine can directly 
mine frequent itemsets from AT-Tree without additional 
scan of datasets. The experimental results show that AT-
Mine is more efficient than the algorithms MBP, UF-
Growth and CUFP-Mine. 

The contributions of this paper are summarized as 
follows: 

(1) We propose a new tree structure named AT-Tree 
(Array based Tail node Tree) for maintaining 
important information related to an uncertain 
transaction dataset; 

(2) We also give an algorithm named AT-Mine for 
FIM over uncertain transaction datasets based on 
AT-Tree; 

(3) Both sparse and dense datasets are used in our 
experiments to compare the performance of the 
proposed algorithm against the state-of-the-art 
algorithms based on level-wise approach and 
pattern-growth approach, respectively. 

The rest of this paper is organized as follows: Section 
2 is the description of the problem and definitions; 
Section 3 describes related works; Section 4 describes our 
algorithms AT-Mine; Section 5 shows the experimental 
results; and Section 6 gives the conclusion and discussion. 

II.  PROBLEM DEFINITIONS 

Let D = {T1, T2, …, Tn} be an uncertain transaction 
dataset which contains n transaction itemsets and m 
distinct items, i.e. I= {i1, i2, …, im}. Each transaction 
itemset is represented as {i1:p1, i2:p2, …, iv:pv}, where {i1, 
i2, …, iv} is a subset of I, and pu (1≤u≤v) is the existential 
probability of item iu in a transaction itemset. The size of 
dataset D is the number of transaction itemsets and is 
denoted as |D|. An itemset X = {i1, i2, …, ik}, which 
contains k distinct items, is called a k-itemset, and k is the 
length of the itemset X.  

We adopt some definitions similar to those presented 
in the previous works [1, 23, 28, 29, 30, 31, 32]. 
Definition 1: The support number (SN) of an itemset X in 
a transaction dataset is defined by the number of 
transaction itemsets containing X. 
Definition 2: The probability of an item iu in transaction 
Td is denoted as p(iu,Td) and is defined by 

                             ( , )u d up i T p=                                  (1) 

For example, in Table 1, p({a},T1) = 0.8, p({b},T1) = 
0.7, p({d},T1) = 0.9, p({f},T1) = 0.5. 
Definition 3: The probability of an itemset X in a 
transaction Td is denoted as p(X, Td) and is defined by 

                 
,

( , ) ( , )
u d

d u di X X T
p X T p i T

∈ ⊂
=∏              

(2) 
 For example, in Table 1, p({a, b},T1) = 0.8×0.7 = 0.56, 

p({a, b},T4) = 0.9×0.85=0.765, p({a, b},T5) = 
0.95×0.7=0.665. 
Definition 4: The expected support number (expSN) of 
an itemset X in an uncertain transaction dataset is denoted 
as expSN(X) and is defined by 

                 
,

( ) ( , )
d d

dT X T D
expSN X P X T

⊇ ∈
=∑           

(3) 
 For example, expSN({a, b}) = p({a, b},T1) + p({a, 

b},T4) + p({a, b},T5) = 0.56+0.765+ 0.665 = 1.99. 
Definition 5: Given a dataset D, the minimum expected 
support threshold η  is a predefined percentage of |D|; 

correspondingly, the minimum expected support number 
(minExpSN) is defined by 

| |minExpSN D η= ×                         (4) 

In the papers [23, 25, 26, 29, 30, 31], an itemset X is 
called a frequent itemset if its expected support number is 
not less than the value minExpSN. Mining frequent 
itemsets from an uncertain transaction dataset means 
discovering all itemsets whose expected support numbers 
are not less than the value minExpSN.   
Definition 6: The minimum support threshold λ  is a 
predefined percentage of |D|; correspondingly, the 
minimum support number (minSN) in a dataset D is 
defined by 

| |minSN D λ= ×                                     (5) 

III. RELATED WORK 

Most of algorithms of FIM on uncertain datasets can 
be classified into two main categories: the level-wise 
approach and the pattern-growth approach. The main idea 
of the level-wise algorithms comes from Apriori [1] 
which is the first level-wise algorithm for FIM. It is to 
iteratively generate candidate (k+1)-itemsets from 
combinations of frequent k-itemsets (k≥1), and calculate 
expected support numbers of candidates by one scan of 
dataset. Its main shortcoming is that it needs multiple 
scans of dataset and generates candidate itemsets.  

