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Abstract—The optimization of kernel parameters is an 
important step in the application of the Relevance Vector 
Machine (RVM) for many real-world problems. In this 
paper, firstly we have developed an improved anisotropic 
Gaussian kernel as the kernel function of the RVM model, 
whose parameters are optimized by Bacterial Foraging 
Optimization (BFO). Then the proposed method is applied 
to describing the pressure fluctuation characteristics of the 
draft tube of hydroelectric units of a hydropower station, 
through the comparison, the simulation results show the 
parameters of the improved anisotropic Gaussian kernel are 
well optimized using the BFO, and the acquired RVM 
model can precisely describe the pressure fluctuation 
characteristics of the draft tube, and the less training 
samples are required to establish the accurate RVM model 
implying that it is more sparse than its counterpart. 

Index Terms—Bacterial Foraging Optimization, Relevance 
Vector Machine, Hydroelectric units, Pressure Fluctuation 

I.  INTRODUCTION  

It is well known that pressure fluctuation in draft tube 
caused by vortex rope has a great influence on the stability 
of hydroelectric units. Pressure fluctuation of draft tube] is 
the main factors which effect the stable operation of 
turbine. In the operation process, all sorts of dynamic 
testing instruments are used to loot, record and analyze the 
pressure fluctuation signals, which can control the stable 
operation of turbine. In recent years, scientific and 
technological personals have discussed the pressure 
fluctuation of draft tube. Grasping the laws of pressure 
fluctuation has very important practical significance to 
contribute to the secure and stable running of hydro-
generator units under different operating conditions [1-3]. 

Because the strong nonlinear characteristics of pressure 
fluctuation makes its expression and analysis difficult, so, 
how to find a more effective method to express the 
characteristics is becoming a burning question now [4, 5]. 
Recently there are many nonlinear approaches proposed 
are applied to the pressure fluctuation of the turbine, such 
as Artificial Neural Networks (ANN) [6-8], Support 
Vector Machine (SVM) [9] and so on. But they have 
many drawbacks, for example, the ANN can trap into 
local minimum and has inherent searching rate slowly 
when training[10] ,SVM is wasteful both of data and 
computation to determine the relative parameters through 
carrying on a cross-validation procedure, and it does not 
allow for the free use of an arbitrary kernel function [11-
15]. 

RVM[16] is a probabilistic sparse kernel model 
identical in functional form to SVM, where a Bayesian 
approach to learning is adopted introducing a prior over 
the weights governed by a set of hyperparameters, its 
main advantages include its capability to obtain a 
generalization performance comparable to SVM but using 
dramatically fewer training samples, Furthermore, and  
suffering from none of the other limitations of SVM 
outlined above. Application of group foraging strategy of 
a swarm of E.coli bacteria in multi-optimal function 
optimization is the key idea of the new algorithm [17-19]. 
In this paper, an improved anisotropic Gaussian kernel as 
the kernel function of the RVM model is developed, 
whose parameters are optimized by the BFO. Then the 
proposed method is applied to describing the pressure 
fluctuation characteristics of the draft tube of 
hydroelectric units, the accuracy of results and sparseness 
of the acquired RVM model in the comparative simulation 
illustrate the superiority of the proposed method. 

II. BACTERIAL FORAGING OPTIMIZATION 

The bacterial foraging system consists of four principal 
mechanisms, namely swarming and tumbling, chemotaxis, 
reproduction, elimination-dispersal Below we briefly 
describe each of these processes [20-23].. 
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Swarming and Tumbling. The flagellum is a left-
handed helix configured so that as the base of the 
flagellum rotate counter clockwise from the free end of 
the flagellum looking toward the cell; it produces a force 
against the bacterium pushing the cell. This mode of 
motion is called swimming. Bacteria swim either for 
maximum number of steps Ns or less depending on the 
nutrition concentration and environment condition.  

Chemotaxis. A chemotaxis step is the movement of an 
E.coli cell through swimming and tumbling via flagella. 
Biologically, an E.coli bacterium can move in two 
different ways. It can swim for a period in the same 
direction, or it may tumble, and alternate between these 
two modes of operation for the entire lifetime. Suppose 
θi(j,k,l) represents ith bacterium at jth chemotactic, kth 
reproductive and lth elimination dispersal step. C(i) is the 
size of the step taken in the random direction specified by 
the tumble (run length unit). Then in computational 
chemotaxis the movement of the bacterium may be 
represented by 

           ( )( 1, , ) ( , , ) ( )
( ) ( )

i i

T

ij k l j k l C i
i i

θ θ Δ
+ = +

Δ Δ
     

(1) 
where △ indicates a vector in the random direction 
whose elements lie in [–1, 1]. 

