JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

1175

H-HIBASE: Compression Enhancement of
HIBASE Technique Using Huffman Coding

Ahsan Habib
Metropolitan University, Sylhet, Bangladesh
Email: ahabib@metrouni.edu.bd

A. S. M. Latiful Hoque
Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
Email: asmlatifulhoque@cse.buet.ac.bd

Md. Russel Hussain
Metropolitan University, Sylhet, Bangladesh
Email: mrhussain@rocketmail.com

Abstract— HIBASE compression technique simply replaces
the attribute values in a tuple with fixed length code-words.
However, fixed length coding system is not an optimal
compression technique because some redundancies occur in
the compressed table. This redundancy can be avoided if we
use Huffman code-words. Moreover, using Huffman code-
word will ensure optimal compression as well as high
performance operation. The objectives of the research are to
i) develop a dictionary by applying the principle of Huffman
coding, ii) compress the relational storage of HIBASE by
applying dynamic Huffman coding, iii) develop algorithm to
perform query operation on the compressed storage, iv)
analyze the performance of the proposed system in terms of
both storage and queries. The main contribution of this
research is to develop a compression technique. It implies
the enhancement of HIBASE technique using HUFFMAN
coding (H-HIBASE) with better compression capability.

Index Terms— data compression, database compression,
HIBASE, Huffman, variable length coding.

1. INTRODUCTION

The HIBASE (High Compression Database System) [1]
approach is a compression technique for Main Memory
Database Management System (MMDBMS) [2] which
supports high performance query operations on relational
structure [3]. The dictionary space overhead is excessive
for this system. Fixed length coding system does not
consider the frequency of occurrence of the values. Thus
HIBASE requires higher space in the compressed
database. This higher storage requirement can be avoided
if we use Huffman code-words [4]. As we know Huffman
algorithm generates an optimal tree [4][5], hence the
compression will be optimized. However, the use of
Huffman coding could increase the query complexity in
HIBASE, but this complexity can be reduced by
designing proper algorithm.

©2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.5.1175-1183

A. Dictionary Based HIBASE Compression Approach

The HIBASE [1] approach is a more radical attempt to
model the data representation which is supported by
information theory. The architecture represents a relation
table in storage as a set of columns, not as a set of rows.
Of course, the user is free to regard the table as a set of
rows. However, the operation of the database can be
made considerably more efficient when the storage
allocation is arranged by columns.

TABLE L.

DISTRIBUTOR RELATION

1D First Name Last Name Area
1 Abdul Bari Dhaka
2 Abdur Rahman Sylhet
3 Md Alamin Chittagong
4 Abdul Gafur Dhaka
5 Salam Bari Sylhet
6 Md Tuhin Rajshahi
7 Salam Mia Rajshahi
8 Chan Mia Dhaka
9 Ghendhu Mia Chittagong
10 Abdur Rahman Sylhet

The database is a set of relations. A relation is a set of
tuples. A tuple in a relation represents a relationship
among a set of values. The corresponding values of each
tuple belong to a domain for which there is a set of
permitted values. If the domains are D;, D,,....... , Dy
respectively, a relation r is defined as a subset of the
Cartesian product of the domains. Thus r is defined as

rc D, xD, x........ xD,.

An example of a relation is given in Table 1. In the
conventional database technology, we have to allocate
enough space to fit the largest value of each field of the
records. When the database designer does not know

1176

exactly how large the individual value is, he/she must
make a mistake on the side of caution and make the field
larger than is strictly necessary. In this instance, a
designer should specify the width in bytes as shown in
Table II. Each tuple is occupying 18 bytes, so that 10
tuples occupy 180 bytes.

TABLE II.

FIELD LENGTH AND TUPLE SIZE FOR DISTRIBUTOR RELATION

of Attribute Name Bytes
Attribute
0 First Name 6
1 Last Name 6
3 Area 6
Total 18

The HIBASE architecture can be derived from a
conventional record structure using the following steps:

1. A dictionary per domain is employed to store the
string values and to provide integer identifiers for
them. This achieves a lower range of identifier, and
hence a more compact representation could be
achieved.