The main idea of the pattern-growth approach comes 
from the algorithm FP-Growth [2] which is the first 
pattern-growth algorithm. It is also an iteration approach, 
but it does not mine frequent itemsets by the combination 
method like Apriori. It finds all frequent items under the 
condition of frequent k-itemset X, and generates frequent 
(k+1)-itemsets by the union of each one of those frequent 
items and X (k≥1). It maintains all transaction itemsets to 
a FP-Tree [2] with two scans of dataset. It will generate a 
conditional tree (which is also called prefix FP-Tree or 
sub FP-Tree) for each frequent itemset X. Thus it will 
find all frequent items under the condition of X by 
scanning this conditional tree instead of the whole dataset. 
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FP-Tree is created by the following rules: (1) transaction 
itemsets are rearranged in descending order of support 
numbers of items and are inserted to a FP-Tree; (2) 
transaction itemsets will share the same node when the 
corresponding items are the same. 

A.  Level-wise Approach 

In 2007, the algorithm U-Apriori was proposed for 
discovering frequent itemsets from uncertain datasets 
[31]. It is based on the algorithm Apriori. U-Apriori is a 
classical level-wise algorithm for FIM on uncertain 
datasets. It starts by finding all frequent 1-itemsets with 
one scan of dataset. Then in each iteration, it first 
generates candidate (k+1)-itemsets using frequent k-
itemsets (k ≥1), and then identifies real frequent itemsets 
from candidates with one scan of dataset. The iteration 
goes on until there is no new candidate. One important 
shortcoming of U-Apriori is that it generates candidates 
and requires multiple scans of datasets; and the situation 
may become worse with the increase of the number of 
long transaction itemsets or decrease of the minimum 
expected support threshold.  

In 2011, Wang et al. [28] proposed the algorithm 
MBP for FIM on uncertain datasets. The authors 
proposed one strategy to speed up the calculation of the 
expected support number of a candidate itemset: MBP 
will stop calculating the expected support number of a 
candidate itemset if the itemset can be determined to be 
frequent or infrequent in advance. Thus it can achieve a 
better performance than the algorithm U-Apriori. 

In 2012, Sun et al. [26] modified the algorithm MBP, 
and gave an approximate algorithm (called IMBP) for 
FIM on uncertain datasets. The performance of IMBP 
outperforms MBP in terms of running time and memory 
usage. However its accuracy is not stable, and becomes 
lower on dense datasets. 

B.  Pattern-growth Approach 

In 2007, Leung et al. [29] proposed a tree-based 
algorithm UF-Growth for FIM on uncertain transaction 
dataset. Firstly, it also constructs a UF-Tree using 
transaction itemsets like the method of FP-Growth; 
secondly, it mines frequent itemsets from the UF-Tree by 
the pattern-growth approach. It creates a UF-Tree by two 
scans of dataset. In the first scan, it finds all frequent 1-
itemsets, arranges frequent 1-itemsets in descending order 
of support numbers and maintains them in a header table. 
In the second scan, removes infrequent items from each 
transaction itemset, re-arranges the remaining items of 
each transaction itemset in order of the header table, and 
inserts the sorted itemset to a global UF-Tree. It only 
merges nodes that have the same item and the same 
probability when transaction itemsets are inserted to a 
UF-Tree. For example, for two transaction itemsets 
{a:0.50, b:0.70, c:0.23} and {a:0.55, b:0.80, c:0.23},  
they will not share the node “a” when they are inserted to 
a UF-Tree by lexicographic order because the 
probabilities of item “a” are not equal in these two 
itemsets.  Thus UF-Growth requires a large amount of 
memory to store UF-Tree. 

Leung et al. [25] improved the algorithm UF-Growth 

to reduce the size of UF-Tree. The improved algorithm 
considers that the items with the same k-digit value after 
the decimal point have the same probability. For example, 
when two transaction itemsets {a:0.50, b:0.70, c:0.23} 
and {a:0.55, b:0.80, c:0.23} are inserted to a UF-Tree 
by lexicographic order, they will share the node “a” if k is 
set as 1 because both probability values of the two item 
“a” are considered to be 0.5; if k is set as 2, they will not 
share the node “a” because the probabilities of “a” are 
0.50 and 0.55 respectively. The smaller k is, the lesser 
memory the improved algorithm requires. However, the 
improved algorithm still cannot build a UF-Tree as 
compact as the original FP-Tree; moreover, it may lose 
some frequent itemsets. 

