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Abstract—3D reconstruction for freehand 3D ultrasound is a 
challenging issue because the recorded B-scans are not only 
sparse, but also non-parallel (actually they may arbitrarily 
oriented in 3D space and may intersect each other). 
Conventional volume reconstruction methods can’t 
reconstruct sparse data efficiently while not introducing 
geometrical artifacts, and conventional surface 
reconstruction methods can’t reconstruct surfaces from 
contours that are arbitrarily oriented in 3D space. We 
developed a new surface reconstruction method for 
freehand 3D ultrasound based on variational implicit 
function which is presented by Greg Turk for shape 
transformation. In the new method, we first constructed on- 
& off-surface constraints from the segmented contours of all 
recorded B-scans, then used a variational interpolation 
technique to get a single implicit function in 3D. Finally, the 
implicit function was evaluated to extract the zero-valued 
surface as final reconstruction result. Two experiment was 
conducted to assess our variational surface reconstruction 
method, and the experiment results have shown that the new 
method is capable of reconstructing surface smoothly from 
sparse contours which can be arbitrarily oriented in 3D 
space. 
 
Index Terms—surface reconstruction, freehand 3D 
ultrasound, variational method, medical imaging 
 

I.  INTRODUCTION 

Freehand 3D ultrasound imaging uses conventional 
ultrasound technology to build up a 3D data set from a 
number of conventional 2D B-scans acquired in 
succession. It consists of tracking a standard 2D 
ultrasound probe by using a 3D localizer (magnetic, 
mechanical or optic). The localizer is attached to the 
probe, and can continuously measure the 3D position and 
orientation of the probe while the physician moves the 
probe slowly and steadily over a particular anatomical 
region. The measured outputs of the 3D positions and 
orientations are used for the localization of B-scans in the 
coordinate system of the localizer. In order to establish 
the transformation between the B-scan coordinates and 

the 3D position and orientation of the probe, a calibration 
procedure is necessary[1-3]. 

There are two main drawbacks of freehand imaging: 
The first is that the recorded B-scans are non-parallel in 
3D space, actually they may arbitrarily oriented in 3D 
and may intersect each other, because the movement of 
the ultrasound probe is unrestricted. The second is that 
the recorded B-scans are very sparse. This arise from the 
fact that it would be an advantage to reconstruct from a 
smaller number of ultrasound contours, since manual 
segmentation, which is still the only universally reliable 
method for ultrasound data[4], is the most time 
consuming part of the processes involved. So only a 
small number of B-scans are recorded and manually 
segmented in order to allow real-time response in clinic 
applications. These two drawbacks make the 3D 
reconstruction of the ultrasound data quite complex.  

All the reconstruction methods for freehand 3D 
ultrasound fall into two categories: volume reconstruction 
and surface reconstruction. Volume Reconstruction 
methods interpolate the data to a regular 3D array (voxel 
array). The most common volume reconstruction methods 
are Pixel Nearest-Neighbor (PNN) [5], Voxel Nearest-
Neighbor (VNN)[6-7] and Distance-Weighted 
interpolation (DW)[8-9]. All these volume reconstruction 
methods can’t reconstruct sparse data efficiently while 
not introducing geometrical artifacts, degrading or 
distorting the images. So they are only suitable for the 
reconstruction of dense data, and are not a feasible choice 
for our case. 

Surface Reconstruction methods reconstruct the VOI 
(volume of interest) directly from contours (cross-
sections) segmented from the original ultrasound B-scans 
in a prerequisite step. These B-scans do not contain 
processing artifact, hence the clinician has a better chance 
of outlining the contours of the organ accurately. 

Nowadays methods that can handle arbitrarily 
oriented and mutually intersected contours are few and 
far between. Most of surface reconstruction methods 
mentioned in literature directly triangulate between two 
adjacent contours, and can’t handle arbitrarily oriented 
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contours. Usually the contours are nearly parallel and 
don’t intersect each other[4, 10-13]. L. Liu et al. [14] 
proposed a method to reconstruct non-parallel contours. It 
is also done directly in the surface-mesh (i.e., triangle-
mesh) domain and requires dense contours for input. It is 
also incapable of reconstructing sparse data in our case. 

We develop a new surface reconstruction method for 
freehand ultrasound imaging. It is based on variational 
interpolation, which is used by Greg Turk for shape 
transformation [15]. It can effectively solve the surface 
reconstruction of the physical organ, and can handle both 
sparse and mutually intersected contours data. 