Reproduction. After Nc chemotactic steps, a 
reproduction step is taken. Let Nre be the number of 
reproduction steps to be taken. For convenience, we 
assume that S is a positive even integer. Let Sr=S/2 be the 
number of population members who have had sufficient 
nutrients so that they will reproduce (split in two) with no 
mutations. For reproduction, the population is sorted in 
order of ascending accumulated cost. The Sr least healthy 
bacteria die and the other Sr healthiest bacteria each split 
into two bacteria, which are placed at the same location. 

 Elimination-dispersal. Elimination event may occur for 
example when local significant increases in heat kills a 
population of bacteria that are currently in a region with a 
high concentration of nutrients. A sudden flow of water 
can disperse bacteria from one place to another. The effect 
of elimination and dispersal events is possibly destroying 
chemotactic progress, but they also have the effect of 
assisting in chemotaxis, since dispersal may place bacteria 
near good food sources.  

III. RELEVANCE VECTOR MACHINE IN REGRESSION 

Tipping [15, 16] proposed the Relevance Vector 
Machine in 2000. For a regression problem, given a 
training dataset{ } 1

, N
n n n

x t
=

, 

( ),n n nt y x ε= +w = +t y ε           (2) 
Where the errors ( )1,....., nε ε=ε are modeled 
probabilistically as independent zero-mean Gaussian, 
with variance 2σ , so ( ) ( )2

1
0,N

nn
p Nε ε σ

=
=∏ , 

( )1....., Mw w=w  is the parameter vector and ( ),ny x w  can 
be expressed as a linearly weighted sum of some basis 
functions ( )φ x : 
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1

,
M
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The likelihood of the complete dataset can be written as 
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RVM adopts a Bayesian perspective, and constrains the 
parameter by defining an explicit prior probability 
distribution over them, the posterior distribution over the 
weights is thus given by: 

( ) ( ) ( )/ 2 1/2 2
1

2 exp / 2MM
m m mm

p wπ α α−

=
= −∏w α   (5) 

Givenα , the posterior parameter distribution conditioned 
on the data is given by combining the likelihood and prior 
within Bayes’s rules:  

( ) ( ) ( ) ( )2 2 2, , , / ,p p p pσ σ σ=w t α t w w α t α         (6) 

Sparse Bayesian learning can be formulated as a type–
II maximum likelihood procedure; that is, a most 
probable point estimate MPα  may be found throughout 
the maximization of the marginal likelihood with respect 
to the hyperparameters ai 

( ) 11 log 2 log | | ,
2

TL N π −⎡ ⎤= − + +⎣ ⎦α C t C t                  (7) 

The predictive distribution for a new datum *x is 
defined as follows:  

( ) ( ) ( )2 2 2
* * ,, , | , | ,MP MP MP MP MPp t p t p dσ σ σ=∫t α w w t α w   (8) 

which is easily computed due to the fact that both 
integrated terms are Gaussian, resulting in a Gaussian too.    

( ) ( )2 2
* * * *, , | ,MP MPp t N t yσ σ=t α ,  

with           ( ) ( )2 2
* * *

T
MPσ σ φ φ= + ∑x x                           (9) 

IV. BFO FOR AN IMPROVED ANISOTROPIC KERNEL 
It is widely acknowledged that a key factor that affects 

the performance of the RVM is the choice of the kernel. 
However, owing to the difficulty of appropriately refining 
the parameters some different types of kernels are 
restricted in practice [24]. We present here a technique 
that allows us to deal with a large number of kernel 
parameters and thus use more complex kernels. 