UH-Mine [30] is a pattern-growth algorithm. The 
main difference between UH-Mine and UF-Growth is 
that UF-Growth adopts a prefix tree structure while UH-
Mine adopts a hyperlinked array based structure called H-
struct [5] (which can also be considered as a tree). UH-
Mine requires two scans of dataset for creating the 
structure H-struct: in the first scan, it creates a header 
table which maintains sorted frequent 1-items; in the 
second scan, it removes infrequent items from each 
transaction itemset, re-arranges the remaining items in the 
order of the header table, and inserts the sorted 
transaction itemset into an H-struct tree without sharing 
nodes with other transaction itemsets. The header table 
maintains the hyperlink of all nodes with the same item 
name when the itemsets are inserted into an H-struct tree. 
It will achieve a good performance on small datasets. 
However, the H-struct does not share any node and is not 
a compact tree, and this will impact the performance of 
FIM, especially for large datasets. 

The authors of the paper [30] also extend the classical 
algorithm FP-Growth to get the algorithm UFP-Growth 
for FIM on uncertain datasets. UFP-Growth firstly 
generates candidates by the UFP-Tree, and then identifies 
frequent itemsets through additional scan of datasets. Its 
performance is also impacted by the generation of 
candidate itemsets. 

C. The Algorithm CUFP-Mine 

In 2011, Lin et al. [23] proposed the algorithm CUFP-
Mine for FIM on uncertain transaction datasets. CUFP-
Mine creates a tree named CUFP-Tree to maintain 
transaction itemsets. A CUFP-Tree is created by two 
scans of dataset. In the first scan, it creates a header table 
for maintaining sorted frequent 1-itemsets; in the second 
scan, when an item Zi in transaction itemset Z ({Z1, Z2,…, 
Zi,.., Zm}) is inserted into a tree, CUFP-Mine generates all 
supersets of item Zi using items Z1, Z2,…, Zi, and 
maintains all supersets and their corresponding 
probabilities to a node corresponding to Zi. CUFP-Mine 
only accumulates the probability of each superset if there 
is a corresponding node on the tree for item Zi. The idea 
of CUFP-Mine is that it finds frequent itemsets through 
scanning supersets of each node and calculating expected 
support number of each superset. CUFP-Mine generates 
all combinations of items in an itemset, and maintains 
these combinations to tree nodes. Thus CUFP-Mine 
requires a large amount of computation time and memory 
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when the length of itemsets is not very short or on large 
datasets. 

IV. THE ALGORITHM AT-MINE  

The proposed algorithm AT-Mine mainly consists of 
two procedures: (1) creating an AT-Tree; (2) mining 
frequent itemsets from the AT-Tree. We describe the 
structure of an AT-Tree in Section 4.1, give an example 
of the construction of an AT-Tree in Section 4.2, and 
elaborate the algorithm AT-Mine with an example in 
Section 4.3. 

A. Structure of an AT-Tree 

Definition 9: Let itemset X = {i1, i2, i3, …, iu} be a sorted 
itemset, and the item iu is called tail-item of X. When the 
itemset X is inserted into a tree T in accordance with its 
items’ order, the node N on the tree that represents this 
tail-item is defined as tail node of itemset X, and other 
nodes that represent items i1, i2, …, iu-1 are defined as 
normal nodes. The itemset X is called tail-node-itemset 
for node N.  
Definition 10: Let an itemset X contain itemset Y. When 
itemset X is added to a prefix tree of itemset Y, the 
probability of itemset Y in itemset X, p(Y, X), is defined 
as the base probability of itemset X on the tree T, and is 
denoted as BP(X, Y): 

( ), ( , )BP Y X p Y X=                        (8) 

 
Figure 1.  Structure of nodes on an AT-Tree 

The node structure on an AT-Tree is illustrated in 
Figure 1. There are two types of nodes: one is normal 
node, as shown in Figure 1(a), where Name is the item 
name of each node; the other type is tail node, as shown 
in Figure 1(b), where Tail_info is the supplemental 
information that includes 4 fields: (1) bp: a list that keeps 
base probability values of all tail-node-itemsets; (2) len: 
the length of the tail-node-itemset; (3) Arr_ind: a list of 
index values of an array each element of which records 
probability values of items in each sorted transaction 
itemset (see Substep 5.2 in Section 4.2.1 and Step 5 in 
Section 4.2.2, etc.); (4) Item_ind: a list of index values of 
an array that records probability values of each item in a 
sorted transaction  itemset (see Substep 10.5 and 10.7 in 
Section 4.3.2, etc., Item_ind is just used in a sub AT-
Tree). 

