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Abstract—Convolution filtering applications range from 
image recognition and video surveillance. Two observations 
drive the design of a new buffering architecture for convolu-
tion filters. First, the convolutional operations are inherent-
ly local; hence every pixel of the output feature maps is cal-
culated by the neighboring pixels of the input feature maps. 
Even though the operation is simple, the convolution filter-
ing is both computation-intensive and memory-intensive. 
For real-time applications, large amounts of on-chip memo-
ries are required to support massively parallel processing 
architectures. Second, to avoid access to external memories 
directly, the data that are already stored in on-chip memo-
ries should be used as many times as possible. Based on the-
se two observations, we show that for a given throughput 
rate and off-chip memory bandwidth, a rotation-based data 
buffering architecture provide the optimum area-utilization 
results for a particular design point, which are commonly 
used applications in recognition area. 
 
Index Terms—convolution filtering, Field Programmable 
Gate Arrays (FPGAs), data buffering 
 

I.   INTRODUCTION 

Convolution filters are the computational models that 
are widely used in recognition and video processing do-
mains [1][2][3][4]. The computation of convolution re-
quires not only the high computational capability but also 
large memory bandwidth, especially when high-definition 
images and videos have to be processed in real-time. In 
these applications, convolution filtering plays an essential 
role [5][6]. Generally, external memories are used to con-
tain input image pixels, but the memory bandwidth can-
not satisfy the requirement of the optimal throughput di-
rectly. Hence intermediate buffers by means of on-chip 
memories are adopted to avoid access to external memo-
ries directly [7][8]. To load as many pixel values as need-
ed to the convolution filter in one cycle, multiple memory 

ports are attached to intermediate data buffers. Once a 
pixel value is loaded, it can be reused for the correspond-
ing successive convolutions to avoid accessing it from 
off-chip memories repetitively. As a result, the require-
ments for off-chip memory bandwidth are reduced. 

Convolution architecture with a complete convolution 
architecture is adopted in [7], where a set of linear shift 
registers are used to move a  window over the input 
image. The input image is divided in rows, each with a 
fixed length according to the input image row length, and 
the height according to the convolution window height. 
Each pixel in the input image needs to be loaded only 
once to the intermediate data buffer and with a fixed min-
imum external memory bandwidth. In case the size of 
input image or convolution window become large, FPGA 
implementations become very expensive, which will cost 
a significant amount of FPGA resources [7][8]. 

There are alternative buffering architectures that inter-
nal buffers only store a small portion of pixels [7][9]. 
Each group of shift registers in the convolution window 
receives the pixels belonging to consecutive rows of input 
image. Compared with the aforementioned methods, a 
great shift register reduction is achieved. However, mul-
tiple-dataflow is needed to feed data to the internal buffer. 
Pixels in the input image need to be read repetitively 
from external memories depending on the size of convo-
lution window. And to keep the maximum throughput 
rate, this leads to a sharp increase in terms of external 
memory bandwidth requirement. 

In this paper, we are concerned with the implementa-
tion of convolution filters in FPGA and we design a al-
ternative buffering architecture for convolution filters that 
shows good balance between on-chip resource utilization 
and external memory bus bandwidth. 

II. ROTATION-BASED DATA BUFFERING ARCHITECTURE  
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Figure 1.  Conceptual view of an  convolver and an  image 

    In this section, we will first introduce the convolution 
filtering implementation strategy. The advantages and 
disadvantages of existing implementation architectures 
will be discussed. Then we will present the rotation-based 
data buffering architecture. In Fig. 1, we show the con-
ceptual view of a  convolution filter moving over an 

 input image, which will be used in the following 
sections. 

A. Convolution Filter Implementation Strategy 
   The 	convolution of an image is defined by equa-
tion 1: 

, ∑ ∑ , ∙ ,/ // /    (1) 

where ,  is the convolved pixel on the output image, ,  is the pixel value from the input image, and ,  is 
the convolution kernel weight. To calculate the convolu-
tion , , each pixel ,  from a  window of input 
image centered on ,  is multiplied by the corre-
sponding convolution kernel of weights, and then the 
products are accumulated to produce the output value.  
Because the two-dimensional convolution ,  of each 
pixel ,  requires the values of its 1 immediate 
neighbors before being able to process that pixel, more 
columns than needed will be read within the same trans-
action. Each output pixel requires  multiply-
accumulations, all of which can be performed in parallel. 
To accelerate the computation of convolution filter, mul-
tiple data in a convolution window need to be accessed 
simultaneously, so the calculations can be performed in 
parallel.  