A. An Improved Anisotropic Gaussian Kernel 
Gaussian kernel function outperforms others when the 

lack of a prior knowledge in about the learning process, 
but Gaussian function is a local kernel function, the map 
characteristic of the Gaussian function for Yi =0.3 is 
shown in Figure 1 according to equation (14), it can be 
seen that there exists larger kernel function value only 
near the test point Yi =0.3, and the farther the point is 
from the test point, the smaller its kernel function value 
becomes, finally it approaches zero rapidly. So, the 
Gaussian kernel function only has an effect on samples 
near the neighborhood of the test point instead of that far 
from the test point [25]. Based on this, an improved 
Gaussian kernel function is proposed as follows [26], 

2

2

2( , ) exp( )
( )

K q
p

σ
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x y
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Where p is displacement factor (p>0), and q is fine 
adjustment factor which is usually set as 0. So, for it, 
there are two parameters to be determined including the 
width factor σ and displacement factor p. The map 
characteristic of the improved Gaussian function for Yi 
=0.3 is shown in Figure 2 according to equation (10), it is 
clear that the improved Gaussian kernel function has both 
the local characteristic and the global characteristic, and 
the function value far from the test point decreases slower 
than that of the Gaussian kernel function. 

 
 

 
Since many real-world databases contain 

characteristic attributes of very different natures, we 
consider sparse linear models whose kernel function is 
anisotropic kernel function, this is to say, we assign 
different values to the parameters of each kernel function 
for each input dimension, the anisotropic kernel function 
can lead to a significantly better performance than 
isotropic kernel function, so, in this paper, an improved 
anisotropic Gaussian kernel function is developed and is 
given by: 

 2

2
1

2( , ) exp( )
( )

d
i

i i i i

K
x y p

σ
=

=
− +∑yx       (11) 

Where n equals the dimensionality of input vectors and 
for each width factor σi and displacement factor pi: 
σ1≠σ2≠…≠σd, p1≠p2≠…≠pd. 

B. Kernel Parameters Optimization based on BFO 
The determination of the kernel parameters need to 

meets a specific criterion. The following mean relative 
error is used as the performance criterion; meanwhile, it 
is also used as the fitness evaluation function of the BFO 
which is given by (12) 

*

1

1 | ( ) ( ) |
( )

N

fitness
i

y i y iJ
N y i=

−
= ∑                  (12) 

where Jfitness is the fitness evaluation function, y*(i) is the 
prediction value of the ith sample, y(i) is the actual value 
of the ith sample, and N is the number of samples. 
Based on the aforementioned analyses, an improved 
anisotropic Gaussian kernel optimizing by BFO is 
proposed here, and its procedure is described as follows: 
[Step 1] Initialize parameters S, Nc, Ns, Nre, Ned, C(i), Ped, 

C(i)(i=1,2,…,S),φi, where 
n: dimension of the search space, 
S: the number of bacteria in the population, 
Nc: number of chemotactic steps, 
Ns: swimming length, 
Nre: the number of reproduction steps, 
Ned: the number of elimination–dispersal events, 
Ped: elimination–dispersal with probability, and 
C(i): the size of the step taken in the random 
direction specified by the tumble.  

[Step 2] Elimination-dispersal loop: 1+= ll . 
[Step 3] Reproduction loop: 1+= kk . 
[Step 4] Chemotaxis loop: 1+= jj . 

[a] For 1,2, ,i N= L , take a chemotactic step for 
bacterium i  as follows. 

[b] The fitness function ( , , , )J i j k l  is calculated using 
equation (12).  

Let ( , , , ) ( , , , ) ( ( , , ), ( ))i
ccJ i j k l J i j k l J j k l p  j, k, lθ= +  

(i.e., add on the cell-to-cell attractant–repellant profile 
to simulate the swarming behavior)  

[c] Let ( , , , )lastJ J i j k l=  to save this value since we 
may find a better cost via a run. 

[d] Tumble: generate a random vector ( ) ni RΔ ∈  with 
each element ( )m iΔ , a random number on [ 1,1]− . 

[e] Move: let ( )( 1, , ) ( , , ) ( )
( ) ( )

i i

T

ij k l j k l C i
i i

θ θ Δ
+ = +

Δ Δ
 

this results in a step of size ( )C i  in the direction of 
the tumble for bacterium i . 

