
H-HIBASE: Compression Enhancement of
HIBASE Technique Using Huffman Coding

Ahsan Habib

Metropolitan University, Sylhet, Bangladesh
Email: ahabib@metrouni.edu.bd

A. S. M. Latiful Hoque

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
Email: asmlatifulhoque@cse.buet.ac.bd

Md. Russel Hussain

Metropolitan University, Sylhet, Bangladesh
Email: mrhussain@rocketmail.com

Abstract— HIBASE compression technique simply replaces
the attribute values in a tuple with fixed length code-words.
However, fixed length coding system is not an optimal
compression technique because some redundancies occur in
the compressed table. This redundancy can be avoided if we
use Huffman code-words. Moreover, using Huffman code-
word will ensure optimal compression as well as high
performance operation. The objectives of the research are to
i) develop a dictionary by applying the principle of Huffman
coding, ii) compress the relational storage of HIBASE by
applying dynamic Huffman coding, iii) develop algorithm to
perform query operation on the compressed storage, iv)
analyze the performance of the proposed system in terms of
both storage and queries. The main contribution of this
research is to develop a compression technique. It implies
the enhancement of HIBASE technique using HUFFMAN
coding (H-HIBASE) with better compression capability.

Index Terms— data compression, database compression,
HIBASE, Huffman, variable length coding.

I. INTRODUCTION

The HIBASE (High Compression Database System) [1]
approach is a compression technique for Main Memory
Database Management System (MMDBMS) [2] which
supports high performance query operations on relational
structure [3]. The dictionary space overhead is excessive
for this system. Fixed length coding system does not
consider the frequency of occurrence of the values. Thus
HIBASE requires higher space in the compressed
database. This higher storage requirement can be avoided
if we use Huffman code-words [4]. As we know Huffman
algorithm generates an optimal tree [4][5], hence the
compression will be optimized. However, the use of
Huffman coding could increase the query complexity in
HIBASE, but this complexity can be reduced by
designing proper algorithm.

A. Dictionary Based HIBASE Compression Approach
The HIBASE [1] approach is a more radical attempt to

model the data representation which is supported by
information theory. The architecture represents a relation
table in storage as a set of columns, not as a set of rows.
Of course, the user is free to regard the table as a set of
rows. However, the operation of the database can be
made considerably more efficient when the storage
allocation is arranged by columns.

TABLE I.

DISTRIBUTOR RELATION

ID First Name Last Name Area

1 Abdul Bari Dhaka

2 Abdur Rahman Sylhet

3 Md Alamin Chittagong

4 Abdul Gafur Dhaka

5 Salam Bari Sylhet

6 Md Tuhin Rajshahi

7 Salam Mia Rajshahi

8 Chan Mia Dhaka

9 Ghendhu Mia Chittagong

10 Abdur Rahman Sylhet

The database is a set of relations. A relation is a set of
tuples. A tuple in a relation represents a relationship
among a set of values. The corresponding values of each
tuple belong to a domain for which there is a set of
permitted values. If the domains are D1, D2,……., Dn
respectively, a relation r is defined as a subset of the
Cartesian product of the domains. Thus r is defined as

nDDDr ×××⊆21 .
An example of a relation is given in Table I. In the

conventional database technology, we have to allocate
enough space to fit the largest value of each field of the
records. When the database designer does not know

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1175

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.5.1175-1183

exactly how large the individual value is, he/she must
make a mistake on the side of caution and make the field
larger than is strictly necessary. In this instance, a
designer should specify the width in bytes as shown in
Table II. Each tuple is occupying 18 bytes, so that 10
tuples occupy 180 bytes.

TABLE II.

FIELD LENGTH AND TUPLE SIZE FOR DISTRIBUTOR RELATION

of
Attribute

Attribute Name Bytes

0 First Name 6

1 Last Name 6

3 Area 6

Total 18

The HIBASE architecture can be derived from a
conventional record structure using the following steps:
1. A dictionary per domain is employed to store the

string values and to provide integer identifiers for
them. This achieves a lower range of identifier, and
hence a more compact representation could be
achieved.