The rest of the paper is organized as follows. In 
Section 2, we describe the process of surface 
reconstruction for freehand 3D ultrasound imaging. In 
section 3, the technical detail of our new variational 
surface reconstruction method is discussed, including 
constraints definition, casting surface reconstruction 
problem to equivalent variational interpolation problem 
and solution of the variational problem. Section 4 gives 
two experimental results, including synthetic data and 
phantom ultrasound data. Finally, a brief summary are 
discussed in Section 5. 

II.  PROCESS OF SURFACE RECONSTRUCTION FOR 
FREEHAND 3D ULTRASOUND IMAGING 

Our new surface reconstruction method is based on 
variational interpolation. It casts the surface 
reconstruction problem to an equivalent variational 
problem which try to find a function that has minimum 
bending energy and satisfies all constraints. The process 
of this method is illustrated in Figure 1. 

First, we perform a spatial transformation to convert 
the 2D pre-segmented ultrasound contours into 3D point 
clouds, which casts the surface reconstruction problem as 
a scattered data interpolation problem in three dimensions. 
The spatial transformation is performed according to the 
3D position and orientation information of the ultrasound 
probe while acquiring corresponding 2D ultrasound B-
scans. Contours are manually segmented from the 
original B-scans in a prerequisite step. 

Secondly, we define all the boundary points of the 
ultrasound contours as on-surface constraints for the 
scattered data interpolation problem in three dimensions. 
For unambiguously defining the solution function, we 
define additional constraints that indicate which points 
should be located inside the object. These are off-surface 
constraints for the scattered data interpolation. 

Thirdly, variational interpolation is invoked to solve 
the scattered data interpolation, the solution is a single 
implicit function in 3D that will be at least C1-continuous, 
i.e., it is smooth.  

Finally, an iso-surface extraction step is performed. 
The implicit function is evaluated to extract the zero-
valued surface as the reconstruction result. The iso-
surface extraction algorithm used in our paper is the 
Marching Cubes algorithm proposed by Lorensen and 
Cline[16]. 

 
Figure 1. Process of new surface reconstruction method. 

 

III.  VARIATIONAL SURFACE RECONSTRUCTION 

A.  Constraints Definition 

On-surface constraints: All the contour points are 
considered as on-surface constraint points and will lie 
exactly on the surface that will be reconstructed. Hence, 
each on-surface is assigned a scalar value 0. 

Off-surface constraints: In order to unambiguously 
define the solution function, we need some additional off-
surface constraints that define which points should be 
located inside the object. In this paper we define some 
additional normal constraints which are known to be 
inside the reconstructed surface as off-surface constraints. 

The location of a normal constraint N
ic (or off-surface 

constraint off
ic ) is calculated by adding a on-surface 

constraint on
ic  to the normal in at that point, that is: 

i
on
i

N
i

off
i nccc +==    （1） 

So each off-surface constraint is paired with a 
corresponding on-surface constraint, and the number of 
off-surface constraints is equal to that of on-surface 
constraints. Figure 2 shows some defined on- & off-
surface constraints. The point cloud of on- & off-surface 
constraints is passed to the following variational 
interpolation routine. While contours have spatial 
orientation, the on- & off-surface constraint points are not 
sensitive to spatial orientation. This is why our new 
reconstruction method can deal with arbitrarily oriented 
and mutually intersected contours, which is an important 
advantage of our approach. 
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Figure 2. Pairs of on- and off- surface constraints (circles and 

pluses). 
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B. Casting Surface Reconstruction to Equivalent 
Variational Problem 

After defining the constraints, the 3D surface 
reconstruction problem can be cast as the following 
scattered data interpolation problem: 

Scattered data interpolation problem: Given a set of 
constraint points 3

1 }),,({ Rccc nz
i

y
i

x
ii ⊂=c and a set 

of their corresponding scalar values Rh n
i ⊂}{ 1 , find a 

function RRf →3:  as the surface reconstruction 
result, so that 

),,1()( nihf ii L==c   （2） 
But because the contours are very sparse, a direct 

interpolation can’t lead to an ideal reconstruction result. 
One solution is to introduce an extra constraint to confine 
the scattered data interpolation problem. We use the 
following energy function as the extra constraint: 

Ω+++
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    （3） 

This energy function is basically a measure of the 
aggregate curvature of )(xf  over the region of interest 
Ω , and any creases or pinches in a surface will result in 
a larger value of the energy measure. So it indicates the 
smoothness of )(xf . The more smooth is )(xf , the 
smaller is E . Because medical anatomic structures are 
usually smooth,  )( fE  should be as small as possible. 

