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Abstract—Now-a-days different meta-heuristic approaches, 
their variants and hybrids are being applied for solving 
Combinatorial Optimization Problems (COP). In this paper 
Resource Constrained Project Scheduling Problem 
(RCPSP) has been presented as a COP. This is a common 
problem for many construction projects. It is highly 
constrained and is categorized as a NP-hard problem. In 
our earlier work Simulated Annealing (SA_RCP) 
outperformed other meta-heuristics, like, Genetic 
Algorithm, Tabu Search, Particle Swarm Optimization and 
its variant in solving benchmark instances of this problem. 
Having been inspired by this result we have further 
developed new hybrids of Simulated Annealing and Tabu 
Search. In this work, we have proposed five more methods 
developed by combining Simulated Annealing and Tabu 
Search and applied them for solving a benchmark instance 
of this problem. The results show that Simulated Annealing 
incorporated with Tabu List, Greedy Selection Heuristic 
and aspiration criteria (GTSA_AC_RCP) outperforms 
other methods in getting optimal results with maximum hit 
and minimum fluctuations. 
 
Index Terms—Resource Constrained Project Scheduling, 
Local Search, Meta-heuristics, Simulated Annealing, 
Hybrid Methods 

I. INTRODUCTION 

    Many real-life industrial scheduling problems fall in 
the domain of Resource Constrained Project Scheduling 
Problem (RCPSP). A typical RCPSP instance considers a 
set of tasks. For each task the duration and resource 
requirements are fixed and known beforehand. Two types 
of constraints are always associated with a RCPSP. One 
corresponds to resources and the other is related to 
predecessor-successor relationships of the tasks. To 
obtain a feasible solution these two types of constraints 
must be satisfied. Our objective is to minimize the 
makespan of the schedule i.e. to schedule the tasks of the 
project in such a way that the project will be completed in 
minimum time. As the problems are NP-hard in 
complexity, deterministic methods are unable to produce 

acceptable solutions within reasonable time when 
problem size increases [1]. 
    Initially, integer programming procedures and implicit 
enumeration (dynamic programming and branch-and-
bound) were applied to solve RCPSP instances. During 
60’s and 70’s Critical Path Method (CPM) and the 
Program Evaluation and Review Technique (PERT) were 
applied for solving RCPSP.  In 1992 Demeulemeester 
and Herroelen proposed D&H algorithm to solve RCPSP 
[2]. D&H algorithm was based on a branch and bound 
approach. But this method becomes computationally 
intractable as the project size increases (e.g., more than 
50 tasks).Work of Brucker et al. [3] and Kolisch and 
Hartmann [4] focus on heuristic algorithms to solve 
RCPSP problem. Fendley worked on comparison of 
several scheduling heuristics to solve RCPSP [5]. Mao 
[6] used an advanced branch and bound method making 
use of time increment method of event-driven to solve the 
exact solution of RCPSP. Advanced iterative algorithm 
was applied by Shou Yongyi [7] to optimize project 
scheduling. Cheng combined the heuristic algorithm and 
branch and bound method to solve this problem [8]. 
    As the problem RCPSP is proved to be NP-hard [1], 
meta-heuristics are being used in solving this problem. 
Simulated Annealing (SA) was applied by Cho and Kim 
[9] to solve RCPSP. Lee and Kim used [10] Tabu Search 
(TS) to this problem. In 1990 Boctor [11] applied SA to 
solve this problem. In 2002 Genetic Algorithm (GA) was 
used by Toklu to solve project scheduling problem with 
or without resource constraints [12]. GA has also been 
applied to solve construction management problems, 
including resources scheduling with a small number of 
activities [13, 14, 15]. Some variations of GA like, a 
permutation-based GA [16] and self-adapting GA [17] 
were proposed by Hartmann in 1998 and 2002 
respectively. He also proposed additional two encodings, 
which include priority value based GA similar to the 
work of Lee and Kim [10] and priority-rule based GA 
similar to the work of Dorndorf and Pesch [18]. 
    In 2006 Zhang has shown that to solve RCPSP, like 
earlier methods heuristics also perform poorly compared 