2. Replace the original field value of the relation by
identifiers. The range of the identifiers is sufficient to
distinguish string of the domain dictionary.

TABLE III.

COMPRESSED TABLE IN HIBASE

First Name Last Name Area

000 001 00

010 010 01

011 011 10

000 100 00

001 001 01

011 101 11

001 000 11

100 000 00

101 000 10

010 010 01

Hence in the compressed table each tuple resumes only
3 bits for First Name, 3 bits for Last Name, 2 bits for
Area forming total of 8 bits. This is not the overall
storage; however, we must take account of the space
occupied by the domain dictionaries and indexes.
Typically, a proportion of domain is present in several
relations and this reduces the dictionary overhead by
sharing it through different attributes.

B. The Huffman Codes
In computer science and information theory, Huffman

coding is an entropy encoding algorithm used for lossless
data compression. The term refers to the use of a

variable-length code table for encoding a source symbol
(such as a character in a file) where the variable-length
code table has been derived in a particular way based on
the estimated probability of occurrence for each possible
value of the source symbol. It was developed by David A.
Huffman while he was a Ph.D. student at MIT, published
in 1952 paper "A Method for the Construction of
Minimum - Redundancy Codes" [4][6].

Huffman coding is a widely used and very effective
technique for compressing data;
1. Savings of 20% to 90% are typical, depending on the

characteristics of the file being compressed.
2. Huffman coding involves the use of variable-length

codes to compress long string of text.
3. By assigning shorter codes to more frequent

characters, Huffman encoding can compression text
by as much as 80%.

The simplest construction algorithm uses a priority
queue where the node with lowest probability is given
highest priority [6]:
1. Create a leaf node for each symbol and add it to the

priority queue.
2. While there is more than one node in the queue:

a) Remove the two nodes of highest priority
(lowest probability) from the queue

b) Create a new internal node with these two nodes
as children and with probability equal to the sum
of the two nodes' probabilities.

c) Add the new node to the queue.
3. The remaining node is the root node and the tree is

complete.

Figure 1. Construction of a Huffman Tree.

Since efficient priority queue data structures require
O(log n) time per insertion, and a tree with n leaves has
2n−1 nodes, this algorithm operates in O(n log n) time.

II. EXPERIMENTAL DESIGN

As we know Huffman algorithm generates an optimal
tree, hence the compression will be optimized. Figure 2
shows the whole analysis at a glance, five steps are
necessary to complete whole process. Steps are explained
below:

1176 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

Figure 2. Experimental Design at a glance.

 Moreover high performance will be ensured as most
repeated attribute values will get more weight and will be
entered first in the dictionary i.e. domain dictionary
values will be sorted in such a way that frequently
occurred values will be accessed first than the rare values.
It has been shown in figure 2 that five steps are necessary
to complete the whole process.

A. Five Steps of the H-HIBASE Architecture
Step 1: Take synthetic and real data as input

(Consider the database shown in table IV).

TABLE IV.
DISTRIBUTOR RELATION

ID First Name Last Name Area

1 Abdul Bari Dhaka

2 Abdur Rahman Sylhet

3 Md Alamin Chittagong

4 Abdul Gafur Dhaka

5 Salam Bari Sylhet

6 Md Tuhin Rajshahi

7 Salam Mia Rajshahi

8 Chan Mia Dhaka

9 Ghendhu Mia Chittagong

10 Abdur Rahman Sylhet

Step 2: Split the relational database as binary
relational databases (Shown in table V).

Binary relational database is a database with two
columns in each table and it is very efficient where
column wise searching is regular. The Table IV has been
split to three Binary relation tables which are shown in
Table V.

Step 3: Generate dictionary using Huffman algorithm
(Shown in table VI).

A dictionary for each domain is created and it stores
string values and provides Huffman codeword for them.
This achieves a lower range of codeword, and hence a
more compact representation can be achieved.

TABLE V.