B. Multiple Dataflow Single Convolution Architecture 
(MDSCA)  

In order to eliminate the shift register arrays in [7], 
multiple dataflow single convolution architectures are 
adopted in [8][10]. In these architectures, small portion of 
image pixels are loaded to the convolution filter. Howev-
er, with fewer shift register arrays, the pixels can no 
longer be loaded to the convolution window in zigzag 
order. Instead of that, pixels belonging to consecutive 
rows are read into the shift register simultaneously. 
Groups of FIFOs are included to feed the pixels to the 
shift registers. After one column of pixels are fed into the 
convolution filter, the convolution window moves to a 
next position. 

      Fig. 2 shows a multiple dataflow single convolution 
architecture using an input/output bus, which can com-
pletely eliminate the shift register arrays in [7]. The con-
volution window pixel registers receive the pixels belong-
ing to consecutive rows of the original image through  
stacks. Multiple dataflow single convolution architecture 
requires much larger bandwidth than the single dataflow 
architecture. The shift register arrays are completely 
eliminated. Extra memory bandwidth is used to reduce 
the number of shift registers. To compute a single cycle 

 convolution, one new pixel per row is needed at 
every cycle. The total of  pixels transferred and one 
result produced means that a bandwidth of 1 bytes 
per cycle is needed.  

C. Single Dataflow Complete Convolution Architecture 
(SDCCA)  

  To avoid directly access to external memories, FPGA 
on-chip memories are used as intermediate data buffers 
[7]. In Fig. 3, a single dataflow complete convolution 
architecture, makes use of on-chip shift register arrays to 
move a  window over the input image. To extract 
pixels from input image, a single dataflow strategy has 
been adopted. Pixels are fed from external memories in a 
zigzag order, until 1 complete lines and the first  
pixels in the next line are contained within a series of 
linear shift registers. From that moment on, all the pixels 
belonging to the first  convolution window are 
available for the processing element. Each time a new 
pixel is loaded, the convolution window moves to a new 
position until the entire image has been visited. The 
throughput of this architecture is one clock per pixel. In 
[7], 1 sets of shift registers with a length of , 
are employed to keep data before moving them to the 
convolution filter, and  sets of registers, each with  
shift registers, are used for the convolution filter. These 
shift registers, which enable arbitrary size convolution 
filter to work with a single data stream, require no more 
than one pixel per clock external memory bandwidth. 
Pixels in the input image need to be read only once. The 
side-effect of this architecture is that in order to make this 
single data stream architecture work, 1  complete 
rows must be read from external memory first, therefore 
storing these data within a set of shift registers would be 
very expensive in FPGA implementation when the size of 
input image or the size of convolution filter is large. 

D. Rotation-based Multiple dataflow Buffering Architec-
ture (RMDBA)  

In order to reuse data that are already stored in on-chip 
buffers as many times as possible, we proposed a rota-
tion-based data buffering architecture. Fig.4 illustrates  
continuous convolution filter in a row-wise direction, 
where the two adjacent filter windows share 1 col-
umns. The architecture of these sliding windows includes 
R contiguous convolution filter windows, which share 1 columns in the row-wise direction. If the calcula-
tions of these  convolution kernels are performed at the 
same time, a much higher level of data reusing will be 
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Figure 2. Multiple dataflow single convolution architecture 

 
Figure 3. Single dataflow complete convolution architecture 

achieved compared with the multiple dataflow single 
convolution architecture. Fig. 5 illustrates the rotation-
based multiple dataflow architecture we proposed. The 
number of shift register arrays is extended to Y to hold all 
the pixels in the  area as depicted in Fig. 4. Unlike 
the multiple dataflow single convolution architecture and 
the single dataflow complete convolution architecture, the 

 pixel data in each set of shift register array are not sim-
ultaneously fed to the convolution filter window, but in a 
serial type instead. One register in the shift register group 
is useable in each cycle, and a rotationally self-
incrementing counter is used to address the register in the 
output. Consequently,  pixels in all of a same row in the 
input, belonging to  adjacent windows in the row-wise 
direction, are available to the convolution filter in each 
cycle. After  cycles, all the data in the  place have 

been sent to the convolution filter, and then shift register 
arrays will be updated. A new row of data will be moved 
in from the FIFO and moves the  area to next posi-
tion effectively. The architecture for the convolution filter 
using rotation-based data buffering architecture is not the 
same as the aforementioned architectures. For each  
convolution window, input pixels are fed column-by-
column, therefore one-column convolution line can be 
calculated, and it will take  cycles to complete all the 
calculation for each convolution window. When  neigh-
boring windows are available, entire R one-column con-
volution can be processed simultaneously.  