2. Replace the original field value of the relation by
identifiers. The range of the identifiers is sufficient to
distinguish string of the domain dictionary.

TABLE II1.

COMPRESSED TABLE IN HIBASE

First Name Last Name Area
000 001 00
010 010 01
011 011 10
000 100 00
001 001 01
011 101 11
001 000 11
100 000 00
101 000 10
010 010 01

Hence in the compressed table each tuple resumes only
3 bits for First Name, 3 bits for Last Name, 2 bits for
Area forming total of 8 bits. This is not the overall
storage; however, we must take account of the space
occupied by the domain dictionaries and indexes.
Typically, a proportion of domain is present in several
relations and this reduces the dictionary overhead by
sharing it through different attributes.

B. The Huffman Codes

In computer science and information theory, Huffman
coding is an entropy encoding algorithm used for lossless
data compression. The term refers to the use of a

©2013 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. §, NO. 5, MAY 2013

variable-length code table for encoding a source symbol

(such as a character in a file) where the variable-length

code table has been derived in a particular way based on

the estimated probability of occurrence for each possible

value of the source symbol. It was developed by David A.

Huffman while he was a Ph.D. student at MIT, published

in 1952 paper "A Method for the Construction of

Minimum - Redundancy Codes" [4][6].

Huffman coding is a widely used and very effective
technique for compressing data;

1. Savings of 20% to 90% are typical, depending on the
characteristics of the file being compressed.

2. Huffman coding involves the use of variable-length
codes to compress long string of text.

3. By assigning shorter codes to more frequent
characters, Huffman encoding can compression text
by as much as 80%.

The simplest construction algorithm uses a priority
queue where the node with lowest probability is given
highest priority [6]:

1. Create a leaf node for each symbol and add it to the

priority queue.

2. While there is more than one node in the queue:

a) Remove the two nodes of highest priority
(lowest probability) from the queue

b) Create a new internal node with these two nodes
as children and with probability equal to the sum
of the two nodes' probabilities.

¢) Add the new node to the queue.

3. The remaining node is the root node and the tree is

complete.

5 B [] [

Figure 1. Construction of a Huffman Tree.

Since efficient priority queue data structures require
O(log n) time per insertion, and a tree with n leaves has
2n—1 nodes, this algorithm operates in O(n log n) time.

II. EXPERIMENTAL DESIGN

As we know Huffman algorithm generates an optimal
tree, hence the compression will be optimized. Figure 2
shows the whole analysis at a glance, five steps are
necessary to complete whole process. Steps are explained
below:

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

Input Raw Data

1l

Split Input as Binarv Relational Data

1l

| Generate Dictionary Using Huffman Algorithm |

1

Encode Data

Il

Perform Query Operation

Figure 2. Experimental Design at a glance.

Moreover high performance will be ensured as most
repeated attribute values will get more weight and will be
entered first in the dictionary i.e. domain dictionary
values will be sorted in such a way that frequently
occurred values will be accessed first than the rare values.
It has been shown in figure 2 that five steps are necessary

to complete the whole process.

A. Five Steps of the H-HIBASE Architecture

Step 1: Take synthetic and real data as input
(Consider the database shown in table V).

TABLE V.

DISTRIBUTOR RELATION
1D First Name Last Name Area
1 Abdul Bari Dhaka
2 Abdur Rahman Sylhet
3 Md Alamin Chittagong
4 Abdul Gafur Dhaka
5 Salam Bari Sylhet
6 Md Tuhin Rajshahi
7 Salam Mia Rajshahi
8 Chan Mia Dhaka
9 Ghendhu Mia Chittagong
10 Abdur Rahman Sylhet

Step 2: Split the relational database as binary

relational databases (Shown in table V).

