
Hybrid Local Search Methods in Solving
Resource Constrained Project Scheduling

Problem

Partha Pratim Das
The Heritage Academy, Kolkata, India
partha_pratim_das2004@yahoo.com

Sriyankar Acharyya

West Bengal University of Technology, Kolkata, India
srikalpa8@yahoo.co.in

Abstract—Now-a-days different meta-heuristic approaches,
their variants and hybrids are being applied for solving
Combinatorial Optimization Problems (COP). In this paper
Resource Constrained Project Scheduling Problem
(RCPSP) has been presented as a COP. This is a common
problem for many construction projects. It is highly
constrained and is categorized as a NP-hard problem. In
our earlier work Simulated Annealing (SA_RCP)
outperformed other meta-heuristics, like, Genetic
Algorithm, Tabu Search, Particle Swarm Optimization and
its variant in solving benchmark instances of this problem.
Having been inspired by this result we have further
developed new hybrids of Simulated Annealing and Tabu
Search. In this work, we have proposed five more methods
developed by combining Simulated Annealing and Tabu
Search and applied them for solving a benchmark instance
of this problem. The results show that Simulated Annealing
incorporated with Tabu List, Greedy Selection Heuristic
and aspiration criteria (GTSA_AC_RCP) outperforms
other methods in getting optimal results with maximum hit
and minimum fluctuations.

Index Terms—Resource Constrained Project Scheduling,
Local Search, Meta-heuristics, Simulated Annealing,
Hybrid Methods

I. INTRODUCTION

 Many real-life industrial scheduling problems fall in
the domain of Resource Constrained Project Scheduling
Problem (RCPSP). A typical RCPSP instance considers a
set of tasks. For each task the duration and resource
requirements are fixed and known beforehand. Two types
of constraints are always associated with a RCPSP. One
corresponds to resources and the other is related to
predecessor-successor relationships of the tasks. To
obtain a feasible solution these two types of constraints
must be satisfied. Our objective is to minimize the
makespan of the schedule i.e. to schedule the tasks of the
project in such a way that the project will be completed in
minimum time. As the problems are NP-hard in
complexity, deterministic methods are unable to produce

acceptable solutions within reasonable time when
problem size increases [1].
 Initially, integer programming procedures and implicit
enumeration (dynamic programming and branch-and-
bound) were applied to solve RCPSP instances. During
60’s and 70’s Critical Path Method (CPM) and the
Program Evaluation and Review Technique (PERT) were
applied for solving RCPSP. In 1992 Demeulemeester
and Herroelen proposed D&H algorithm to solve RCPSP
[2]. D&H algorithm was based on a branch and bound
approach. But this method becomes computationally
intractable as the project size increases (e.g., more than
50 tasks).Work of Brucker et al. [3] and Kolisch and
Hartmann [4] focus on heuristic algorithms to solve
RCPSP problem. Fendley worked on comparison of
several scheduling heuristics to solve RCPSP [5]. Mao
[6] used an advanced branch and bound method making
use of time increment method of event-driven to solve the
exact solution of RCPSP. Advanced iterative algorithm
was applied by Shou Yongyi [7] to optimize project
scheduling. Cheng combined the heuristic algorithm and
branch and bound method to solve this problem [8].
 As the problem RCPSP is proved to be NP-hard [1],
meta-heuristics are being used in solving this problem.
Simulated Annealing (SA) was applied by Cho and Kim
[9] to solve RCPSP. Lee and Kim used [10] Tabu Search
(TS) to this problem. In 1990 Boctor [11] applied SA to
solve this problem. In 2002 Genetic Algorithm (GA) was
used by Toklu to solve project scheduling problem with
or without resource constraints [12]. GA has also been
applied to solve construction management problems,
including resources scheduling with a small number of
activities [13, 14, 15]. Some variations of GA like, a
permutation-based GA [16] and self-adapting GA [17]
were proposed by Hartmann in 1998 and 2002
respectively. He also proposed additional two encodings,
which include priority value based GA similar to the
work of Lee and Kim [10] and priority-rule based GA
similar to the work of Dorndorf and Pesch [18].
 In 2006 Zhang has shown that to solve RCPSP, like
earlier methods heuristics also perform poorly compared