B. Construction of an AT-Tree  

The structure of AT-Tree is designed to efficiently 
store the related information on tail nodes. It is 
constructed by two scans of dataset. In the first scan, a 
header table is created to maintain sorted frequent items. 

In the second scan, the probability values of frequent 
items in each transaction itemsets are stored to a list 
according to the order of the header table; the list is then 
added to an array (and its corresponding sequence 
number in the array is denoted as ID); the frequent items 
in each transaction itemset are inserted to an AT-Tree 
according to the order of the header table; the length of 
the itemset and the number ID are stored to the 
corresponding tail node. When the transaction itemsets 
are added to an AT-Tree, they are rearranged in 
descending order of support numbers of items, and share 
the same node/nodes if their prefix items/itemsets are 
identical. Thus the AT-Tree is as compact as the original 
FP-Tree. Moreover, AT-Tree does not lose probability 
information with respect to the distinct probability values 
of the transaction itemsets. 

B.1 The construction algorithm of a global AT-Tree 

A global AT-Tree is the first AT-Tree that maintains 
itemset information of the whole dataset. The 
construction algorithm is described as follows: 

CreateTree(D, η ) 

INPUT: An uncertain database D consisting of n 
transaction itemsets and a predefined minimum expected 
support threshold η . 

OUTPUT: An AT-Tree T. 
Step 1: Calculate the minimum expected support number 

minExpSN, i.e. | |minExpSN D η= × ; count the 

expected support number and support number of 
each item by one scan of dataset. 

Step 2: Put those items whose expected support numbers 
are not less than minExpSN to a header table, and 
sort the items in the header table according to the 
descending order of their support numbers; finish 
the algorithm if the header table is null. 

Step 3: Initially set the root node of the AT-Tree T as null. 
Step 4: Remove the items that are not in the header table 

from each transaction itemset, and sort the 
remaining items of each transaction itemset 
according to the order of the header table, and get a 
sorted itemset X. 

Step 5: If the length of itemset X is 0, process the next 
transaction itemset; otherwise insert the itemset X 
into the AT-Tree T by the following substeps: 
Substep 5.1: Store the probability value of each 

item in itemset X sequentially to a list; save the 
list to an array (which is denoted as ProArr); 
the corresponding sequence number of the list 
in the array is denoted as ID. 

Substep 5.2: If there has not been a tail node for the 
itemset X, create a tail node N for this itemset, 
where N.Tail_info.len is the length of itemset X, 
and N.Tail_info.Arr_ind={ID}; otherwise, 
append the sequence number ID to 
N.Tail_info.Arr_ind. 

Step 6: Process the next transaction itemset. 
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Figure 2.  Construction of an AT-Tree 

 

B.2 An Example of Constructing a Global AT-Tree  

The uncertain dataset in Table 1 is used as an example 
here to illustrate the construction of the AT-Tree. This 
dataset concludes 6 transaction itemsets and 6 distinct 
items. The minimum support threshold is set as 20%. 
Step 1: Calculate the minimum expected support number 

as 1.2 (6*20%); count the expected support number 
and support number of each item by one scan of 
database. 

Step 2: Create a header table, as shown in Figure 2(a). 
Each link in the header table records all nodes of a 
corresponding item on a tree (not shown in the 
Figures for simplicity). 

Step 3: Initially set the root node of an AT-Tree as null. 
Step 4: Remove the infrequent item “f” from the 

transaction itemset T1, and sort the remaining items 
according to the order of the header table, the 
resulting is {d:0.9, b:0.7, a:0.8}. 

Step 5: Maintain probability value of each item  to a list 
{0.9, 0.7, 0.8}, and append the list to an array ProArr, 
as shown in Table 2; the corresponding ID of the list in 
the array ProArr is 1; then insert the first sorted 
itemset into the AT-Tree, and the resulting AT-Tree is 
shown in Figure 2(b). On the tail node “a”, “3” 
represents the length of the tail-node-itemset (len), and 
“{1}” represents the index number of the array 
ProArr in Table 2.  

Step 6: Process the next transaction T2, get the sorted 
transaction itemset {d:0.85, c:0.8, e:0.4}. Since the 
path “root-d” can be shared, insert a normal node 

“c” and a tail node “e”. The resulting AT-Tree is 
shown in Figure 2(c). 