1177
TABLE V.
BINARY RELATIONAL DATABASE
First

m| o D & | || Area

1 Abdul 1 Bari 1 Dhaka

2 Abdur 2 | Rahman 2 Svlhet

3 Md 3 Alamin 3 | Chittagong
4 Abdul 4 Gafur 4 Dhaka

5 Salam 5 Bari 3 Svlhet

6 Md 6 Tuhin 6 Rajshahi

7 Salam 7 Mia 7 Rajshahi
8 Chan 8 Mia g Dhaka

9 | Ghendhu 9 Mia 9 | Chittagong
10 Abdur 10| Rahman 10 Sylhet

TABLE VL.
H-HIBASE DICTIONARY
First Last

Index | Name Codeword Index | Name Codeword
1.4 | Abdul 110 789 | Mia 10

5.7 | Salam 111 15 | Bai 111
2.10 | Abdur 00 2.10 | Rahman 00

36 Md 01 3 Alamin 010

8 Chan 100 4 Gafur 011

9 Ghendhu | 101 6 Tuhin 110
Index | Area Codeword

148 | Dhaka 10

2.5.10 | Svlhet 11

39 Chittagong | 00

6.7 Rejshahi | 01

Step 4: Develop algorithm to encode data (Shown in
table VII).

The range of the identifiers needs only to be sufficient
to distinguish unambiguously which string of the domain
dictionary is indicated. In Table III, since there are only 6
distinct First Names, only six variable length codeword
are required. This range can be represented by only a 3
bit or 2 bit binary number.

Binary relational database is a database with two
columns in each table and it is very efficient where
column wise searching is regular. The Table IV has been
split to three Binary relation tables which are shown in
Table V.

Step 3: Generate dictionary using Huffman algorithm
(Shown in table VI).

A dictionary for each domain is created and it stores
string values and provides Huffman codeword for them.
This achieves a lower range of codeword, and hence a
more compact representation can be achieved.

TABLE VII.
H-HIBASE STORAGE

First L ast

Name Name Area
110 111 10
00 00 11
01 010 00
110 011 10
111 111 11
01 110 01
111 10 01
100 10 10
101 10 o0
00 (o]} 11

©2013 ACADEMY PUBLISHER

Therefore in the compressed table each tuple requires
only (2 bits or 3 bits for First Name, 2 bits or 3 bits for
Last Name, 2 bits for Area) a total of maximum 8 bits.
This achieves a compression of the table by a factor of

1178

over 15.

Step 5: Develop algorithm to perform query operation
on the compressed storage.

After encoding data it is challenging to retrieve those
codes from compressed storage. Dictionary access and
compressed storage access are necessary to perform every

query.

B. H-HIBASE: Storage Complexity

B.1. HIBASE

SCi=n * C; bits

Where SCi = space needed to store column i in
compressed form

n = number of records in the relation

Ci = number of bits needed to represent i" attribute in
compressed form

= [lg(m)] ; m is number of entries in the

corresponding domain dictionary

Total space to store all compressed columns, Sypase

P
= z S bits; number of column is p

i=1

If we assume that domain dictionaries will occupy an
additional 25% of S = 1.25 S, then total space to store the
compressed relation, Scrumase = 1.25 Suizase

B.2. H-HIBASE

n
SH-HIBASE = i Z a;; bits

i =l
a; represents the number of bits in a particular
position of the two dimensional matrix, where i is the
number of row and j is the number of column.
If we assume that domain dictionaries will occupy an
additional 25% of S = 1.25 S, then total space to store the
compressed relation, Scry.npase = 1.25 Sy.niBase

B.3. Compression Enhancement
Compression Enhancement = ((Scrusase - Scrm-
HlBASE)ﬂ< 100 / SCRHIBASE) %

