
A Rotation-based Data Buffering Architecture for
Convolution Filtering in a Field Programmable

Gate Array

Zhijian Lu
College of Computer Science and Technology Harbin Engineering University, Harbin, China

Email: luzhijian@hrbeu.edu.cn
Yanxia Wu, Zhenhua Guo, Guochang Gu

College of Computer Science and Technology Harbin Engineering University, Harbin, China
Email: {wuyanxia, guozhenhua, guguochang}@hrbeu.edu.cn

Abstract—Convolution filtering applications range from
image recognition and video surveillance. Two observations
drive the design of a new buffering architecture for convolu-
tion filters. First, the convolutional operations are inherent-
ly local; hence every pixel of the output feature maps is cal-
culated by the neighboring pixels of the input feature maps.
Even though the operation is simple, the convolution filter-
ing is both computation-intensive and memory-intensive.
For real-time applications, large amounts of on-chip memo-
ries are required to support massively parallel processing
architectures. Second, to avoid access to external memories
directly, the data that are already stored in on-chip memo-
ries should be used as many times as possible. Based on the-
se two observations, we show that for a given throughput
rate and off-chip memory bandwidth, a rotation-based data
buffering architecture provide the optimum area-utilization
results for a particular design point, which are commonly
used applications in recognition area.

Index Terms—convolution filtering, Field Programmable
Gate Arrays (FPGAs), data buffering

I. INTRODUCTION

Convolution filters are the computational models that
are widely used in recognition and video processing do-
mains [1][2][3][4]. The computation of convolution re-
quires not only the high computational capability but also
large memory bandwidth, especially when high-definition
images and videos have to be processed in real-time. In
these applications, convolution filtering plays an essential
role [5][6]. Generally, external memories are used to con-
tain input image pixels, but the memory bandwidth can-
not satisfy the requirement of the optimal throughput di-
rectly. Hence intermediate buffers by means of on-chip
memories are adopted to avoid access to external memo-
ries directly [7][8]. To load as many pixel values as need-
ed to the convolution filter in one cycle, multiple memory

ports are attached to intermediate data buffers. Once a
pixel value is loaded, it can be reused for the correspond-
ing successive convolutions to avoid accessing it from
off-chip memories repetitively. As a result, the require-
ments for off-chip memory bandwidth are reduced.

Convolution architecture with a complete convolution
architecture is adopted in [7], where a set of linear shift
registers are used to move a window over the input
image. The input image is divided in rows, each with a
fixed length according to the input image row length, and
the height according to the convolution window height.
Each pixel in the input image needs to be loaded only
once to the intermediate data buffer and with a fixed min-
imum external memory bandwidth. In case the size of
input image or convolution window become large, FPGA
implementations become very expensive, which will cost
a significant amount of FPGA resources [7][8].

There are alternative buffering architectures that inter-
nal buffers only store a small portion of pixels [7][9].
Each group of shift registers in the convolution window
receives the pixels belonging to consecutive rows of input
image. Compared with the aforementioned methods, a
great shift register reduction is achieved. However, mul-
tiple-dataflow is needed to feed data to the internal buffer.
Pixels in the input image need to be read repetitively
from external memories depending on the size of convo-
lution window. And to keep the maximum throughput
rate, this leads to a sharp increase in terms of external
memory bandwidth requirement.

In this paper, we are concerned with the implementa-
tion of convolution filters in FPGA and we design a al-
ternative buffering architecture for convolution filters that
shows good balance between on-chip resource utilization
and external memory bus bandwidth.

II. ROTATION-BASED DATA BUFFERING ARCHITECTURE

Yanxia Wu is the corresponding author.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1411

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.6.1411-1416

Figure 1. Conceptual view of an convolver and an image

 In this section, we will first introduce the convolution
filtering implementation strategy. The advantages and
disadvantages of existing implementation architectures
will be discussed. Then we will present the rotation-based
data buffering architecture. In Fig. 1, we show the con-
ceptual view of a convolution filter moving over an

 input image, which will be used in the following
sections.