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1157

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.5.1157-1166



to meta-heuristic methods [19]. Recent studies reveal that 
meta-heuristics and their hybrids perform well for this 
kind of problems. In our earlier work [20] we applied 
suitable meta-heuristic techniques for solving this 
problem. The applied approaches are Simulated 
Annealing [21], Tabu Search [22], Genetic Algorithms 
[12, 13], Particle Swarm Optimization [19] and Elite 
Particle Swarm Optimization [23]. A benchmark instance 
of RCPSP [19] was selected to which the above 
mentioned techniques were applied and their 
performances were compared. The performance of 
Simulated Annealing was observed to be the best. The 
superiority of Simulated Annealing (SA_RCP) over other 
methods inspired us in developing several hybrids of SA 
and some other method and applying them on RCPSP 
instance.   
    In this paper we have applied five hybrid meta-
heuristics on a typical RCPSP instance. Idea of using tabu 
list in local search has come from Tabu Search [22, 24]. 
Incorporation of tabu list always diversifies the search 
process and help escaping local minima. The basic 
SA_RCP incorporated with tabu list is a hybrid named 
here by TSA_RCP. Another hybrid is made by 
incorporating greedy selection heuristic for selecting a 
solution from the neighborhood with basic SA, namely, 
GSA_RCP. The third hybrid obtained from incorporating 
both tabu list and greedy selection heuristic in SA is 
named GTSA_RCP. Another hybrid TSA_AC_RCP is 
generated by including the concept of aspiration criteria 
in TSA_RCP. Aspiration criteria has been applied to 
Tabu Search by different researchers [25, 26]. Aspiration 
criteria has also been considered with GTSA_RCP in 
order to produce the new method GTSA_AC_RCP. 
These hybrids have been generated as a result of 
combining Simulated Annealing [21,27] with Tabu 
Search [22, 24, 28] and its variant that includes aspiration 
criteria [25, 26].  
    A commonly used aspiration criteria is to accept a tabu 
move only if the move takes us to a state that is better 
than the best state obtained so far. The comparison of the 
performance of the methods shows that GTSA_AC_RCP 
outperforms other methods in producing good quality 
solution in reasonable time. 
    We arrange the sections as follows. Section II 
describes the problem. Section III describes all six meta-
heuristic methods. Section IV shows the experimental 
results and section V concludes the paper.  

II. PROBLEM DESCRIPTION 

    A typical Resource Constrained Project Scheduling 
Problem may be defined by a set of tasks V΄ and a set of 
resource types E΄ [19]. For execution each task x need 
some resources. The requirement of task x for a resource 
type r can be denoted by exr, where exr indicates the 
number of instances of resource type r. For each resource 
type r, the total number of available instances Er is fixed. 
The resources held by task x become available for other 
tasks when x finished its execution. Therefore, the 
resources are renewable. For each task x its duration is 
fixed and known. If a task x cannot start its execution 

until and unless another task y finishes its execution then 
the task y is called predecessor and the task x is called 
successor. The relationship between a predecessor and 
successor is called precedence relationship.  
    For the graphical representation of a typical RCPSP we 
assume that there are 0,1,…, N+1 tasks, where task 0 and 
N+1 are dummy tasks with duration zero. They represent 
the start time and the finish time of the project 
respectively. Nodes in the graph represent the tasks and 
the directed edges indicate the precedence relationships 
among the tasks. Fig.1 shows the particular RCPSP 
instance under consideration by the acyclic directed graph 
G = (V΄, F), where V΄ is the set of nodes and F is the set 
of edges. Our basic assumption for this problem instance 
is that the tasks under the project are non-preemptive, that 
is, cannot be interrupted in the middle of execution. 
    The constraints present in RCPSP are as follows: 
1) Precedence Constraint: All predecessors of a task x 
must finish their execution before x starts.  
2) Resource Constraint: For each resource type limited 
numbers of instances available. 
    A schedule may be defined as an arrangement of tasks. 
When a schedule satisfies both precedence and resource 
constraints then it is said to be a feasible schedule. 
Makespan of a schedule is defined as the time needed to 
complete the execution of all the tasks of a schedule. Our 
objective is to produce a feasible schedule with minimum 
makespan for the given set of tasks. RCPSP can be 
mathematically formulated as follows: 

min{max fx | 1 < x < N }                 (1) 

subject to:  

fx – fy ≥ dx,  ∀ y ∈ Px; where, 1 < x < N.      (2)
         