In order to achieve the throughput rate of 1 cycle/pixel, 
multiple dataflow must be loaded to update the convolu-
tion window. Compared with the multiple dataflow single 
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Figure 4.  R simultaneous convolution windows in a  area 

 
Figure 5. Rotation-based data buffering architecture

convolution architecture the window in the rotation-based 
architecture is updated every  cycle. In this case, shift 
registers can move every  cycles.  pixels in all will be 
loaded from off-chip memories every  cycles. So the 
external memory bandwidth is /  pixels/clock. This 
means that for most convolution filter applications ap-

proximately twice of the external memory bandwidth 
requirement is needed. 

III. ARCHITECTURE SELECTION  

   In this section, we will consider an input image size of 
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1280 720 with 8 bits/pixel and a convolution kernel size 
of 7 7 as a case study. The operation will fetch image 
pixels from external memories, and store back to external 
memories after the convolution operation. In addition to 
this we will use a memory bus word length of 256-bits 
and a burst length (BL) of 8 words (i.e. 16 pixels). In 

Table I, we have summarized the main features of the two 
and the proposed architectures: area-utilization measured 
in terms of register pixels and memory pixels. Flip-flop 
count was obtained by multiplying the number of shift 
registers and memory pixels by bit per pixel;

TABLE 1.  
FEATURES OF DIFFERENT CONVOLUTION FILTER FOR A  WINDOW 

architecture register 
pixels memory pixels 

throughput 
(cycles/pixel)

 

ff count 
 bandwidth (pixels/cycle)

MDSCA  1 5496 7 

SDCCA  1
 1 49336 1 

RMDBA   1 2392 1.9 

TABLE 2.  
AREA UTILIZATION OF DIFFERENT ARCHITECTURES FOR VARIOUS CONVOLUTION FILTER WINDOW SIZE 

filter size MDSCA SDCCA RMDBA 
flip-flop count flip-flop count flip-flop count 3 3 456 16536 760 5 5 840 32936 1512 7 7 5496 49336 2392 9 9 1800 65736 3400 11 11 2376 82136 4536 13 13 3016 98536 5800 15 15 3720 114936 7192 17 17 4488 131336 8712 19 19 5320 147736 10360 

 
throughput, given in terms of cycles/pixel; and external 
memory bandwidth requirements, given in terms of pix-
els/cycle. We used different FPGA resources to imple-
ment FIFOs and shift registers depending on specific 
FPGA devices.  

For comparison, the area-utilization will be evaluated 
in terms of flip-flops. The last two columns of Table I 
show the results of flip-flop count and external memory 
bandwidth requirement for the case study. The SCPB 
architecture shows the most area-efficient feature at the 
cost of much more requirement of the external memory 
bandwidth. 

In order to choose the optimum architecture for a par-
ticular design point, a suitable metric that consists in 
maximizing the throughput with respect to the amount of 
resources will be used. The evaluation metric was pro-
posed in [10] that the product throughput in terms of cy-
cles/pixel times flip-flop number is the metric. For a par-
ticular design point, the architecture will minimize the 
metric value and maximize the degree of area efficiency. 
We used the same concept in our architecture. Table 2 
shows the corresponding product of flip-flop count and 
throughput for convolution window size from 3 to 19 for 
the three architectures. We assumed a same output 
memory bandwidth of 1 pixel/cycle. In Fig. 6, we show 
the aforementioned metric comparisons and the remain-
ing variable are the same described for the case study. In 

the bar diagram in Fig. 6, we can observe that RMDBA 
architecture   is superior to the rest of the architecture for 
window size 7, and for the other window size MDSCA is 
superior. Window size 5 and 7 are the most frequently 
used convolution window in practical applications. As the 
size of input image gets larger, tradeoffs must be made, 
depending on different FPGA resources and available off-
chip memory bandwidth.  

IV. CONCLUSIONS 

In this paper, we proposed a rotation-based data buffer-
ing architecture for convolution filtering in FPGA.  Com-
pared with the direct implementation of the prior-arts, the 
new technique requires less FPGA resources and lowers 
off-chip memory bandwidth and retains the optimum 
throughput for a particular design point, therefore it is suit-
able  for low-cost FPGA implementation. 
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Figure 6. Bar diagram comparing the area efficiency metric for different architectures and for window sizes from 3x3 to 19x19 using the parameters of 
the case study. The lower the bar, the more efficient. 
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