[f]Compute ( , 1, , )J i j k l+  and let 
( 1 ) ( ) ( ) 1, ))i

ccJ i, j+ ,k,l  = J i, j, k, l + J ( j+1, k, l , P( j+  k, lθ
 

[g] Swim. 
i) Let m=0 (counter for swim length). 
ii) While < sm N  (if have not climbed down too 

long). 
iii) Let m=m+1. 
iv) If ( , 1, , )< lastJ i j k l J+  (if doing better), let 

( , 1, , )lastJ J i j k l= +  and let 
( )( 1, , ) ( , , ) ( )

( ) ( )
i i

T

ij k l j k l C i
i i

θ θ Δ
+ = +

Δ Δ

,  

and use this ( 1, , )i j k lθ + to compute the 
new ( , 1, , )J i j k l+ as we did in [f]. 

v) Else, let sm N= .  
[h] Go to next bacterium ( 1)i +  if i S≠  (i.e., go to [b] 

to process the next bacterium). 

 
Figure 2.The map characteristic of improved kernel for Yi =0.3i 

 
Figure 1. The map characteristic of Gaussian kernel function for Yi =0.3
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[Step 5] If < cj N , go to Step 4. In this case, continue 
chemotaxis since the life of the bacteria is not 
over. 

[Step 6] Reproduction. 
[a] For the given k and l, and for each 1,2, ,i S= L , let 

1

1
( , , , )

cN
i
health

j
J J i j k l

+

=

= ∑
 

be the health of the bacterium i  (a measure of how 
many nutrients it got over its lifetime and how 
successful it was at avoiding noxious substances). 
Sort bacteria and chemotactic parameters ( )C i  in 
order of ascending cost healthJ   

[b]  The 
rS  bacteria with the highest healthJ  die and the 

remaining 
rS  bacteria with the best values split.  

[Step 7] If < rek N , go to [Step 3]. In this case, we have not 
reached the number of specified reproduction steps, 
so we start the next generation of chemotactic loop. 

[Step 8] Elimination-dispersal. For 1,2, ,i S= L , with 
probability edP , eliminate and disperse each 
bacterium, and this result in keeping the number of 
bacteria in the population constant. To do this, if a 
bacterium is eliminated, simply disperse one to a 
random location on the optimization domain. If  
< edl N , then go to [Step 2]; otherwise end. 

V. EXPERIMENTAL RESULTS 

The water heads are 56m, 63m, 68m and 73m 
respectively, each water head adopts 22 different 
operating condition points, the 88 samples corresponding 
to the characteristics of pressure fluctuation are used as a 
dataset, we select 2 samples from each water head 
randomly which are used as test samples, the remaining 
80 samples are used as training samples. According to the 
field test data and the comprehensive characteristics, we 
establish the characteristics model of the pressure 
fluctuation among the operating water head, the output 
capacity and the dual amplitude based on RVM: f=(H,N), 
where H is the operating water head, N is the output 
capacity, and f is the dual amplitude, it is clear that the 
input of the RVM model to be established is two 
dimensional, the kernel function corresponding to the 
RVM model should be as follows: 

22

2
1

2( , ) exp( )
( )

i

i i i i

K
x y p

σ
=

=
− +∑yx               (13) 

So, the number of kernel parameters to be determined for 
the RVM model should be 4, they are σ1, p1, σ2, p2. which 
are optimized using the BFO, the parameter setup of the 
BFO is summarized in Table 1. 

After the RVM model with the improved anisotropic 
Gaussian kernel is optimized by the BFO, the Jfitness 
achieves 0.2162 and 17 relevance vectors are obtained 
when the optimal kernel parameters are σ1= 29.3148, p1,= 
8.6663, σ2= 66.3225, and p2= 25.2493 respectively; 
finally the optimal kernel parameters are put into the 
RVM model to establish the pressure fluctuation 
characteristics of the turbine. Figure 3 illustrates the 
pressure fluctuation characteristics surface generated by 

the RVM with the improved anisotropic Gaussian kernel, 
the generated surface is complex and 17 out of 80 vectors 
are chosen as being relevant in this RVM model. Figure 4 
epicts the pressure fluctuation curves under different 
water heads, all the relevance vectors are map out in each 
curve.  