∑At΄ exr ≤ Er ; where  1 <  r  < R;   t΄ = s1,s2,….,sN              (3) 

where N indicates the number of the tasks present in a 
project and fy indicates the finish time of task y (1 < y < 
N); dx stands for the duration of task x, Px indicates the 
set of tasks that have been already scheduled (i.e., 
predecessors) before activity x can start its execution; Er 
indicates the available number of instances of resource r 
(1 < r < R) and R is the number of the types of resources; 
exr is the amount of resource r required by task x, and At΄ 
is the set of ongoing activities at t΄ and sx (=fx-dx) is the 
start time of task x. Equation (1) represents the objective, 
while (2) and (3), respectively represent precedence 
constraints and resource constraints. 
    Fig.1 shows all the tasks involved in the project, their 
duration, their resource requirements and the precedence 
relationships among them. The RCPSP instance under 
consideration has 25 tasks and two dummy tasks. Tasks 
are represented by the nodes in the graph. The resource 
requirements of each task are shown below the circle 
corresponding to the task. Each task has fixed duration 
which is indicated by an integer above the circle 
corresponding to the task. The project has three types of 
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Figure 1.  A typical example of RCPSP 

renewable resources each of which has six instances. The 
precedence relationships among the tasks have been 
shown by the arrows in the figure [19].  

III. SOLUTION METHODS 

    As meta-heuristic methods are more useful for solving 
larger RCPSP instances we have implemented one pure 
and five proposed hybrid meta-heuristic methods on the 
problem instance under consideration and compared the 
performance of those methods. As most of the methods 
used in this work are new, they are described elaborately 
in this section. 
    In our approach every solution is represented by a 
vector. The length of the vector equals to the number of 
tasks in the project under consideration. Each element of 
this vector represents the assigned priority for each task 
[19]. For example the ith element of this vector represents 
the priority of ith task.  The tasks are then scheduled 
according to their priority. In our work we took the 
makespan of the schedule as the value of cost function for 
all the methods applied here. In meta-heuristic methods 
the stopping criteria of the algorithm may be defined by 
maximum number of iterations, by the number of 
iterations without an improvement of cost function or by 
a pre-specified threshold value of cost function. 
Sometimes a combination of aforesaid conditions may 
also be set as the stopping criteria. In this work for all the 
methods the stopping criteria is based on the number of 
iterations without an improvement of cost function. For 
all the methods the solution is represented by a twenty 
five element vector. 

    Here we have applied a parallel transformation scheme 
to produce a feasible schedule of the given RCPSP 
instance [19]. The parallel transformation scheme has a  
series of steps. At each step multiple tasks that satisfy 
both the precedence and resource constraints are 
scheduled i.e. more than one task can be executed 
simultaneously if both the constraints are met. The 
parallel transformation scheme obeys the following rules 
to produce a schedule from the priority vector. 
1) Scheduling decision is taken at start and whenever one 
of the scheduled tasks finishes its execution and some 
tasks are still left to be scheduled.  
2) A set of feasible tasks are chosen that satisfy the 
precedence constraints resource constraints. 
3) From that set of feasible tasks, tasks are selected for 
execution one by one in descending order of their 
priorities and resources are assigned to them as required. 
4) Tasks are scheduled to start execution at the newly 
determined scheduling time, and then the steps from 1) 
are continued again if any tasks have not been scheduled 
so far. Simulated Annealing and other five hybrid meta-
heuristic methods are described below in details:  