BINARY RELATIONAL DATABASE

TABLE VI.
H-HIBASE DICTIONARY

Step 4: Develop algorithm to encode data (Shown in

table VII).
The range of the identifiers needs only to be sufficient

to distinguish unambiguously which string of the domain
dictionary is indicated. In Table III, since there are only 6
distinct First Names, only six variable length codeword
are required. This range can be represented by only a 3
bit or 2 bit binary number.

TABLE VII.

H-HIBASE STORAGE

Therefore in the compressed table each tuple requires
only (2 bits or 3 bits for First Name, 2 bits or 3 bits for
Last Name, 2 bits for Area) a total of maximum 8 bits.
This achieves a compression of the table by a factor of

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1177

© 2013 ACADEMY PUBLISHER

over 15.

Step 5: Develop algorithm to perform query operation

on the compressed storage.
After encoding data it is challenging to retrieve those

codes from compressed storage. Dictionary access and
compressed storage access are necessary to perform every
query.

B. H-HIBASE: Storage Complexity
B.1. HIBASE

SCi =n * Ci bits
Where SCi = space needed to store column i in

compressed form
n = number of records in the relation
Ci = number of bits needed to represent ith attribute in

compressed form
 = [lg(m)] ; m is number of entries in the

corresponding domain dictionary
 Total space to store all compressed columns, SHIBASE

= ∑
=

p

i 1
Sci bits; number of column is p

 If we assume that domain dictionaries will occupy an
additional 25% of S = 1.25 S, then total space to store the
compressed relation, SCRHIBASE = 1.25 SHIBASE

B.2. H-HIBASE

SH-HIBASE = ∑
=

m

i 1
∑
=

n

j 1
aij bits

 aij represents the number of bits in a particular
position of the two dimensional matrix, where i is the
number of row and j is the number of column.

If we assume that domain dictionaries will occupy an
additional 25% of S = 1.25 S, then total space to store the
compressed relation, SCRH-HIBASE = 1.25 SH-HIBASE

B.3. Compression Enhancement

Compression Enhancement = ((SCRHIBASE - SCRH-

HIBASE)*100 / SCRHIBASE) %

III. IMPLEMENTATION

A. H-HIBASE Dictionary
To translate to and from the compressed form it is

necessary to go through a dictionary. A dictionary is a list
of values that occur in the domain. Huffman dictionary
will be comparable to Huffman table where two pieces of
information will be stored namely lexeme and token.
Lexeme corresponds to discrete values in a domain
whereas token corresponds to code-word. Short code-
words will be placed first for a domain dictionary which
will ensure faster dictionary access. Hence there will be a
significant improvement in database performance during
compression, decompression and query operations. As
Huffman coding gives more weight to most repeated
value, it is likely to have shortest code-word to most
repeated value. Huffman algorithm will generate the
position of values in the dictionary. Table VI shows

dictionaries for distributor relationship. The Huffman
dictionary has generated as per following algorithm.

In the pseudocode that follows, we assume that C is a
set of n strings and each string c € C is an object with a
defined frequency f[c]. The algorithm builds the tree T
corresponding to the optimal code in a bottom-up manner.
It begins with a set of |C| leaves and performs a sequence
of |C| - 1 “meaning” operations to create the final tree. A
min-priority queue Q, keyed on f, is used to identify the
two least-frequent objects to merge together. The result of
the merger of two objects is a new object whose
frequency is the sum of the frequencies of the two objects
that were merged [7].

In algorithm n is the initial queue size, line 2 initializes
the min-priority queue Q with the character in C. The for
loop in line 3-8 repeatedly extracts the two nodes x and y
of lowest frequency from the queue, and replaces them in
the queue with a new node z representing their merger.
The frequency of z is computed as the sum of the
frequencies of x and y in line 7. The node z has x as its
left child and y as its right child. After n-1 mergers, the
node left in the queue-the root of the code tree returned in
line 9.

The for loop in lines 3-8 is executed exactly n-1 times,
and since each heap operation requires time O (lg n), the
loop contributes O (n lg n) to the running time. Thus, the
total running time of HUFFMAN on a set of n characters
is O (n lg n).