 

 

 
For the comparison, the RVM model with the Gaussian 

kernel based on the BFO is also used to this experiment, 
the dataset and the parameters of BFO are the same as 
that of the proposed method, when the iteration is over 
the Jfitness achieves 0.3651 and the optimal kernel 
parameters are σ= 29.3148, Figure 5 demonstrates the 
actual values versus the fitting values of two RVM model 
corresponding to the training sample points and test 
sample points respectively. It can be noticed that RVM 
with the improved kernel outperforms one with the 
Gaussian kernel, whether the training accuracy of training 
samples or the prediction accuracy of test samples. Table 
2 lists the test relative error of 8 test sample points and 
the average relative error for the RVM models based on 
the two kernels under different water heads, it is obvious 
that the accuracy most of test sample points for the RVM 
model with the improved kernel is better than that of the 

TABLE 1 
 PARAMETER SETUP FOR BFO 

Parameter S Nc Ns Ned Nre ped

BFO 50 100 12 4 16 0.25

 
(a) Water head H=56 m              (b) Water head H=63m 

 
(c) Water head H=68m                 (b) Water head H=78m 

Figure 4.The fitting surface of operating points of RVM model  btained

 
Figure 3. he fitting surface of operating points of RVM model  
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Gaussian kernel, and the average relative error for the 
improved kernel is 0.0219, that is lower than 0.0342 of 
the Gaussian kernel. 

 
Each training sample has an effect on the final solution 

to some degree, the weight of each train sample is used as 
the important degree which contributes to the final model 
Figure 6 shows the influence of each training ample for 
the two RVM model, the samples which do not influence 
on the RVM model are located in the x-axis, the samples 
which do not be in the x-axis would contribute to the 
final RVM model, for the RVM model with the improved 
kernel,  the number of relevance vector is 17, for the 
RVM model with the Gaussian kernel, the number of 
relevance vector is 25, it shows the former is more sparse 
then the latter, which requiring less than a quarter of 
training samples can establish a good RVM model, and 
the training samples used as establishing the RVM model 
with the improved kernel, and the estimated variances 
values of the models are used to the RVM model with the 
Gaussian kernel too. 

Table 3 summarizes the performance comparison for 
the RVM model corresponding to the two kernels, it 
presents not only the numbers of RV for the two RVM 
models, but only the MSE of the training samples and the 
test samples are listed, there are a great difference 
between the two model, to establish a good RVM model, 
the RVM model with the improved kernel requires only 
20% of the training samples, is much less than 30% of the 
training samples required by the RVM model with the 
Gaussian kernel implying the great sparsity of the 
improved kernel, and then the MSE of training and test 
samples for the RVM model with the improved kernel are 
smaller than those for the RVM model with the Gaussian 
kernel. 

 
 

 
 

 
 
 
 
 
 
 
 

VI. CONCLUSIONS 
In this paper, we have proposed an improved 

anisotropic Gaussian kernel used as the kernel function of 
the RVM model, and its parameters are optimized using 
the BFO, the acquired RVM model is applied to 
describing the pressure fluctuation characteristics of the 
draft tube of hydroelectric units of a hydropower station, 
the comparative simulation results show the proposed 
method can describe more accurately the pressure 
fluctuation characteristics of the draft tube, and then, it 
can give the right weight to the right characteristic which 
has more flexibility to reduce the number of relevance 
vector, it results in the great sparity for the good RVM 
model.  
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   (a) The RVM model with Gaussian kenel         

 
  (b) The RVM model with improved anisotropic 
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Figure 5 Actual values versus values of two RVM 

TABLE Ⅱ  
PREDICTING RESULTS OF TEST SAMPLES USING TWO RVM MODEL 

Water 
head 
/m 

Output  
capacity 

/MW 

Dual  
amplitude 

/95%A 

Gaussian 
kernel 
/95%A 

Improved 
kernel
/95%A

56.00 105.37 2.20 2.2901 2.3280
56.00 42.24 5.82 5.8364 5.8311
63.00 83.15 7.91 7.0828 7.9854
63.00 74.62 10.24 10.5047 10.5254
68.00 68.30 11.41 11.6995 12.1398
68.00 33.72 15.23 15.5867 15.3536
78.00 56.21 16.81 17.0417 17.8336
78.00 110.26 19.22 17.6769 20.3552

TABLE Ⅲ  
PERFORMANCE COMPARISON FOR THE RVM MODEL 

Kernel  
method 

number 
of RV

 percent 
of RV 

MSE of  
training set

MSE of 
test set

Gaussian kernel 25 30.125% 2.981% 3.416%

Improved kernel 17 20.125% 1.892% 2.361%
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