III. IMPLEMENTATION

A. H-HIBASE Dictionary

To translate to and from the compressed form it is
necessary to go through a dictionary. A dictionary is a list
of values that occur in the domain. Huffman dictionary
will be comparable to Huffman table where two pieces of
information will be stored namely lexeme and token.
Lexeme corresponds to discrete values in a domain
whereas token corresponds to code-word. Short code-
words will be placed first for a domain dictionary which
will ensure faster dictionary access. Hence there will be a
significant improvement in database performance during
compression, decompression and query operations. As
Huffman coding gives more weight to most repeated
value, it is likely to have shortest code-word to most
repeated value. Huffman algorithm will generate the
position of values in the dictionary. Table VI shows

©2013 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. §, NO. 5, MAY 2013

dictionaries for distributor relationship. The Huffman
dictionary has generated as per following algorithm.
HUFFMAN (C)
n«— |C|
Q«C
fori—1ton-1
do allocate a new node z
left[z] « x « EXTRACT-MIN (Q)
right[z] « y <~ EXTRACT-MIN (Q)
2] — f[x] + fly]
INSERT (Q, 2)
return EXTRACT-MIN (Q)

O X NNk LD =

In the pseudocode that follows, we assume that C is a
set of n strings and each string ¢ € C is an object with a
defined frequency f[c]. The algorithm builds the tree T
corresponding to the optimal code in a bottom-up manner.
It begins with a set of |C| leaves and performs a sequence
of |C| - 1 “meaning” operations to create the final tree. A
min-priority queue Q, keyed on f, is used to identify the
two least-frequent objects to merge together. The result of
the merger of two objects is a new object whose
frequency is the sum of the frequencies of the two objects
that were merged [7].

In algorithm n is the initial queue size, line 2 initializes
the min-priority queue Q with the character in C. The for
loop in line 3-8 repeatedly extracts the two nodes x and y
of lowest frequency from the queue, and replaces them in
the queue with a new node z representing their merger.
The frequency of z is computed as the sum of the
frequencies of x and y in line 7. The node z has x as its
left child and y as its right child. After n-1 mergers, the
node left in the queue-the root of the code tree returned in
line 9.

The for loop in lines 3-8 is executed exactly n-1 times,
and since each heap operation requires time O (Ig n), the
loop contributes O (n Ig n) to the running time. Thus, the
total running time of HUFFMAN on a set of n characters
is O (nlIgn).

B. H-HIBASE: Encoding

Consider a set of source symbols S = { s, sy, , Sy
1}= {Dhaka, Sylhet, Chittagong, Rajshahi} with
frequencies W = { wo wi, ... , Wy} for

wo>=w>=...>=w, |, where the symbol s; has frequency
w;. Using the Huffman algorithm to construct the
Huffman tree T, the codeword c;, 0<=i<=n-1, for symbol
s; can then be determined by traversing the path from the
root to the left node associated with the symbol s;, where
the left branch is corresponding to ‘0’ and the right
branch is corresponding to ‘1°. Let the level of the root be
zero and the level of the other node is equal to summing
up its parents level and one. Codeword length [; for s; can
be known as the level of s;. Then the wighted external
path length > w;l; is minimum. For example, the Huffman
tree corresponding to the source symbols { s,
Sy evvvenn ,87} with the frequencies {3, 3, 2, 2} is shown

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

in the Figurel. The codeword set C{cy.cy,....... ,C7} 18
derived as {10, 11, 00, 01}. In addition, the codeword set
compose of a space with 2 addresses, where d=2 is the
depth of the Huffman tree.

In the following, the detailed algorithm to generate the
intervals is presented. For each Huffman tree, the

required storage for the interval representation is n entries.

Each entry contains two fields: address and symbol. The
length of address is d bits, and the storage complexity is
O (n).

Both C and C++ allow integer members to be stored
into memory spaces smaller than the compiler would
ordinarily allow [8]. These space-saving structure
members are called bit fields, and their width in bits can
be explicitly declared. The following structure has three
bit-field members: kingdom, phylum, and genus,
occupying 2, 6, and 12 bits respectively.

struct taxonomy {
unsigned kingdom: 2;
unsigned phylum: 4;
unsigned genus: 12;

¥

To store codeword we have declared an array of a
structure with bit field where data can be stored with 1 bit
storage. This structure will have 32 members variable
named a,b,c,.....,z,A,B,...,F and every member can store
1 bit. To put databits in this structure we have a function
named putvalue (index of structure, data variable,
databit) which will store bit into the structure after
reading the input from the dictionary.