A. Simulated Annealing (SA_RCP) 
    Simulated Annealing is a well-known local search 
technique which can solve complex combinatorial 
problems. The general goal of local search techniques is 
to find good quality solutions in reasonable amount of 
time. SA_RCP is a probabilistic method. The idea of SA, 
was first introduced in 1983 by Kirkpatrick, Gelatt and 
Vecchi [21] and Cerny in 1985 [29]. It finds the global 
optima of a cost function that may have several local 
optima. It is inspired from the physical annealing process 
in metallurgy. Physical annealing refers to the heating 
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and controlled cooling of metal. This process brings the 
material structure from an arbitrary initial state to the 

minimum possible energy state. When heated the atoms 
in the metal are displaced from their current positions and 

arranged randomly. The slow cooling process helps the 
atoms in finding highly structured configurations having 
minimum internal energy.  
    When this concept is adopted for optimization 
techniques then the target is to minimize or maximize the 
value of objective function. Here value of the cost 
function is equivalent to the internal energy state. There 
we need a control parameter that imitates the temperature 
of the physical process. This control parameter controls 
the probability of accepting a solution that is worse than 
the current one [30, 31]. This probability is calculated by 
the value of e-∆/T where ∆ indicates the difference 
between cost functions of current and neighborhood 
solution. First we start with a random initial solution and 
an arbitrary initial value of T. Then we generate a 
neighborhood solution. If the neighborhood solution is 
better than the current solution we always accept that and 
move to that solution. If it is worse, then we accept the 
neighborhood solution based on the probability calculated 
by the expression e-∆/T. The value of control parameter T 
is gradually decreased throughout the process to increase 
the intensification as the search reaches the promising 
area. 
    In this work the neighbor of a solution (i.e. solution 
vector) is generated by randomly choosing a position in 
the vector and then updating it to a new random value 
[27]. The algorithm is given below: 
Step1: Initialize 
Step1.1:s  GenerateInitialSolutionVector(), T  T0, 

s* s  
Step2: While termination conditions not met do 
Step2.1: s΄   PickAtRandom(N (s)) 
Step2.2: If f(s΄) < f(s) then s  s΄,  

Else accept s΄ as new solution with probability 
p(T,s,s΄) 

Step2.3: If f(s΄) < f(s*)then s*  s΄ 
Step2.3: Update(T) 
Step3: Return s* 

 
Where s is current solution, s΄ is neighborhood solution, 
N(s) is neighbourhood of s, neighbour generated by 
modifying single element, chosen randomly, of the 
current vector,  f(s) is cost of s, T is Temperature i.e. the 
control parameter, T0 is the initial value of T, s* holds 
best known solution and f(s΄) holds cost of s΄.   

B. GTSA_RCP 
    For solving Resource Constrained Project Scheduling 
Problem here we proposed a method combining basic 
Simulated Annealing, greedy approach and tabu list 
named Greedy Tabu Simulated Annealing for RCPSP 
abbreviated as GTSA_RCP. It is a hybrid method. It 
combines some features of Tabu Search with Simulated 
Annealing algorithm. The algorithm is similar to 
Simulated Annealing algorithm except for two cases. We 
maintain a list L, conventionally known as tabu list that 
holds some attribute of last few moves [32, 33]. This list 
prevents the generation of a neighbor whose attribute 
matches with any element present in the list. So, tabu list 

actually prevents the generation of recently accepted 
solution. This algorithm also generates all or a set of 
neighborhood solutions (in case the number of all the 
neighbors is very high) of the current solution and then 
follows a greedy approach i.e. chooses the best among 
them [32, 33] and then moves to that solution according 
to Simulated Annealing neighbor acceptance criteria. 
This implies if the chosen solution is better than the 
current solution we always accept that and move to that 
solution. If it is worse, then we accept the neighborhood 
solution based on the probability calculated by the 
expression e-∆/T. The length of the tabu list is a very 
sensitive parameter here. If the list is too short then the 
same type of solutions may be generated soon and 
consequently the search may be trapped in local optima. 
On the other hand if the list is too long then it may 
prevent some moves that are necessary to reach the global 
optima. So, length of the tabu list should be chosen 
carefully. Earlier in this paper we mentioned that to 
generate a neighbor we choose a position in the vector 
arbitrarily and change the priority value randomly. The 
index of that position has been used as the attribute to be 
kept in the tabu list. The algorithm is given below: 
 
Step1: Initialize 
Step1.1: s  GenerateInitialSolutionVector(), T  T0, 

s* s , L=ø 
Step2: While termination conditions not met do 
Step2.1: Select s΄ in argmin[f(s΄΄)]; s΄΄∈ N΄(s) 
Step2.2: If f(s΄) < f(s) then s  s΄,  

Else accept s΄ as new solution with probability 
p(T,s,s΄) and record tabu i.e. index of modified 
element for the current move in L and delete the 
oldest entry if necessary  

Step2.3: If f(s) < f(s*) then  s*  s  
Step2.4: Update (T) 
Step3: Return s* 
 
Where L is the tabu list, N΄(s) is the non-tabu subset of 
neighbourhood of s and f(s΄΄) indicates the  cost of s΄΄. 
Rest of the symbols carry the same meaning as before. 