A. Convolution Filter Implementation Strategy
 The 	convolution of an image is defined by equa-
tion 1:

, ∑ ∑ , ∙ ,/ // / (1)

where , is the convolved pixel on the output image, , is the pixel value from the input image, and , is
the convolution kernel weight. To calculate the convolu-
tion , , each pixel , from a window of input
image centered on , is multiplied by the corre-
sponding convolution kernel of weights, and then the
products are accumulated to produce the output value.
Because the two-dimensional convolution , of each
pixel , requires the values of its 1 immediate
neighbors before being able to process that pixel, more
columns than needed will be read within the same trans-
action. Each output pixel requires multiply-
accumulations, all of which can be performed in parallel.
To accelerate the computation of convolution filter, mul-
tiple data in a convolution window need to be accessed
simultaneously, so the calculations can be performed in
parallel.

B. Multiple Dataflow Single Convolution Architecture
(MDSCA)

In order to eliminate the shift register arrays in [7],
multiple dataflow single convolution architectures are
adopted in [8][10]. In these architectures, small portion of
image pixels are loaded to the convolution filter. Howev-
er, with fewer shift register arrays, the pixels can no
longer be loaded to the convolution window in zigzag
order. Instead of that, pixels belonging to consecutive
rows are read into the shift register simultaneously.
Groups of FIFOs are included to feed the pixels to the
shift registers. After one column of pixels are fed into the
convolution filter, the convolution window moves to a
next position.

 Fig. 2 shows a multiple dataflow single convolution
architecture using an input/output bus, which can com-
pletely eliminate the shift register arrays in [7]. The con-
volution window pixel registers receive the pixels belong-
ing to consecutive rows of the original image through
stacks. Multiple dataflow single convolution architecture
requires much larger bandwidth than the single dataflow
architecture. The shift register arrays are completely
eliminated. Extra memory bandwidth is used to reduce
the number of shift registers. To compute a single cycle

 convolution, one new pixel per row is needed at
every cycle. The total of pixels transferred and one
result produced means that a bandwidth of 1 bytes
per cycle is needed.

C. Single Dataflow Complete Convolution Architecture
(SDCCA)

 To avoid directly access to external memories, FPGA
on-chip memories are used as intermediate data buffers
[7]. In Fig. 3, a single dataflow complete convolution
architecture, makes use of on-chip shift register arrays to
move a window over the input image. To extract
pixels from input image, a single dataflow strategy has
been adopted. Pixels are fed from external memories in a
zigzag order, until 1 complete lines and the first
pixels in the next line are contained within a series of
linear shift registers. From that moment on, all the pixels
belonging to the first convolution window are
available for the processing element. Each time a new
pixel is loaded, the convolution window moves to a new
position until the entire image has been visited. The
throughput of this architecture is one clock per pixel. In
[7], 1 sets of shift registers with a length of ,
are employed to keep data before moving them to the
convolution filter, and sets of registers, each with
shift registers, are used for the convolution filter. These
shift registers, which enable arbitrary size convolution
filter to work with a single data stream, require no more
than one pixel per clock external memory bandwidth.
Pixels in the input image need to be read only once. The
side-effect of this architecture is that in order to make this
single data stream architecture work, 1 complete
rows must be read from external memory first, therefore
storing these data within a set of shift registers would be
very expensive in FPGA implementation when the size of
input image or the size of convolution filter is large.

D. Rotation-based Multiple dataflow Buffering Architec-
ture (RMDBA)

In order to reuse data that are already stored in on-chip
buffers as many times as possible, we proposed a rota-
tion-based data buffering architecture. Fig.4 illustrates
continuous convolution filter in a row-wise direction,
where the two adjacent filter windows share 1 col-
umns. The architecture of these sliding windows includes
R contiguous convolution filter windows, which share 1 columns in the row-wise direction. If the calcula-
tions of these convolution kernels are performed at the
same time, a much higher level of data reusing will be

Input Image

R

S

1412 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

Figure 2. Multiple dataflow single convolution architecture

Figure 3. Single dataflow complete convolution architecture

achieved compared with the multiple dataflow single
convolution architecture. Fig. 5 illustrates the rotation-
based multiple dataflow architecture we proposed. The
number of shift register arrays is extended to Y to hold all
the pixels in the area as depicted in Fig. 4. Unlike
the multiple dataflow single convolution architecture and
the single dataflow complete convolution architecture, the

 pixel data in each set of shift register array are not sim-
ultaneously fed to the convolution filter window, but in a
serial type instead. One register in the shift register group
is useable in each cycle, and a rotationally self-
incrementing counter is used to address the register in the
output. Consequently, pixels in all of a same row in the
input, belonging to adjacent windows in the row-wise
direction, are available to the convolution filter in each
cycle. After cycles, all the data in the place have

been sent to the convolution filter, and then shift register
arrays will be updated. A new row of data will be moved
in from the FIFO and moves the area to next posi-
tion effectively. The architecture for the convolution filter
using rotation-based data buffering architecture is not the
same as the aforementioned architectures. For each
convolution window, input pixels are fed column-by-
column, therefore one-column convolution line can be
calculated, and it will take cycles to complete all the
calculation for each convolution window. When neigh-
boring windows are available, entire R one-column con-
volution can be processed simultaneously.