ENCODE (Huffman_Dictionary hd)

1. Input: Huffman Dictionary (index, name, databit,

frequency)

Output: Encoded Bit Stream

BEGIN

for i <1 to total number of rows

for j « 0 to codeword [i].lenght

putvalue (index of structure,
databit)

7. if (data_variable == ‘z")

8. data_variable « ‘A’

9. else if (data_variable == ‘F’)

Sk v

data_variable,

10. data variable «— ‘a’; index of structure ++
11. else data variable ++
12. END

The required storage for the interval representation is n
entries and the storage complexity is O (n).

IV. PERFORMANCE ANALYSIS

The objective of the experimental work is to verify the
applicability and feasibility of the proposed H-HIBASE
architecture. The experimental evaluation has been
performed with synthetic and real data. The experimental
result is compared with DHIBASE and widely used
Oracle 10g. Our target was to handle relations and justify
the storage requirements and query time in comparison
with DHIBASE and Oracle 10g.

©2013 ACADEMY PUBLISHER

1179

A. Experimental Environment

H-HIBASE has been tested on a machine with 1.73
GHz Pentium IV processor and 1 GB of RAM, running
on Microsoft Windows XP. We have created five
different relations for synthetic data which is given below.
Each query has been executed five times and the average
execution time has been taken.

A.1. Data Set For Synthetic Data

A random data generator has been used to generate
synthetic data and large numbers of records have been
inserted into each table. Five tables in synthetic data set
are given below, where first attribute of each table is the
primary key. Our synthetic data generator has generated
21035, 21120, 21214, 31422, 30455 records for
Distributor, Customer, Item, Employee and Store
relations respectively for 1 MB space in Oracle 10g. It
has also been observed that the data generator has
generated 24135, 24869, 24567, 362462, 36826 records
for Distributor, Customer, Item, Employee and Store
relations respectively for 2 MB space in Oracle 10g.
Table VIII shows overall compression rate for different
number of record in different relation. Compression rate
is calculated with respect to DHIBASE and Oracle 10g.
Table IX shows overall CF’s for different relations, CF’s
are calculated with respect to Oracle 10g. We observe
that the proposed system outperforms Oracle 10g by a
factor of 11 to 13. Table X also shows that the H-
HIBASE has greater compression capability than
DHIBASE which is between 9% to 15%.

Distributor (d_id, fname, Iname, area)
Customer (c_id, name, street, city)
Item (i_id, type, description)
Employee (e_id, name, department)
Store (s_id, location, type)

A.2. Data Set For Real Data

Billing Management Software for managing different
types of bills like water bill, electricity bill for super
market, different types of report like daily bill, monthly
bill, yearly bill can be produced by this software. Real
data set of this software has already been shown below
where ten tables are available with the following data.
Storage requirement in different systems are shown in
table XI. Table XII also shows that the H-HIBASE has
greater compression capability than DHIBASE which is
more than 30%.

Electricbill ~ (issue_no, meterno, presentreading,
surcharge, shop_id, tannent_id, bill_month, unit_rate,
issue_date, paid_date, demand_charge, meter_charge,
last_date, ref_no, consume, vat, previousreading)

Electricbill_for_shop (meter_no, meter_rgd,
prv_surcharge, prv_vat, prv_demand, prv_from_date,
prv_to_date, shop_id, tannent_id, paid_date, last_date,
prv_metercharge, unit_rate, prv_consume, issue_date,
is_due, max_rgd, ref no, prv_arrear, meter_charge,
demand_charge)

Floor (floor _id, floor_name)

1180

Rate (rate_id, rate_title, charge)