C. TSA_RCP 
    We proposed another method for RCPSP that 
incorporates tabu list in basic Simulated Annealing and 
named it Tabu Simulated Annealing for RCPSP 
abbreviated as TSA_RCP. This approach is similar to 
GTSA_RCP. It differs from GTSA_RCP in one aspect. 
Here instead of generating all or a set of neighbors, we 
just generate a single neighbor for the current solution 
and accept that according to basic Simulated Annealing 
algorithm criteria. Tabu list is used here in the same way 
and for the same purpose as it was used in GTSA_RCP. 
The algorithm is given below: 

Step1: Initialize 
Step1.1: s  GenerateInitialSolutionVector(), T  T0, 

s* s , L=ø 
Step2: While termination conditions not met do 

1160 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER



Step2.1: s΄   PickAtRandom(N΄(s)) 
Step2.2: If f(s΄) < f(s) then s  s΄,  
               Else accept s΄ as new solution with probability 
               p(T,s,s΄) and record tabu i.e. index of modified 

element for the current move in L and delete the 
oldest entry if necessary 

Step2.3: If f(s) < f(s*) then  s*  s  
Step2.4: Update(T) 
Step3: Return s* 
 
The symbols carry the same meaning as before. 

D. GSA_RCP 
    Next method we proposed is also similar to 
GTSA_RCP. It differs from GTSA_RCP in one aspect. 
No tabu list concept is present here. Only Greedy 
approach is used to select the best neighbor among the set 
of neighbors and the algorithm accepts the best neighbor 
according to Simulated Annealing neighbor acceptance 
criteria. This method has been given the name Greedy 
Simulated Annealing for RCPSP and abbreviated as 
GSA_RCP. The algorithm is given below: 
 
Step1: Initialize 
Step1.1: s  GenerateInitialSolutionVector(), T  T0, 

s* s  
 Step2: While termination conditions not met do 
Step2.1: Select s΄ in argmin[f(s΄΄)]; s΄΄ ∈ N(s) 
Step2.2: If f(s΄) < f(s) then s  s΄,  

Else accept s΄ as new solution with probability 
p(T,s,s΄) 

Step2.3: If f(s) < f(s*) then  s*  s  
Step2.4: Update (T) 
Step3: Return s* 
 
The Symbols carry the same meaning as before.  
 

E. TSA_AC_RCP 
    This approach is similar to TSA_RCP. It differs from 
TSA_RCP in one aspect. Here we have included the 
concept of aspiration criteria. The concept of aspiration 
criteria can be defined as a condition that has to be 
satisfied to allow an otherwise tabu move to be accepted 
[26, 34]. In our work the aspiration function always 
accepts a solution which is better than the best solution 
obtained so far, even if the solution is prohibited by the 
tabu list if the basic Tabu Search Algorithm is followed. 
That means when the attributes of the next solution are 
already in the tabu list, then also that solution may be 
accepted by this method if it improves the current best 
solution.  As this algorithm has been developed by 
incorporating the aspiration criteria into TSA_RCP 
method, we named it Tabu Simulated Annealing with 
Aspiration Criteria for RCPSP which has been 
abbreviated as TSA_AC_RCP. The algorithm is given 
below: 
 
Step1: Initialize 
Step1.1: s  GenerateInitialSolutionVector(), T  T0, 

s* s , L=ø 

Step2: While termination conditions not met do 
Step2.1: s΄   PickAtRandom(N(s)) 
Step2.2: If f(s΄) < f(s) then s  s΄,  

Else if s΄ has its attributes in the tabu list then s΄ 
is rejected 
 Else accept s΄ as new solution with probability 
p(T,s,s΄) and record tabu i.e. index of modified 
element for the current move in L and delete the 
oldest entry if necessary 

Step2.3: If f(s) < f(s*) then  s*  s  
Step2.4: Update (T) 
Step3: Return s* 
 
Symbols carry the same meaning as before. 
 