B. H-HIBASE: Encoding
 Consider a set of source symbols S = { s0, s1, ….. , sn-

1}= {Dhaka, Sylhet, Chittagong, Rajshahi} with
frequencies W = { w0, w1, …. , wn-1} for
w0>=w1>=…>=wn-1, where the symbol si has frequency
wi. Using the Huffman algorithm to construct the
Huffman tree T, the codeword ci, 0<=i<=n-1, for symbol
si can then be determined by traversing the path from the
root to the left node associated with the symbol si, where
the left branch is corresponding to ‘0’ and the right
branch is corresponding to ‘1’. Let the level of the root be
zero and the level of the other node is equal to summing
up its parents level and one. Codeword length li for si can
be known as the level of si. Then the wighted external
path length ∑wili is minimum. For example, the Huffman
tree corresponding to the source symbols { s0,
s1, ……..,s7} with the frequencies {3, 3, 2, 2} is shown

HUFFMAN (C)
1. n ← |C|
2. Q ← C
3. for i ← 1 to n -1
4. do allocate a new node z
5. left[z] ← x ← EXTRACT-MIN (Q)
6. right[z] ← y ← EXTRACT-MIN (Q)
7. f[z] ← f[x] + f[y]
8. INSERT (Q, z)
9. return EXTRACT-MIN (Q)

1178 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

in the Figure1. The codeword set C{c0,c1,…….,c7} is
derived as {10, 11, 00, 01}. In addition, the codeword set
compose of a space with 2d addresses, where d=2 is the
depth of the Huffman tree.

In the following, the detailed algorithm to generate the
intervals is presented. For each Huffman tree, the
required storage for the interval representation is n entries.
Each entry contains two fields: address and symbol. The
length of address is d bits, and the storage complexity is
O (n).

Both C and C++ allow integer members to be stored
into memory spaces smaller than the compiler would
ordinarily allow [8]. These space-saving structure
members are called bit fields, and their width in bits can
be explicitly declared. The following structure has three
bit-field members: kingdom, phylum, and genus,
occupying 2, 6, and 12 bits respectively.

struct taxonomy {
 unsigned kingdom: 2;
 unsigned phylum: 4;
 unsigned genus: 12;
 };

To store codeword we have declared an array of a
structure with bit field where data can be stored with 1 bit
storage. This structure will have 32 members variable
named a,b,c,…..,z,A,B,…,F and every member can store
1 bit. To put databits in this structure we have a function
named putvalue (index_of_structure, data_variable,
databit) which will store bit into the structure after
reading the input from the dictionary.

ENCODE (Huffman_Dictionary hd)
1. Input: Huffman_Dictionary (index, name, databit,

frequency)
2. Output: Encoded Bit Stream
3. BEGIN
4. for i ←1 to total_number_of_rows
5. for j ← 0 to codeword [i].lenght
6. putvalue (index_of_structure, data_variable,

databit)
7. if (data_variable == ‘z’)
8. data_variable ← ‘A’
9. else if (data_variable == ‘F’)
10. data_variable ← ‘a’; index_of_structure ++
11. else data_variable ++
12. END

The required storage for the interval representation is n
entries and the storage complexity is O (n).

IV. PERFORMANCE ANALYSIS

The objective of the experimental work is to verify the
applicability and feasibility of the proposed H-HIBASE
architecture. The experimental evaluation has been
performed with synthetic and real data. The experimental
result is compared with DHIBASE and widely used
Oracle 10g. Our target was to handle relations and justify
the storage requirements and query time in comparison
with DHIBASE and Oracle 10g.

A. Experimental Environment
 H-HIBASE has been tested on a machine with 1.73

GHz Pentium IV processor and 1 GB of RAM, running
on Microsoft Windows XP. We have created five
different relations for synthetic data which is given below.
Each query has been executed five times and the average
execution time has been taken.