Shop (shop_number, shop_name,
shop_floor_number, shop_id, tannent_id)

shop_rent,

Tennant (tannent_id, tannent_name, account_no, address,
phone)

Utility_bill (issue_no, bill_month, last date, paid_date,
shop_id, tannent_id, issue_date, ref_no)

Utility_bill_detail (issue_no, utility id, bill_amt,
surcharge)
Utility_bill_for_shop (utility_id, default_amount,

prv_amount, prv_surcharge, prv_from_date, prv_to_date,
shop_id, tannent_id, last_date, paid_date, is_due, ref_no)

Utility_setup (utility_id, utility_title, default_bill)

A.3. Data Generation Algorithm

From the above algorithm it has been observed that the
random data generation function has generated an amount
of random data for a column, which has been inserted
into the database table.

B. Storage Requirement
B.1. Synthetic Data

1 InsertRandomData (RowCount)
2 BEGIN
LOOP
4 COL1 « VARI1 « dbms_randon.string(‘L’, 10)
COL2 «— VAR2 « dbms_randon.string(‘L’, 10)

W

8 COLN « VARN « dbms_randon.string(‘L’, 10)
9 LOOP

10 IF mod(counter,50)=0 THEN
11 REPEAT step 4 to 8
12 END IF
13 InsertData (COL1, COL2, ...,COLN)
14 Counter <« counter+1
15 Exit when counter>=rowcount
16 END LOOP
17 END LOOP
18 END
TABLE VIII.
COMPRESSION ACHIEVED IN KB
Relation # of Oracle DHIBASE H-
Record 10g. HIBASE
Distributor | 21035 1024 96.28 31.84
Customer 21120 1024 96.65 82.17
Item 21214 1024 97.10 82.54
Employee 31422 1024 95.88 86.30
Store 30455 1024 92.93 83.64

©2013 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. §, NO. 5, MAY 2013

1000

OOracls 10g
ODHIBASE
OH-HIBASE

Size (KB)

. il o
Cistributor Customer

ltem

Employee Store

Relation

Figure 3. Storage in H-HIBASE, DHIBASE and Oracle 10g.

Figure 3 shows the storage comparison among H-
HIBASE, DHIBASE and Oracle 10g. In the figure it has
been indicated that DHIBASE can compress the oracle
storage with the rate of 90%, whereas H-HIBASE can
compress the oracle storage with the rate of 92%.

100

95 1

90 1

O DHIEASE
85 1

O H-+IBASE

Size (KB)

80 1

7

Distribttor Customer Item Enployee Store

Relation

Figure 4. Storage in DHIBASE and H-HIBASE.

Figure 4 indicates the storage comparison between H-
HIBASE and DHIBASE. In the figure it has been
indicated that H-HIBASE has better compression
capability with the rate 30%. This is because DHIBASE
has used fixed length coding whereas H-HIBASE has
used variable length Huffman coding which needs a
reduced amount of storage.