With the energy measure, the surface reconstruction 
problem can be again cast to the following equivalent 
variational problem: 

Equivalent variational problem: Given a set of 
constraint points 3

1 }),,({ Rccc nz
i

y
i

x
ii ⊂=c and a set 

of their corresponding scalar values Rh n
i ⊂}{ 1 , find a 

function RRf →3:  as the surface reconstruction 
result, so that energy measure )( fE  has the smallest 
value and 

),,1()( nihf ii L==c   （4） 
The introduction of energy measure and casting of 

surface reconstruction problem to its equivalent 
variational problem makes our new reconstruction 
method capable of reconstructing an ideal smooth surface 
from very sparse contours. A very small number of 
contours will lead to excellent reconstruction result. 

C. Variational Interpolation: Solution to Equivalent 
Variational Problem 

In order to solve the equivalent variational problem, 
we first expand )(xf  as the weighted sums of a RBF 
(radial basis function) )(xφ : 

∑
=

+−=
n

j
jj Pdf

1

)()()( xcxx φ  （5） 

In (5), ic are the locations of the on- & off-surface 

constraints, dj are the weights. )(xP  is a degree one 
polynomial that accounts for the linear and constant 
portions of )(xf .We use the triharmonic spline for 

)(xφ , which is another commonly used 3D RBF, since it 
results in a C2-continuous and thus smoother 
interpolation[17]. It is defined by 

3)( xx =φ    （6） 

Because the variational radial basis function naturally 
minimizes the energy measure[15], determining the 
weights dj, and the coefficients of )(xP  so that all the 
interpolation constraints are satisfied will yield the 
desired solution that minimizes the energy measure 
subject to the constraints.  

Now substitute the constraints into equation (5), 
which gives: 

∑
=

=+−=
n

j
ijiji niPdh

1

),,1()()( Lcccφ  （7） 

Equation (7) can be formulated as a linear system. Let  
)( jiij cc −= φφ , this linear system can be written as the 

following matrix form: 
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According to Turk and Brien, the above system is 
symmetric and positive semi-definite, so there will 
always be a unique solution for dj and coefficients of 

)(xP [15]. Solving it will gives us )(xf , and a surface-
extraction from )(xf  will give us the reconstructed 
surface. 

IV.  EXPERIMENTS & DISCUSSION 

Two experiments are conducted to evaluate our new 
surface reconstruction method, one using synthetic data, 
the other using phantom ultrasound data. 

For phantom ultrasound image acquisition, we use a 
ZK-3000 ultrasound machine with a 3.5 MHz ultrasound 
probe (Beijing Zhongke-Tianli Tech. Co., Ltd., Beijing, 
China). The electromagnetic tracking device is the 
AURORA from Northern Digital Inc. (Ontario, Canada, 
http://www.ndigital.com). The digital ultrasound image is 
acquired through an image-grabbing card. As mentioned 
above, the position and orientation of the ultrasound 
probe is also recorded simultaneously using the tracking 
device (Figure 3).  

The 3D image reconstruction and visualization is 
performed using a personal computer with a 2.66 GHz 
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Intel Core2™ quad CPU. We have developed an IGS 
(image-guided surgery) software for microwave ablation 
of hepatic tumor (Figure 4), which we uses as the surface 
reconstruction and visualization program in this paper. 
 

 
Figure 3. Phantom experiment configuration. 

 

 
Figure 4. Reconstruction & visualization software. 

 
 
A.  Experiment 1 - Using Synthetic data 

In this experiment, we reconstruct a shelly object 
from several non-parallel cross-sections. The original 
data (Figure 5(a)) is from the Amira Demos 3.1 CD 
(http://www.amiravis.com). 2, 4, 9, or 16 mutually 
intersected cross-sections are first re-sampled from the 
original data and are used respectively to reconstruct the 
shell. The experiment result is shown in Fig. 5. For each 
case, from left to right is: the used cross-sections, the 
boundary constraints (red) and their corresponding 
normal constraints (yellow), the reconstruction result, the 
visual difference between the reconstruction result (red) 
and the original data (yellow). The quantitative difference 
between the volume of the reconstruction result and the 
original data is illustrated in Table I. 