A.1. Data Set For Synthetic Data
A random data generator has been used to generate

synthetic data and large numbers of records have been
inserted into each table. Five tables in synthetic data set
are given below, where first attribute of each table is the
primary key. Our synthetic data generator has generated
21035, 21120, 21214, 31422, 30455 records for
Distributor, Customer, Item, Employee and Store
relations respectively for 1 MB space in Oracle 10g. It
has also been observed that the data generator has
generated 24135, 24869, 24567, 362462, 36826 records
for Distributor, Customer, Item, Employee and Store
relations respectively for 2 MB space in Oracle 10g.
Table VIII shows overall compression rate for different
number of record in different relation. Compression rate
is calculated with respect to DHIBASE and Oracle 10g.
Table IX shows overall CF’s for different relations, CF’s
are calculated with respect to Oracle 10g. We observe
that the proposed system outperforms Oracle 10g by a
factor of 11 to 13. Table X also shows that the H-
HIBASE has greater compression capability than
DHIBASE which is between 9% to 15%.

Distributor (d_id, fname, lname, area)
Customer (c_id, name, street, city)
Item (i_id, type, description)
Employee (e_id, name, department)
Store (s_id, location, type)

A.2. Data Set For Real Data
Billing Management Software for managing different

types of bills like water bill, electricity bill for super
market, different types of report like daily bill, monthly
bill, yearly bill can be produced by this software. Real
data set of this software has already been shown below
where ten tables are available with the following data.
Storage requirement in different systems are shown in
table XI. Table XII also shows that the H-HIBASE has
greater compression capability than DHIBASE which is
more than 30%.

Electricbill (issue_no, meterno, presentreading,
surcharge, shop_id, tannent_id, bill_month, unit_rate,
issue_date, paid_date, demand_charge, meter_charge,
last_date, ref_no, consume, vat, previousreading)

Electricbill_for_shop (meter_no, meter_rgd,
prv_surcharge, prv_vat, prv_demand, prv_from_date,
prv_to_date, shop_id, tannent_id, paid_date, last_date,
prv_metercharge, unit_rate, prv_consume, issue_date,
is_due, max_rgd, ref_no, prv_arrear, meter_charge,
demand_charge)

Floor (floor_id, floor_name)

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1179

© 2013 ACADEMY PUBLISHER

Rate (rate_id

Shop (sh
shop_floor_n

Tennant (tan
phone)

Utility_bill (
shop_id, tann

Utility_bill_d
surcharge)

Utility_bill_f
prv_amount,
shop_id, tann

Utility_setup

A.3. Data Ge
From the a

random data
of random d
into the datab

B. Storage R

B.1. Syntheti

Relation

Distributor

Customer

Item

Employee

Store

1 InsertR
2 BEGIN
 LOOP
4 COL
5 COL
 .

 .
8 COLN
9 L

10
11
12
13
14
15
16 E
17 END
18 END

d, rate_title, ch

hop_number,
number, shop_

nnent_id, tann

(issue_no, bil
nent_id, issue_

detail (issu

for_shop
 prv_surcharg
nent_id, last_d

p (utility_id, ut

eneration Algo
above algorith
generation fu

data for a col
base table.

equirement

ic Data

TA
COMPRESSIO
of
Record

21035

21120

21214

31422

30455

RandomData (R
N
P

L1 ← VAR1 ←
L2 ← VAR2
.
.
N ← VARN

LOOP
 IF mod(coun
 REPEAT
 END IF
InsertData (C
Counter ← co
Exit when co

END LOOP
D LOOP

harge)

shop_nam
_id, tannent_i

nent_name, ac

ll_month, last
_date, ref_no)

ue_no, utili

(utility_id,
ge, prv_from_
date, paid_da

tility_title, def

orithm
hm it has been
unction has ge
lumn, which

ABLE VIII.
ON ACHIEVED IN K
Oracle
10g.

DHI

1024 96.2

1024 96.6

1024 97.1

1024 95.8

1024 92.9

RowCount)

← dbms_ran
← dbms_ran

← dbms_ran

nter,50)=0 TH
T step 4 to 8

COL1, COL2,
ounter+1

ounter>=rowco

me, shop_
id)

ccount_no, add

t_date, paid_
)

ity_id, bill_

default_am
_date, prv_to_
ate, is_due, ref

fault_bill)

n observed tha
nerated an am
has been ins

KB
IBASE H-

HIBA

28 81.8

65 82.1

10 82.5

88 86.3

93 83.6

ndon.string(‘L
ndon.string(‘L

ndon.string(‘L

HEN

...,COLN)

ount

_rent,

dress,

_date,

_amt,

ount,
_date,
f_no)

at the
mount
serted

ASE

4

7

4

0

4

F
HIB
been
stora
com

F
HIB
ind
cap
has
use
red

L’, 10)
L’, 10)

L’, 10)

Figure 3. Storag

igure 3 show
BASE, DHIBA
n indicated th
age with the

mpress the orac

Figure 4.