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

1181

TABLE IX. that the proposed system is better than Oracle 10g by a
CPMPRESSION FACTOR (CF) WITH RESPECT TO ORACLE 10G factor of 4 to 5. Table XII also shows that the H-HIBASE
Relation #of Oracle 10g. | H-HIBASE | Overall has greater compression capability than DHIBASE which
Record (KB) (KB) CF . o . .
is more than 30%. Higher storage requirement has been
Distributor | 21035 1024 81.84 12.51 avoided by using Huffman code-words in H-HIBASE
Customer 1 21120 T024 0217 247 technique. Moreover high performance has been. ensured
as most repeated attribute values get more weight and
Item 21214 1024 8254 12.40 enter first in the dictionary. Domain dictionary values are
Employee | 31422 1024 86.30 11.86 sorted in such a way that frequently occurred values are
Store 30455 024 .64 224 accessed first than the rare values.
TABLE XII.
TABLE X. COMPRESSION ACHIEVED IN KB
COMPRESSION IMPROVEMENT WITH RESPECT TO DHIBASE Relation #of | #of Oracle DHIB H-
Relation # of DHIBASE | H- Enhanceme Col- | Record 10g. ASE HIBAS
Record | (KB) HIBASE nt Rate (%) umn E
(KB) Electric bill 17 1505019
Distributor 21035 96.28 81.84 14.99 .
Electric 17 570
Customer 21120 | 96.65 82.17 14.98 bill for shop
Ttem 21214 | 97.10 82.54 14.99 Floor 3 8
Employee 31422 95.88 86.30 10.02 Rate 3 8
Store 30455 92.93 83.64 9.99
Shop 6 583
TABLE XI
. 381424 | 126347 88152
CODE SIZE IN DHIBASE AND HIBASE FOR SAME NUMBER OF RECORDS Tennant 6 292
Relation # of DHIBASE H- Enhanc — -
Record | (KB) HIBASE | ement Utility_bill -~ 8 1550987
(KB) Rate Utility bill_ | 4 6206961
(%) detail
Distributor 21035 | 7221 61.38 14.99 Utility bill | 13| 2266
Customer 21120 72.51 61.63 15 for_shop
Ttem 21214 | 72.83 6191 14.99 Utility_setup | 3 6
Employee 31422 71.91 64.73 9.98
Store 30455 69.7 62.73 10
450000
400000
74
72 L — T T 350000 +—|
70 - __ 300000 +——
o 1 @ 250000 O0racle 107
L b ODHIEASE
g o 1| ||| ODHiBASE & A0 OH-HIBASE
g OHHIBASE 150000 +——
% 62 1
100000 ——
80 1T —
5 ||] 50000 +— —
5 1 — 0
5 Oracle 10g. DHIEASE HHBASE
Distributor ~ Customer Item Employee Store Technique
Relation

Figure 5. Code size in DHIBASE and H-HIBASE.

The storage of code size in DHIBASE and H-HIBASE
technique is shown in Figure 5. From the figure, H-
HIBASE produces minimum number of code to store
entire relation than that of DHIBASE system. DHIBASE
has needed around 70 KB to store code size, whereas H-
HIBASE has needed around 60 KB to store code size for
the same number of records.

B.1. Real Data

Storage requirement in different techniques for real
data has been shown in table XII. It has been observed

©2013 ACADEMY PUBLISHER

Figure 6. Storage of real data in H-HIBASE, DHIBASE and Oracle 10g.

Figure 6 shows the comparison of storage size among
Oracle database, DHIBASE, and H-HIBASE. To store
same number of record it is required approximately 380
MB, 125 MB, and 85 MB in Oracle 10g, DHIBASE, and
H-HIBASE respectively. H-HIBASE technique has more
compression capability than any other existing systems.

1182

140000

120000

100000

80000 BDHEASE

60000 OH-HIBASE

Size (KB)

40000

20000

0

DHIBASE H-HIBASE

Technique

Figure 7. Storage of real data in DHIBASE and H-HIBASE.

Figure 7 indicates the storage comparison between H-
HIBASE and DHIBASE. In this figure H-HIBASE has
better compression capability with the rate of more than
30%.

TABLE XIII.
COMPRESSION ENHANCEMENT WITH RESPECT TO DHIBASE
Relation Oracle DHIBASE H- Enhanceme
10g. (KB) (KB) HIBASE | nt Rate (%)
(KB)
Real 381424 126347.42 88152.89 30.23
Data
TABLE XIV.
CODE SIZE COMPARISON
Relation DHIBASE (KB) H-HIBASE Enhancement
(KB) Rate (%)
Real Data 31586.75 22038 30.23
35000
30000
25000
@ 20000 EOHIBASE
4 15000 OH-HIBASE
L
10000
5000
0
DHIBASE H-HIBASE
Technique

Figure 8. Code size in DHIBASE and H-HIBASE.