Step 7: Process the next transaction T3, get the sorted 
transaction itemset {d:0.6, c:0.85, e:0.6}. Since the 
path “root-d-c-e” can be shared and the node “e” on 
the path is a tail node, just append the corresponding 
ID in ProArr of Table 2 to the Tail_info.Arr_ind of 
the tail node “e”. The resulting AT-Tree is shown in 
Figure 2(d). 

Step 8: Process the remaining transactions one by one. 
The resulting AT-Tree is shown in Figure 2(e).  

C.  Mining Frequent Itemsets from a Global AT-Tree  

After an AT-Tree is constructed, the algorithm AT-
Mine can directly mine frequent itemsets from the tree 
without additional scan of dataset. The details of the 
mining approach are described below. 

C.1 The Mining Algorithm 

The algorithm AT-Mine is similar to the algorithm 
FP-Growth: it creates and processes sub trees (prefix 
trees or conditional trees) recursively. But the condition 
of generating frequent itemsets is different from FP-
Growth. The detailed steps of the mining algorithm are as 
follows: 

Mining (T, H, minExpSN) 
INPUT: An AT-Tree T, a header table H, and a 

minimum expected support number minExpSN. 
OUTPUT: The frequent itemsets (FIs). 

Step 1: Process the items in the header table one by one 
from the last item by the following steps (denote the 
currently processed item as Z). 

Step 2: Append item Z to the current base-itemset (which 
is initialized as null); each new base-itemset is a 
frequent itemset.  

Step 3: Let Z.links in the header table H contain k nodes 
whose item name is Z; we denote these k nodes as N1, 
N2, …, Nk; because item Z is the last one in the 
header table, all these k nodes are tail nodes, i.e., 
each of these nodes contains a Tail_info. 
Substep 3.1: Create a sub header table subH by 

scanning the k branches from these k nodes to 
the root.  

Substep 3.2: If the sub header table is null, go to 
Step 4. 

Substep 3.3: Create sub AT-Tree subTree = 
CreateSubTree(Z.link, subH). 

Substep 3.4: Mining(subTree, subH, minExpSN). 
Step 4: Remove item Z from the base-itemset. 
Step 5: For each of these k nodes (which we denote as Ni, 

1≤i≤k), modify its Tail_info by the following 
substeps: 
Substep 5.1: Alter Ni.Tail_info.len values: 

Ni.Tail_info.len = Ni.Tail_info.len -1. 
Substep 5.2: Move Ni.Tail_info to the parent of 

node Ni.  
Step 6: Process the next item of the header table H. 

Subroutine: CreateSubTree(link, subH) 
INPUT: A list link which records tree nodes with the 

same item name, and a header table subH. 
OUTPUT: An AT-Tree subT. 

TABLE II.   
PROBABILITY LIST (PROARR) 

ID probabilities 
1 {0.9, 0.7, 0.8} 
2 {0.85, 0.8, 0.4} 
3 {0.6, 0.85, 0.6} 
4 {0.65, 0.85, 0.9} 
5 {0.8, 0.7, 0.95, 0.7} 
6 {0.7, 0.65} 

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1421

© 2013 ACADEMY PUBLISHER



 

Step 1: Initially set the root node of the tree subT as null. 
Step 2: Process each node in the list link by the following 

steps (denote the currently processed node as N). 
Step 3: Get the tail-node-itemset of node N (denote it as 

itemset X). 
Step 4: Remove those items that are not in the header 

table subH from itemset X, and sort the remaining 
items in itemset X according to the order of the 
header table subH. 

Step 5: If the length of the sorted itemset (denoted as k) 
is 0, process the next node of the list link; otherwise 
insert the sorted itemset X into the AT-Tree subT by 
the following substeps: 
Substep 5.1: Get the original sequential ID of each 

item of the itemset X in the corresponding list 
of ProArr: item_ind = {d1, d2, .., dk} (k is the 
length of itemset X).  

Substep 5.2: Make a copy of N.Tail_info; denote the 
copy as nTail_info.  

Substep 5.3: Alter nTail_info as the following:  
(1) nTail_info.len = k. 
(2) nTail_info. Item_ind = item_ind. 
(3) if nTail_info.bp is null, set nTail_info.bp[j] 

to be the probability of item Z, i.e. 
ProArr[nTail_info.Arr_ind[j]]; otherwise, 
set nTail_info.bp[j] to be the product of 
nTail_info.bp[j] and the probability of item 
Z (1 ≤ j ≤ bp.size; the array ProArr is 
created when the global tree is created in 
Substep 5.1 in Section 4.2.1). 