Figure 4 indic
BASE and D

dicated that
pability with th
s used fixed l
ed variable le
duced amount

ge in H-HIBASE,

ws the storag
ASE and Orac
hat DHIBASE

rate of 90%,
cle storage wit

Storage in DHIB

cates the stora
DHIBASE. In

H-HIBASE
he rate 30%.
length coding
ength Huffma
of storage.

 DHIBASE and O

ge compariso
cle 10g. In the
E can compre
, whereas H-
th the rate of 9

BASE and H-HIB

age compariso
n the figure

has better
This is becau

g whereas H-
an coding wh

Oracle 10g.

on among H-
e figure it has
ess the oracle
HIBASE can
92%.

BASE.

on between H-
it has been
compression

use DHIBASE
-HIBASE has
hich needs a

-
s
e
n

-
n
n
E
s
a

1180 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

COMPRES

COMPRE
Relation

Distributor
Customer

Item

Employee
Store

CODE SIZE IN
Relation

Distributor
Customer
Item

Employee
Store

Figur

The storag
technique is
HIBASE pro
entire relatio
has needed a
HIBASE has
the same num

B.1. Real Da
Storage re

data has bee

Relation

Distributor

Customer

Item

Employee

Store

T
SSION FACTOR (CF

T
ESSION IMPROVEM

of
Record

D
(K

21035 9
21120 9

21214 9

31422 9
30455 9

T
DHIBASE AND HIB

of
Record

21035
21120
21214

31422
30455

re 5. Code size in

ge of code siz
 shown in F
oduces minim

on than that of
around 70 KB
s needed arou
mber of record

ata
equirement in

en shown in t

of
Record

O
(K

21035 1

21120 1

21214 1

31422 1

30455 1

TABLE IX.
F) WITH RESPECT

TABLE X.
MENT WITH RESPE
DHIBASE
KB)

H-
HI
(K

6.28 81
6.65 82

7.10 82

5.88 86
2.93 83

TABLE XI.

BASE FOR SAME N
DHIBASE
(KB)

72.21
72.51
72.83

71.91
69.7

n DHIBASE and H

ze in DHIBAS
Figure 5. Fro
mum number
f DHIBASE s

B to store code
nd 60 KB to
ds.

n different te
table XII. It h

Oracle 10g.
KB)

H
(K

024 81

024 82

024 82

024 86

024 83

T TO ORACLE 10G

ECT TO DHIBASE
-
IBASE

KB)

Enhan
nt Rat

.84 14.99

.17 14.98

.54 14.99

6.30 10.02
.64 9.99

NUMBER OF RECO
H-
HIBASE
(KB)

En
em
Ra
(%

61.38 14
61.63 15
61.91 14

64.73 9.9
62.73 10

H-HIBASE.

SE and H-HIB
om the figure

of code to
system. DHIB
e size, wherea
store code siz

echniques for
has been obse

-HIBASE
KB)

Ove
CF

1.84 12.5

2.17 12.4

2.54 12.4

6.30 11.8

3.64 12.2

nceme
te (%)