In order to achieve the throughput rate of 1 cycle/pixel,
multiple dataflow must be loaded to update the convolu-
tion window. Compared with the multiple dataflow single

off-chip memory
and FIFO

S
shift

registers

F
I
F
O

S
shift

registers

F
I
F
O

S
shift

registers

F
I
F
O

.

.

.

.

.

.

.

.

.
convolution filter array

.

.

.
convolution filter array

(N-S) Shift registers

off-chip memory and FIFO

(N-S) Shift registers

S
shift

registers

S
shift

registers

S
shift

registers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1413

© 2013 ACADEMY PUBLISHER

Figure 4. R simultaneous convolution windows in a area

Figure 5. Rotation-based data buffering architecture

convolution architecture the window in the rotation-based
architecture is updated every cycle. In this case, shift
registers can move every cycles. pixels in all will be
loaded from off-chip memories every cycles. So the
external memory bandwidth is / pixels/clock. This
means that for most convolution filter applications ap-

proximately twice of the external memory bandwidth
requirement is needed.

III. ARCHITECTURE SELECTION

 In this section, we will consider an input image size of

convolution filter array

F
I
F
O

R . . . 1

F
I
F
O

R . . . 1

. . .

F
I
F
O

R . . . 1

F
I
F
O

R . . . 1

. . .

column 1 column S-1 column S column Y

.

off-chip memory

.

1414 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

1280 720 with 8 bits/pixel and a convolution kernel size
of 7 7 as a case study. The operation will fetch image
pixels from external memories, and store back to external
memories after the convolution operation. In addition to
this we will use a memory bus word length of 256-bits
and a burst length (BL) of 8 words (i.e. 16 pixels). In

Table I, we have summarized the main features of the two
and the proposed architectures: area-utilization measured
in terms of register pixels and memory pixels. Flip-flop
count was obtained by multiplying the number of shift
registers and memory pixels by bit per pixel;

TABLE 1.
FEATURES OF DIFFERENT CONVOLUTION FILTER FOR A WINDOW

architecture register
pixels memory pixels

throughput
(cycles/pixel)

ff count
 bandwidth (pixels/cycle)

MDSCA 1 5496 7

SDCCA 1
 1 49336 1

RMDBA 1 2392 1.9

TABLE 2.
AREA UTILIZATION OF DIFFERENT ARCHITECTURES FOR VARIOUS CONVOLUTION FILTER WINDOW SIZE

filter size MDSCA SDCCA RMDBA
flip-flop count flip-flop count flip-flop count 3 3 456 16536 760 5 5 840 32936 1512 7 7 5496 49336 2392 9 9 1800 65736 3400 11 11 2376 82136 4536 13 13 3016 98536 5800 15 15 3720 114936 7192 17 17 4488 131336 8712 19 19 5320 147736 10360

throughput, given in terms of cycles/pixel; and external
memory bandwidth requirements, given in terms of pix-
els/cycle. We used different FPGA resources to imple-
ment FIFOs and shift registers depending on specific
FPGA devices.

For comparison, the area-utilization will be evaluated
in terms of flip-flops. The last two columns of Table I
show the results of flip-flop count and external memory
bandwidth requirement for the case study. The SCPB
architecture shows the most area-efficient feature at the
cost of much more requirement of the external memory
bandwidth.