C.2 An Example of Mining Frequent Itemsets from a 
Global AT-Tree 

 

Figure 3.  An Example of mining frequent itemsets from uncertain 
dataset 

The global AT-Tree in Figure 2(e) and its 
corresponding header table H in Figure 2(a) are used as 
an example here to illustrate the detailed processes of 
mining frequent itemsets. The minimum expected support 
number is 1.2. 
Step 1: Process the item “e” in the header table H by the 

following steps 2-3. 
Step 2: Append item “e” to the current base-itemset 

(which is initialized as null), and generates a new 
frequent itemset {e}. 

Step 3: Scan the branches containing the node “e” to 
create sub header table: 
Substep 3.1: In Figure 2(e), there are 2 nodes “e”. 

From the path “root-d-b-a-e” and Table 2, the 
expected support numbers of itemsets {ed}, {eb} 

and {ea} are calculated as 0.56 (0.7*0.8), 0.49 
(0.7*0.7) and 0.665 (0.7*0.95), respectively; 
from the path “root-d-c-e”, the expected 
supports of itemset {ed} and {ec} are 
calculated as 0.7 (0.4*0.85+0.6*0.6) and 0.83 
(0.4*0.8+0.6*0.85).  

Substep 3.2: Because the total expected support 
numbers of itemset {ed} is bigger than 1.2, the 
sub header table is not null, create a sub tree 
(prefix tree or conditional tree) for the base-
itemset {e}, and get a new frequent itemset 
{ed}.  

SubStep 3.3: Remove the item “e” from the base-
itemset, pass the Tail_info of nodes “e” to their 
parents, and modify Tail_info.len as 
Tail_info.len -1; the result is shown in Figure 
3(a). 

Step 4: Process the next item “c” in the header table H by 
the following steps 5-6. 

Step 5: Append item “c” to base-itemset, and get a new 
frequent itemset {c}. 

Step 6: Scan the branches containing node “c” to create 
the sub header table: 
Substep 6.1: In Figure 3(a), there are 2 nodes “c”. 

From the path “root-d-c” and Table 2, the 
expected support numbers of itemset {cd} is 
calculated as 1.19 (0.8*0.85+0.85*0.6); from 
the path “root-b-c”, the expected support of 
itemset {cb} is calculated as 0.455 (0.65*0.7). 

Substep 6.2: Because the total expected support 
numbers of itemsets {cd} and {cb} are smaller 
than 1.2, the sub header table is null.  

SubStep 6.3: Remove the item “c” from the base-
itemset, pass the Tail_info of nodes “c” to their 
parents; the result is shown in Figure 3(b). 

Step 7: Process the next item “a” in the header table in 
Figure 2(a) as the following steps 8-10. 

Step 8: Append item “a” to the base-itemset, and get a 
new frequent itemset {a}. 

Step 9: Scan the branches containing node “a” to create 
the sub header table: 
Substep 9.1: In Figure 3(b), there is one node “a”. 

From the path “root-d-b-a” and Table 2, the 
expected support numbers of itemsets {ad} and 
{ab} are calculated as 2.065 
(0.8*0.9+0.9*0.65+0.95*0.8) and 1.99 
(0.8*0.7+0.9*0.85+0.95*0.7). 

Substep 9.2: Because the total expected support 
numbers of itemsets {ad} and {ab} are not 
smaller than 1.2, the sub header table subH is 
{d:2.065:3, b:1.99:3}.  

Step 10: Create a sub tree for the base-itemset {a} by the 
following substeps: 
Substep 10.1: Initially set the root node of the sub 

tree subT as null. 
Substep 10.2: Get the itemset {db} from the tail-

node-itemset of the tail node “a” in Figure 3(b). 
Substep 10.3: Sort the itemset {db} in the order of 

the header table subH. 
Substep 10.4: Make a copy of Tail_info.Arr_ind, 
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and denote it as arr_ind={1, 4, 5}. 
Substep 10.5: Get the list indexes (original 

sequential ID in a list) of items “d” and “b” in 
the list ProArr[1], which are 1 and 2 
respectively, and denote it as item_ind={1, 2}.  

Substep 10.6: Get the probability values of itemset 
{a} in ProArr[1] and ProArr[4] and ProArr[5] 
respectively, and denote them as bp={0.8, 0.9, 
0.95}; this is the corresponding base 
probabilities in the sub tree subT. 