9

9

2

ORDS
nhanc
ment
ate

%)
4.99
5
4.99

98
0

BASE
e, H-
store

BASE
as H-
ze for

r real
erved

that
facto
has
is m
avoi
tech
as m
ente
sorte
acce

Rel

Elec

Elec
bill_
Flo

Rat

Sho

Ten

Util

Util
deta
Util
for_
Util

Figur

F
Orac
sam
MB,
H-H
com

erall

51

47

40

86

24

the proposed
or of 4 to 5. T
greater compr

more than 30%
ided by using

hnique. Moreo
most repeated
er first in the d
ed in such a w
essed first than

C
ation # o

Col
um

ctric bill 17

ctric
_for_shop

17

or 3

te 3

op 6

nnant 6

lity_bill 8

lity_bill_
ail

4

lity_bill_
_shop

13

lity_setup 3

re 6. Storage of re

igure 6 show
cle database,
e number of
, 125 MB, and

HIBASE respe
mpression capa

d system is be
Table XII also
ression capabi

%. Higher stor
g Huffman c

over high perf
d attribute val
dictionary. Do
way that freq
n the rare valu

TABLE X
COMPRESSION ACH

f
l-

mn

of
Record

1505019

570

8

8

583

292

1550987

6206961

2266

6

eal data in H-HIB

s the compari
DHIBASE,

record it is re
d 85 MB in O

ectively. H-HI
ability than an

etter than Ora
shows that th

ility than DHI
rage requirem

code-words in
formance has
lues get more

omain dictiona
quently occurr
ues.

XII.
HIEVED IN KB

Oracle
10g.

DHI
AS

381424 1263

BASE, DHIBASE

ison of storag
and H-HIBA
equired appro

Oracle 10g, DH
IBASE techni
ny other existin

acle 10g by a
he H-HIBASE
IBASE which

ment has been
n H-HIBASE
been ensured
e weight and
ary values are
red values are

IB
SE

H-
HIBAS

E

347 88152

E and Oracle 10g.

ge size among
ASE. To store
oximately 380
HIBASE, and
ique has more
ng systems.

a
E
h
n
E
d
d
e
e

.

g
e
0
d
e

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1181

© 2013 ACADEMY PUBLISHER

Figure 7.

Figure 7 i
HIBASE and
better compr
30%.

COMPRE
Relation

Real
Data

Relation

Real Data

Figur

Figure 8 s
HIBASE and
this is becau
whereas H-H
coding. Vari
storage than

Storage of real da

indicates the s
d DHIBASE.
ression capabi

TA
ESSION ENHANCEM

Oracle
10g. (KB)

D

381424 12

TA
CODE SIZ

DHIBASE (

31586.7

re 8. Code size in

shows the cod
d DHIBASE.
use DHIBASE
HIBASE has
iable length c
fixed length c

ata in DHIBASE

storage compa
 In this figur
ility with the

ABLE XIII.
MENT WITH RESPE
HIBASE
(KB) HI

(
26347.42 88

ABLE XIV.
ZE COMPARISON
(KB) H-HIBA

(KB
75 2203

n DHIBASE and H

de size compa
 H-HIBASE

E has used fix
used variable

coding require
coding.

and H-HIBASE.

arison betwee
re H-HIBASE
rate of more

ECT TO DHIBASE
H-
BASE

(KB)

Enhan
nt Rat

152.89 30

ASE
B)

Enhanc
Rate

38 30.2

H-HIBASE.

arison betwee
is space effic
xed length co
e length Huf
ed smaller am

.

en H-
E has

than

nceme
te (%)

.23

cement
(%)
23

en H-
cient,
oding
ffman
mount

In
eval
eval
DHI
achi
Orac
show
H-H
for r

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Ahsa
Scien
and
comp
Tech
Engi
curre
Univ
Depa
Com
and M

Dr.
field
Strat
Acad
Scien
Engi

n this paper
luation of th
luated the sto
IBASE and O
ieved in H-HIB
cle 10g for re
wn that the sto

HIBASE is 10
real and synth

W. P. Cocksh
Performance
Architecture”,
285-296, 1998
T. J. Lehman,
for Main M
Proceedings o
Very Large Da
M. M. Bhui
Performance
Database”, Jou
1274, Decemb
D. A. Huffm
Minimum Red
vol. 40, pp. 10
X. Kavousiano
Huffman Cod
Method for IP
Aided Design
No. 6, pp 1070
Huffman Cod
accessed on
http://en.wikip
T. H. Corema
“Introduction
388, 2002.
Declaring and
accessed on
http://publib.bo
index.jsp?topic
%2Fref%2Fclr

an Habib rec
nce and Engine
Technology (

pleted his M
hnology in 2
ineering & T
ently working
versity, Sylhet
artment. His re

mpression in Da
M-Learning.