In order to choose the optimum architecture for a par-
ticular design point, a suitable metric that consists in
maximizing the throughput with respect to the amount of
resources will be used. The evaluation metric was pro-
posed in [10] that the product throughput in terms of cy-
cles/pixel times flip-flop number is the metric. For a par-
ticular design point, the architecture will minimize the
metric value and maximize the degree of area efficiency.
We used the same concept in our architecture. Table 2
shows the corresponding product of flip-flop count and
throughput for convolution window size from 3 to 19 for
the three architectures. We assumed a same output
memory bandwidth of 1 pixel/cycle. In Fig. 6, we show
the aforementioned metric comparisons and the remain-
ing variable are the same described for the case study. In

the bar diagram in Fig. 6, we can observe that RMDBA
architecture is superior to the rest of the architecture for
window size 7, and for the other window size MDSCA is
superior. Window size 5 and 7 are the most frequently
used convolution window in practical applications. As the
size of input image gets larger, tradeoffs must be made,
depending on different FPGA resources and available off-
chip memory bandwidth.

IV. CONCLUSIONS

In this paper, we proposed a rotation-based data buffer-
ing architecture for convolution filtering in FPGA. Com-
pared with the direct implementation of the prior-arts, the
new technique requires less FPGA resources and lowers
off-chip memory bandwidth and retains the optimum
throughput for a particular design point, therefore it is suit-
able for low-cost FPGA implementation.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Sci-
ence Foundation of China No. 61003036 and the Natural
Science Foundation of Heilongjiang Province of China
under Grant No. QC2010049 and Fundamental Research
Funds for the Central Universities (No. HEUCFT1202,
No. HEUCF100606).

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1415

© 2013 ACADEMY PUBLISHER

Figure 6. Bar diagram comparing the area efficiency metric for different architectures and for window sizes from 3x3 to 19x19 using the parameters of
the case study. The lower the bar, the more efficient.

REFERENCE

[1] Gonzalez, R.C. and R.E. Woods, “Digital Image Processing,”
Prentice Hall Press, 2002

[2] B. S. Wu, C. C. Hsieh and C. C. Lee, “A Distance Comput-
er Vision Assisted Yoga Learning System,” Journal of
Computers, 11(6): pp.2382-2388, 2011

[3] Z. Wang and X. Sun, “Orthogonal Maximum Margin Pro-
jection for Face Recognition,” Journal of Computers, 2(7):
pp.377-383, 2012

[4] B. Zhu and W. Jin, “Radar Emitter Signal Recognition
Based on EMD and Neural Network,” Journal of Comput-
ers, 6(7): pp.1413-1420, 2012

[5] Hecht, V. and K. Ronner, “An Advanced Programmable
2D-convolution Chip for Real Time Image Processing,”
IEEE International Sympoisum on Circuits and Systems,
pp.1897-1900, 1991

[6] Leblebici, Y., et al., “A Fully Pipelined Programmable Re-
al-time (3×3) Image Filter Based on Capacitive Threshold-
logic gates,” Proceedings of IEEE International Symposi-
um on Circuits and Systems, vol.3, pp. 2072-2075, 1997

[7] Bosi, B., G. Bois, and Y. Savaria, “Reconfigurable Pipe-
lined 2-D Convolvers for Fast Digital Signal Processing,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 7(3): pp. 299-308, 1999

[8] Liang, X., J. Jean, and K. Tomko, “Data Buffering and Al-
location in Mapping Generalized Template Matching on
Reconfigurable Systems,” The Journal of Supercomputing,
19(1): pp. 77-91, 2001

[9] Nakajima, M., et al., “A 40GOPS 250mw Massively Paral-
lel Processor Based on Matrix Architecture,” IEEE Inter-
national Solid-State Circuits Conference, pp.1616-1625,
2006

[10] Cardells-Tormo, F. and P.L. Molinet, “Area-efficient 2-D
Shift-variant Convolvers for FPGA-based Digital Image
Processing,” IEEE Workshop on Signal Processing Sys-
tems Design and Implementation, pp. 209-213, 2005

Zhijian Lu is a Ph.D. student in College of Computer Science
and Technology of Harbin Engineering University, Harbin, China.
His current research interest includes neural network, reconfigu-
rable computing and image processing.

Yanxia Wu is Associate Professor in College of Computer Sci-
ence and Technology of Harbin Engineering University, Harbin,
China. Her current research interests include safe compiler, recon-
figurable compiler and computer architecture.

Zhenhua Guo is a Ph.D. student in College of Computer Science
and Technology of Harbin Engineering University, Harbin, China.
His current research interest includes reconfigurable computing
and embedded system.

Guochang Gu is Professor in College of Computer Science and
Technology of Harbin Engineering University, Harbin, China. His
main research interests include embedded systems and safe com-
piler.

1416 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