All the cross-sections are non-parallel to each other, 
actually they are intersecting each other. This indicates 
that our new method can handle arbitrarily oriented cross-
sections. For all the cases, the new method gets good 

performance: the visual difference is small and the 
volume difference is no more than 1.5%. Furthermore, 
the new method takes a small number of cross-sections as 
input data, even two cross-sections can lead to a close 
approximation of the original data. As the number of used 
cross-sections increases, the volume difference doesn’t 
decrease drastically accordingly. Actually, a great many 
number of cross-sections will lead to large computation 
overhead and makes our new method no more feasible for 
real-time reconstruction. 

There are many creases and pinches in the surface of 
the original data, these details are missing in the 
reconstruction result. This is because that VIF 
reconstruction method should minimize the energy 
measure, and any creases or pinches in a surface will 
result in a larger value of the energy measure. For clinical 
applications, this problem doesn’t matter much because 
most surfaces of the anatomic structures are smooth. 

TABLE I.   

VOLUME DIFFERENCE BETWEEN RECONSTRUCTED SURFACE AND 
ORIGINAL DATA (SHELL) 

Number of cross 
sections Volume(mm3) Volume 

difference(mm3) 
Volume 

difference(%)

Original data 1529.90   

2 1523.63 -6.27 -0.41% 

4 1505.09 -20.81 -1.36% 

9 1545.96 20.06 1.31% 

16 1547.09 21.19 1.39% 

 
 
B.  Experiment 2 - Using Phantom Ultrasound Data 

In this experiment, we reconstruct a phantom from 
real ultrasound data. The phantom we used is a plastic 
apple (Figure 6(a)). 3, 4, or 7 mutually intersected cross-
sections are used respectively to reconstruct the apple. 
The experiment result is shown in Fig. 6. For each case, 
from left to right is: the original ultrasound data and 
segmented contours (light blue), the used cross-sections, 
and the reconstruction result. The quantitative difference 
between the volume of the reconstruction result and the 
original phantom data is illustrated in Table II. 

TABLE II.   

VOLUME DIFFERENCE BETWEEN RECONSTRUCTED SURFACE AND 
ORIGINAL DATA (PLASTIC APPLE) 

Number of 
cross sections Volume(mm3) Volume 

difference(mm3) 
Volume 

difference(%)

Original data 183300   

3 202230 18930 10.33% 

4 197588 14288 7.80% 

7 194807 11507 6.28% 
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       (a) 

 (b) 

 (c) 

 (d) 

 (e) 
Figure 5. Surface Reconstruction of a shell using synthetic data.  

(a) original data; (b) 2 slices; (c) 4 slices; (d) 9 slices; (e) 16 slices. 
 
 

     (a) 

 (b) 
 

 (c) 

 (d) 
Figure 6. Surface Reconstruction of a toy apple using phantom ultrasound data.  

(a) original data; (b) 3 slices; (c) 4 slices; (d) 7 slices. 
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The result of this experiment conforms to that of 
experiment 1. Visually all the reconstruction surfaces 
resemble to the original plastic apple in an amazing way. 
The volume difference is a little bigger than that of 
experiment 1, which may result from the inaccuracy of 
the volume measurement of the original plastic apple, but 
still in an acceptable limit. 

V.  CONCLUSION 

We present a new approach for the surface 
reconstruction of sparse and mutually-intersected 
contours in freehand 3D ultrasound imaging based on 
variational interpolation. It is capable of creating smooth 
surface from a small number of segmented contours 
which can be arbitrarily oriented in 3D space, that is, it 
can handle both sparse and non-parallel contours which 
are two main drawbacks of freehand 3D ultrasound 
imaging and have disabled many conventional 3D 
reconstruction methods. 

Two experiments are conducted to evaluate the new 
surface reconstruction method, one using synthetic data, 
the other using phantom ultrasound data. The results 
have shown that new method can get good performance: 
the visual difference and the volume difference between 
the reconstruction result and the original data is very 
small, even two contours can lead to a close 
approximation of the original data. These results also 
confirm that our reconstruction method can handle both 
sparse and mutually-intersected contours. 

The reconstructed surface produced by the new 
method appears smooth and natural. This problem 
doesn’t matter much because objects in medical images 
are rather smooth as biological structures generally do 
not have sharp edges. 
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