Abu Sayed M
d of Computer
thclyde, Glasg
demic Staff A
nce & Enginee
ineering from

V. CONCL

we have pr
he H-HIBAS
orage perform
Oracle 10g.
BASE is 25 to
eal and synth
orage perform
to 35 percent

hetic data.

REFEREN

hott, D. McGr
Operation Usi
The Computer
.
M. J. Carey, “

Memory Databa
of the Twelfth
atabases, pp. 29
iyan, A. S.
SQL Queries

urnal of Compu
ber 2009.
man, “A Meth
dundancy Code
98-1101, Septe
os, E. Kalligero
ding: An Effic
P Cores”, IEEE
of Integrated C
0-1083, June 20
ding, Wikime

8 August
pedia.org/wiki/H
an, C. E. Leise

to Algorithms”

d Using Bit Fie
18 August,

oulder.ibm.com
c=%2Fcom.ibm
rc03defbitf.htm

eived his B.S
eering from Sha
SUST), Sylhet
.Sc. in Inform
2012 from

Technology (B
as an Assistan

t, in Comput
esearch interest
atabase System

Md. Latiful Ho
& Information

gow, UK in
Award. He ob
ering and B.Sc
Bangladesh U

LUSION

resented the
E architectur

mance in com
The storage

o 40 percent b
hetic data. It h
mance which i
t better than th

NCES

egor, and J. W
ing a Compre
r Journal, Vol.

“A Study of In
ase Managem
International

94-303, August
M. Latiful H
on Compress

uters, Vol. 4, N

hod for the C
es”, Proceeding
ember 1952.
os and D. Nikol
cient Test-Data
E Transactions
Circuits and Sys
007.
dia Foundatio
2012. Last

Huffman_codin
erson, R. L. Ri
”, second editi

elds in Structur
2012. Last

m/infocenter/ma
m.vacpp6m.doc%
m

c. Engineering
ah Jalal Univer
t, Bangladesh
mation and C
Bangladesh U

BUET), Bangl
nt Professor o
ter Science &
t includes Data

ms, E-Governan

oque received h
n Science from

2003 with C
btained M.Sc.
c. in Electrical

University of E

experimental
re. We here

mparison with
performance

better than the
has also been
is achieved in
he DHIBASE

Wilson, “High-
essed Database

41, No. 5, pp.

ndex Structures
ent Systems”,
Conference on
1986.

Hoque, “High
sed Relational
o. 12, pp 1263-

Construction of
gs of the I.R.E.,

los, “Multilevel
a Compression

on Computer-
stems, Vol. 26,

on, Inc., Last
accessed at:

ng
ivest, C. Stein,
ion, page 387-

res, IBM, Last
Accessed at:

acxhelp/v6v81/
%2Flanguage

g in Computer
rsity of Science

in 2004, and
Communication
University of
ladesh. He is
f Metropolitan

& Engineering
a Management,
nce, E-Learning

his PhD in the
m University of
Commonwealth

in Computer
l & Electronic
Engineering &

l
e
h
e
e
n
n
E

-
e
.

s
,
n

h
l
-

f
,

l
n
-
,

t
:

,
-

t
:

r
e
d
n
f
s
n
g
,
g

e
f
h
r
c

&

1182 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

Technology (BUET) in 1997 and 1986 respectively. He has
been working as a faculty member in the Department of
Computer Science & Engineering of BUET since 1990 and
currently his position is a Professor. He is a Fellow of Institute
of Engineers Bangladesh (IEB) and Bangladesh Computer
Society. His research interest includes Data Warehouse, Data
Mining, Information Retrieval and Compression in Database
Systems.

Md. Russel Hussain is an undergraduate student of Electrical
and Electronics Engineering Department of Metropolitan
University, Sylhet, Bangladesh.

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1183

© 2013 ACADEMY PUBLISHER