F. GTSA_AC_RCP 
    This approach is similar to GTSA_RCP. The aspiration 
function is also included here. In this method also the 
aspiration function is applied in the same way as it was 
applied in TSA_AC_RCP method. We named this 
method Greedy Tabu Simulated Annealing with 
Aspiration Criteria for RCPSP that is abbreviated as 
GTSA_AC_RCP. The algorithm is given below: 
 
Step1: Initialize 
Step1.1: s  GenerateInitialSolutionVector(), T  T0, 

s* s , L=ø 
Step2: While termination conditions not met do 
Step2.1: Select s΄ in argmin[f(s΄΄)]; s΄΄∈ N(s) 
Step2.2: If f(s΄) < f(s) then s  s΄,  

Else if s΄ has its attributes in the tabu list then s΄ 
rejected 
Else accept s΄ as new solution with probability 
p(T,s,s΄) and record tabu i.e. index of modified 
element for the current move in L and delete the 
oldest entry if necessary  

Step2.3: If f(s) < f(s*) then  s*  s  
Step2.4: Update (T) 
Step3: Return s* 
 
Symbols carry the same meaning as before. 

IV. EXPERIMENTAL RESULTS 

    We have applied all six algorithms on the given 
benchmark instance of RCPSP. The problem instance is 
standard and widely used [19]. The experiment in this 
paper is implemented by Microsoft Visual C++. 
Experiment environment is: CPU 2.6 GHz, RAM 2GB. 
Same computer has been used for all experiments. 
    Each of the methods has been applied 100 times or 
trials (with same parameter values but with different 
initial solutions generated randomly in order to include 
diversity in those methods) on the same problem instance 
under consideration. Table I shows the comparative 
performance of these methods. The 'Solved' column 
shows the number of times the problem is solved out of 
100 trials, i.e., number of times optimal scheduling time 
(64) is reached. This criterion measures certainty of the 
algorithm. The 'Makespan r.m.s.' column denotes the 
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r.m.s. deviation of the obtained makespans w.r.t. optimal 
scheduling time. The 'Time' column shows the runtime 
averaged over solved instances. The ‘Execution time 
r.m.s’ denotes the r.m.s. deviations the execution time 
w.r.t. average execution time over solved instances. So, it 
can be used as a measure of stability. A lower value in 
this field indicates that the method has high stability. And 
the 'AES' column denotes the number of evaluations of 
the cost function to reach the optimal value, averaged 
over solved cases out of 100. The efficiency of 
optimization algorithms is measured on the basis of AES. 
AES stands for ‘average number of evaluations on 
success’. 
    From Table I it can be easily observed that the average 
runtime of the methods do not vary widely. Those values 
are quite close to each other. It is clear from Table I that 
among all these four methods GTSA_AC_RCP was able 

to produce the optimal makespan with maximum 
frequency ('Solved' = 98), where GTSA_RCP is just after 
it with 'Solved' = 97 and other methods are lagging 
behind. GTSA_AC_RCP also has obtained the minimum 
root mean square deviation (r.m.s. = 0.141) on makespan 
among all the methods. So, in this criterion also 
GTSA_AC_RCP has outperformed other five methods 
discussed here. Therefore, depending on the 'Solved' and 
'Makespan r.m.s.' GTSA_AC_RCP outperforms all other 
methods. GTSA_RCP is the next best and other four 
methods are falling behind. The remaining four methods 
have reached the optimal makespan with same frequency 
and have the same r.m.s. deviation. From table I we can 
conclude that that when stability is concerned SA_RCP is 
the best method followed by TSA_AC_RCP and 
TSA_RCP as shown by the values under ‘Execution time 
r.m.s’ column. Table I shows that GTSA_AC_RCP has 