Substep 10.7: Add the sorted itemset {db} to subT; 
maintain arr_ind, item_ind, bp and the length 
of the itemset {db} to the tail node in subT; the 
result is shown in Figure 3(c). 

Substep 10.8: Process the tree subT recursively, and 
get a new sub tree for the base-itemset {ab}, as 
shown in Figure 3(d). Lastly, get frequent 
itemsets {ab}, {abd} and {ad} when processing 
the sub tree of itemset {a}. 

Step 11: Go on processing the remaining items in header 
table H. 

V. EXPERIMENTAL RESULTS 

In this section, we evaluate the performance of the 
proposed algorithm AT-Mine.  

Summarizing the related works in Section 3, we can 
conclude that the algorithm MBP is the state-of-the-art 
algorithm employing the level-wise approach, UP-
Growth is the state-of-the-art algorithm employing the 
pattern-growth approach and CUFP-Mine is a new 
proposed algorithm. So we compare AT-Mine with the 
algorithms UF-Growth, CUFP-Mine and MBP on both 
types of datasets: the sparse transaction datasets and 
dense transaction datasets. All algorithms were written in 
Java programming language. The configuration of the 
testing platform is as follows: Windows XP operating 
system, 2G Memory, Intel(R) Core(TM) i3-2310 CPU @ 
2.10 GHz; Java heap size is 1G. 
 

 
Table 3 shows the characteristics of 4 datasets used in 

our experiments. “|D|” represents the total number of 
transactions; “|I|” represents the total number of distinct 
items; “ML” represents the mean length of all transaction 
itemsets; “SD” represents the degree of sparsity or 
density. The synthetic dataset T20I6D300K came from 
the IBM Data Generator [1] and the datasets kosarak, 
connect and mushroom were obtained from FIMI 
Repository [33]; These four datasets originally do not 
provide probability values for each item of each 

transaction itemset; as suggested by literatures [23, 25, 28, 
29], we assign a existential probability of range (0, 1] to 
each item. The runnable programs and testing datasets 
can be downloaded from the following address: 
http://code.google.com/p/at-tree/downloads/list.  

A. Evaluation on Sparse Datasets 

Tables 4-5 show the total number of tree nodes 
generated by AT-Mine, UF-Growth and CUFP, and the 
number of candidate itemsets generated by MBP, 
respectively, on the sparse datasets. As shown in Tables 
4-5, UF-Growth creates much more tree nodes than AT-
Mine. This is because that UF-Growth just merges the 
nodes that have the same item name and the same 
probability. CUFP-Mine is out of memory on these two 
sparse datasets because it generates too many supersets; 
UF-Growth is out of memory on kosarak when the 
threshold is set 0.01% because it generates too many tree 
nodes; MBP is out of memory when the threshold is set 
0.03% because it generates too many candidates. Thus we 
can infer that AT-Mine has a better performance than 
other three algorithms in terms of memory usage. 
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TABLE V.   
DETAILS ANALYSIS ON THE DATASET KOSARAK 

η (%)
trees nodes (#) candidates (#)

AT-Mine UF-Growth MBP 
0.1 2,020,568 14,471,137 172,399

0.09 2,208,231 15,724,272 252,348
0.07 2,542,835 19,210,453 419,272
0.05 3,058,380 24,651,644 793,554
0.03 4,580,785 38,083,667 

Memory 
Overflow 0.01 18,829,877

Memory 
Overflow 

TABLE IV.   
DETAILS ANALYSIS ON THE DATASET T20I6D300K 

η (%)
trees nodes (#) candidates (#)

AT-Mine UF-Growth MBP 
0.15 4,978,327 7,556,250 374,271
0.13 5,101,077 8,629,034 391,413
0.11 5,438,410 10,282,811 419,770
0.09 6,310,746 12,978,032 467,217
0.07 8,474,124 17,477,552 594,050
0.05 13,189,900 24,946,139 999,799

TABLE III.   
DATASET CHARACTERISTICS 

Dataset |D| |I| ML SD (%) Type
T20I6D 
300K 

300,000 1000 20 2 sparse

kosarak 990,002 41,271 8 0.02 sparse
connect 67,557 129 43 33.33 dense

mushroom 8,124 119 23 19.33 dense
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(a) On the dataset T20I6D300K 
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(b) On the dataset kosarak 

Figure 4.  Running time comparison on sparse datasets 

Figure 4 shows the running time of three algorithms 
on two sparse datasets. CUFP-Mine is out of memory on 
these two sparse datasets. As shown in Figure 4, the time 
performance of our algorithm outperforms UF-Growth, 
MBP and CUFP-Mine under different minimum expected 
support thresholds. This is because that CUFP-Mine 
generates too many supersets and UF-Growth generates 
too many tree nodes and MBP generates many candidates, 
as shown in Tables 4-5. The time performance of MBP is 
dependent on the length of candidate itemsets, the length 
of transaction itemsets, and the size of dataset: the higher 
these values are, the lower the time performance of MBP 
will be. Thus the time performance of MBP decreases 
sharply with the decreasing of the threshold. Figure 4 
indicates that AT-Mine has achieved a better time 
performance; moreover, its time performance is more 
stable on sparse dataset. 