Figure 8 shows the code size comparison between H-
HIBASE and DHIBASE. H-HIBASE is space efficient,
this is because DHIBASE has used fixed length coding
whereas H-HIBASE has used variable length Huffman
coding. Variable length coding required smaller amount
storage than fixed length coding.

©2013 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. §, NO. 5, MAY 2013

V. CONCLUSION

In this paper we have presented the experimental
evaluation of the H-HIBASE architecture. We here
evaluated the storage performance in comparison with
DHIBASE and Oracle 10g. The storage performance
achieved in H-HIBASE is 25 to 40 percent better than the
Oracle 10g for real and synthetic data. It has also been
shown that the storage performance which is achieved in
H-HIBASE is 10 to 35 percent better than the DHIBASE
for real and synthetic data.

REFERENCES

[1] W. P. Cockshott, D. McGregor, and J. Wilson, “High-
Performance Operation Using a Compressed Database
Architecture”, The Computer Journal, Vol. 41, No. 5, pp.
285-296, 1998.

[2] T.J. Lehman, M. J. Carey, “A Study of Index Structures
for Main Memory Database Management Systems”,
Proceedings of the Twelfth International Conference on
Very Large Databases, pp. 294-303, August 1986.

[3] M. M. Bhuiyan, A. S. M. Latiful Hoque, “High
Performance SQL Queries on Compressed Relational
Database”, Journal of Computers, Vol. 4, No. 12, pp 1263-
1274, December 2009.

[4] D. A. Huffman, “A Method for the Construction of
Minimum Redundancy Codes”, Proceedings of the I.R.E.,
vol. 40, pp. 1098-1101, September 1952.

[5] X. Kavousianos, E. Kalligeros and D. Nikolos, “Multilevel
Huffman Coding: An Efficient Test-Data Compression
Method for TP Cores”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 26,
No. 6, pp 1070-1083, June 2007.

[6] Huffman Coding, Wikimedia Foundation, Inc., Last
accessed on 8 August 2012. Last accessed at:
http://en.wikipedia.org/wiki/Huffman coding

[7] T. H. Coreman, C. E. Leiserson, R. L. Rivest, C. Stein,
“Introduction to Algorithms”, second edition, page 387-
388, 2002.

[8] Declaring and Using Bit Fields in Structures, IBM, Last
accessed on 18 August, 2012. Last Accessed at:
http://publib.boulder.ibm.com/infocenter/macxhelp/v6v81/
index.jsp?topic=%2Fcom.ibm.vacpp6m.doc%2Flanguage
%2Fref%2Fclrc03defbitf.htm

Ahsan Habib received his B.Sc. Engineering in Computer
Science and Engineering from Shah Jalal University of Science
and Technology (SUST), Sylhet, Bangladesh in 2004, and
completed his M.Sc. in Information and Communication
Technology in 2012 from Bangladesh University of
Engineering & Technology (BUET), Bangladesh. He is
currently working as an Assistant Professor of Metropolitan
University, Sylhet, in Computer Science & Engineering
Department. His research interest includes Data Management,
Compression in Database Systems, E-Governance, E-Learning
and M-Learning.

Dr. Abu Sayed Md. Latiful Hoque received his PhD in the
field of Computer & Information Science from University of
Strathclyde, Glasgow, UK in 2003 with Commonwealth
Academic Staff Award. He obtained M.Sc. in Computer
Science & Engineering and B.Sc. in Electrical & Electronic
Engineering from Bangladesh University of Engineering &

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

Technology (BUET) in 1997 and 1986 respectively. He has
been working as a faculty member in the Department of
Computer Science & Engineering of BUET since 1990 and
currently his position is a Professor. He is a Fellow of Institute
of Engineers Bangladesh (IEB) and Bangladesh Computer
Society. His research interest includes Data Warehouse, Data
Mining, Information Retrieval and Compression in Database
Systems.

©2013 ACADEMY PUBLISHER

1183

Md. Russel Hussain is an undergraduate student of Electrical
and Electronics Engineering Department of Metropolitan
University, Sylhet, Bangladesh.