obtained the lowest value for AES followed by 
GSA_RCP and GTSA_RCP in sequence. Remaining 
three methods have quite high values of AES compared 
to the three methods mentioned above. So, 
GTSA_AC_RCP has performed most efficiently on the 
problem instance under consideration.   
     Fig. 2 plots the execution time against each solved 
instance for each method. So, it can be viewed as the 
graphical representation of stability of each method. So, 
the conclusion that we have drawn by observing the 
values of ‘Execution time r.m.s’ column of Table I can be 
verified with this figure. 
    For a method, the number of iterations needed to reach 
the optimal value of cost function is different in different 
trials, where the total number of trials is 100. Depending 
on the number of iterations there are three cases. In the 
best case a method reaches its optimal value of cost 
function in minimum number of iterations. The same 

sense in meaning applies to average and worst cases, i.e., 
in worst case a method reaches the optimal value of cost 
function in maximum number of iterations. Fig. 3, Fig. 4 
and Fig. 5 show how the value of cost function improves 
with the number of iterations for each method and finally 
reaches the optimal value for best, average and worst case 
respectively.  Our observation is, in best and worst case 
GTSA_AC_RCP has reached the optimal value before 
others. And in the average case it is in third rank. So 
considering these three cases we can say that 
GTSA_AC_RCP has performed better than others. 
TSA_AC_RCP has performed well in average and worst 
cases. In both the cases its rank is two to reach the 
optimal value. Performance of GSA_RCP comes next to 
GTSA_AC_RCP and TSA_AC_RCP. GTSA_RCP 
performs well only in the best case. Rests of the methods 
are lagging behind in performance.

Figure 2. Stability Graph 
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Figure 3. Cost vs. Iteration for best case 

 
 

Figure 4. Cost vs. Iteration for average case 
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Figure 5. Cost vs. Iteration for worst case 

 
TABLE I. 

COMPARISON OF HYBRID LOCAL SEARCH METHODS ON RCPSP 
Method  Instances Solved Makespan r.m.s. Time (sec) Execution time r.m.s AES 

SA_RCP 100 91 0.3 3.894 0.099 15178 

GTSA_RCP 100 97 0.1732 4.003 0.208 10351 

TSA_RCP 100 91 0.3 3.988 0.152 14279 

GSA_RCP 100 91 0.3 3.896 0.222 9912 

GTSA_AC_RCP 100 98 0.141 4.094 0.215 9444 

TSA_AC_RCP 100 91 0.3 3.989 0.109 15498 

V.  CONCLUSION AND FUTURE WORK 

    The Resource Constraint Project Scheduling Problem 
(RCPSP) is a common problem in most of the 
construction engineering projects. Methods those are able 
to solve this problem effectively can significantly 
improve the productivity of construction industry.  
    In this work we have emphasized on the hybrid 
methods because in last few years many of the 
researchers have shown that for optimization problems 
the hybrid meta-heuristic methods often perform better 
than their pure parents. This inspired us to develop some 
hybrid methods by combining some features of Tabu 
Search with Simulated Annealing. Apart from basic SA 
(SA_RCP), five other hybrids are namely Tabu Simulated 
Annealing for RCPSP (TSA_RCP), Greedy Simulated 
Annealing for RCPSP (GSA_RCP), Greedy Tabu 
Simulated Annealing for RCPSP (GTSA_RCP), Tabu  
Simulated Annealing with Aspiration Criteria for RCPSP 
(TSA_AC_RCP) and Greedy Tabu Simulated Annealing  

 
with Aspiration Criteria for RCPSP (GTSA_AC_RCP). 
Their comparative performance has been observed and 
analysed. The optimum value of makespan found for this 
problem is 64. 
    Experimental results show that all six methods were 
able to find the optimum value for this problem. As their 
average runtime over solved instances are kept close to 
each other, it will be quite fair to compare their 
performance based on r.m.s. deviations on makespan and 
success rate. In consideration of those two criteria we see 
that GTSA_AC_RCP outperformed other methods in 
many criteria.  

There are more complicated RCPSP with multiple 
objectives. Incorporation of uncertain activity duration 
and pre-emption need to be analysed in future. As 
optimal parameter setting plays a crucial role in 
producing good quality result that should also be focused 
and exercised. 
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