B.  Evaluation on Dense Datasets 

In this section, we test the performance of our 
proposed algorithm on dense datasets connect and 
mushroom.  

 

 
 

Tables 6-7 show the total number of tree nodes 
generated by AT-Mine and UF-Growth, and the number 
of candidate itemsets generated by MBP, on the dense 
datasets. As shown in Tables 6-7, UF-Growth creates too 
many tree nodes. For example, on the dataset connect, 
UF-Growth generates 163,809,762 nodes while AT-Mine 
generates 153,913 nodes when the minimum expected 
support threshold is 10%. This is because that UF-
Growth just merges the nodes that have the same item 
name as well as the same probability, and it is a very 
dense and long dataset. Thus we can infer that our 
algorithm has achieved better performance than UF-
Growth in terms of memory usage. MBP not only 
maintains candidates, but also maintain the dataset while 
our algorithms only maintain tree nodes using compact 
trees.  

Figure 5 shows the running time of three algorithms 
on the dense datasets connect and mushroom. CUFP-
Mine is out of memory on these two dense datasets. As 
shown in Figure 5, the time performance of our algorithm 
prevails over UF-Growth, MBP and CUFP-Mine under 
different minimum expected support thresholds. This is 
because that CUFP-Mine generates too many supersets 
and UF-Growth generates too many tree nodes and MBP 
generates many candidates, as shown in Tables 6-7. 
Figure 5 shows that the time performance of AT-Mine 
obviously outperforms that of other algorithms on these 
two dense datasets; moreover, our time performance is 
also more stable on the dense datasets. 
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(a) On the dataset connect 

 

TABLE VI.   
DETAILS ANALYSIS ON THE DATASET CONNECT 

η (%) trees nodes (#) candidates (#)
AT-Mine UF-Growth MBP 

15.0 36,823 32,204,274 5,981
14.0 89,118 33,739,243 6,962
13.0 98,842 35,332,360 7,786
12.0 116,290 48,046,639 8,565
11.0 130,423 106,626,725 12,754
10.0 153,913 163,809,762 19,162 

TABLE VII.   
DETAILS ANALYSIS ON THE DATASET MUSHROOM 

η (%) trees nodes (#) candidates(#)
AT-Mine UF-Growth MBP 

7.0 12,041 1,011,721 1,917
6.0 14,420 1,344,369 2,501
5.0 16,243 1,947,609 3,460
4.0 18,685 2,760,249 5,024
3.0 25,884 4,125,745 8,222
2.0 37,395 8,076,099 16,764
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Figure 5.  Running time comparison on dense datasets  

VI. CONCLUSION AND DISCUSSION 

In this paper, we propose a novel tree structure named 
AT-Tree to maintain transaction itemsets of an uncertain 
dataset, and a corresponding algorithm named AT-Mine 
to mine frequent itemsets. AT-Mine requires two scans of 
dataset to create an AT-Tree. In the first scan, it creates a 
header table to maintain sorted frequent items in the 
descending order of support numbers of items. In the 
second scan, it maintains probability values of frequent 
items in each transaction itemsets to an array; it inserts 
frequent items in each transaction itemsets to an AT-Tree; 
it maintains probability information of each transaction 
itemsets to the tail node. So the AT-Tree is as compact as 
the original FP-Tree, and it does not lose the probability 
information of each transaction itemsets. Thus, AT-Mine 
can find frequent itemsets from AT-Tree without 
additional scan of dataset.  

Experiments were performed on sparse and dense 
datasets. We compared our proposed algorithm with 
some state-of-the-art level-wise and pattern-growth 
algorithms. The experimental results show that the 
proposed algorithm has better performance on dense 
datasets and large sparse datasets, and their time 
performance is stable on both dense and sparse datasets 
along with the decreasing of the minimum expected 
support threshold.  
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