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1157

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.5.1157-1166

to meta-heuristic methods [19]. Recent studies reveal that
meta-heuristics and their hybrids perform well for this
kind of problems. In our earlier work [20] we applied
suitable meta-heuristic techniques for solving this
problem. The applied approaches are Simulated
Annealing [21], Tabu Search [22], Genetic Algorithms
[12, 13], Particle Swarm Optimization [19] and Elite
Particle Swarm Optimization [23]. A benchmark instance
of RCPSP [19] was selected to which the above
mentioned techniques were applied and their
performances were compared. The performance of
Simulated Annealing was observed to be the best. The
superiority of Simulated Annealing (SA_RCP) over other
methods inspired us in developing several hybrids of SA
and some other method and applying them on RCPSP
instance.
 In this paper we have applied five hybrid meta-
heuristics on a typical RCPSP instance. Idea of using tabu
list in local search has come from Tabu Search [22, 24].
Incorporation of tabu list always diversifies the search
process and help escaping local minima. The basic
SA_RCP incorporated with tabu list is a hybrid named
here by TSA_RCP. Another hybrid is made by
incorporating greedy selection heuristic for selecting a
solution from the neighborhood with basic SA, namely,
GSA_RCP. The third hybrid obtained from incorporating
both tabu list and greedy selection heuristic in SA is
named GTSA_RCP. Another hybrid TSA_AC_RCP is
generated by including the concept of aspiration criteria
in TSA_RCP. Aspiration criteria has been applied to
Tabu Search by different researchers [25, 26]. Aspiration
criteria has also been considered with GTSA_RCP in
order to produce the new method GTSA_AC_RCP.
These hybrids have been generated as a result of
combining Simulated Annealing [21,27] with Tabu
Search [22, 24, 28] and its variant that includes aspiration
criteria [25, 26].
 A commonly used aspiration criteria is to accept a tabu
move only if the move takes us to a state that is better
than the best state obtained so far. The comparison of the
performance of the methods shows that GTSA_AC_RCP
outperforms other methods in producing good quality
solution in reasonable time.
 We arrange the sections as follows. Section II
describes the problem. Section III describes all six meta-
heuristic methods. Section IV shows the experimental
results and section V concludes the paper.

II. PROBLEM DESCRIPTION

 A typical Resource Constrained Project Scheduling
Problem may be defined by a set of tasks V΄ and a set of
resource types E΄ [19]. For execution each task x need
some resources. The requirement of task x for a resource
type r can be denoted by exr, where exr indicates the
number of instances of resource type r. For each resource
type r, the total number of available instances Er is fixed.
The resources held by task x become available for other
tasks when x finished its execution. Therefore, the
resources are renewable. For each task x its duration is
fixed and known. If a task x cannot start its execution

until and unless another task y finishes its execution then
the task y is called predecessor and the task x is called
successor. The relationship between a predecessor and
successor is called precedence relationship.
 For the graphical representation of a typical RCPSP we
assume that there are 0,1,…, N+1 tasks, where task 0 and
N+1 are dummy tasks with duration zero. They represent
the start time and the finish time of the project
respectively. Nodes in the graph represent the tasks and
the directed edges indicate the precedence relationships
among the tasks. Fig.1 shows the particular RCPSP
instance under consideration by the acyclic directed graph
G = (V΄, F), where V΄ is the set of nodes and F is the set
of edges. Our basic assumption for this problem instance
is that the tasks under the project are non-preemptive, that
is, cannot be interrupted in the middle of execution.
 The constraints present in RCPSP are as follows:
1) Precedence Constraint: All predecessors of a task x
must finish their execution before x starts.
2) Resource Constraint: For each resource type limited
numbers of instances available.
 A schedule may be defined as an arrangement of tasks.
When a schedule satisfies both precedence and resource
constraints then it is said to be a feasible schedule.
Makespan of a schedule is defined as the time needed to
complete the execution of all the tasks of a schedule. Our
objective is to produce a feasible schedule with minimum
makespan for the given set of tasks. RCPSP can be
mathematically formulated as follows:

min{max fx | 1 < x < N } (1)

subject to:

fx – fy ≥ dx, ∀ y ∈ Px; where, 1 < x < N. (2)

∑At΄ exr ≤ Er ; where 1 < r < R; t΄ = s1,s2,….,sN (3)

where N indicates the number of the tasks present in a
project and fy indicates the finish time of task y (1 < y <
N); dx stands for the duration of task x, Px indicates the
set of tasks that have been already scheduled (i.e.,
predecessors) before activity x can start its execution; Er
indicates the available number of instances of resource r
(1 < r < R) and R is the number of the types of resources;
exr is the amount of resource r required by task x, and At΄
is the set of ongoing activities at t΄ and sx (=fx-dx) is the
start time of task x. Equation (1) represents the objective,
while (2) and (3), respectively represent precedence
constraints and resource constraints.
 Fig.1 shows all the tasks involved in the project, their
duration, their resource requirements and the precedence
relationships among them. The RCPSP instance under
consideration has 25 tasks and two dummy tasks. Tasks
are represented by the nodes in the graph. The resource
requirements of each task are shown below the circle
corresponding to the task. Each task has fixed duration
which is indicated by an integer above the circle
corresponding to the task. The project has three types of

1158 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

Figure 1. A typical example of RCPSP

renewable resources each of which has six instances. The
precedence relationships among the tasks have been
shown by the arrows in the figure [19].

III. SOLUTION METHODS

 As meta-heuristic methods are more useful for solving
larger RCPSP instances we have implemented one pure
and five proposed hybrid meta-heuristic methods on the
problem instance under consideration and compared the
performance of those methods. As most of the methods
used in this work are new, they are described elaborately
in this section.
 In our approach every solution is represented by a
vector. The length of the vector equals to the number of
tasks in the project under consideration. Each element of
this vector represents the assigned priority for each task
[19]. For example the ith element of this vector represents
the priority of ith task. The tasks are then scheduled
according to their priority. In our work we took the
makespan of the schedule as the value of cost function for
all the methods applied here. In meta-heuristic methods
the stopping criteria of the algorithm may be defined by
maximum number of iterations, by the number of
iterations without an improvement of cost function or by
a pre-specified threshold value of cost function.
Sometimes a combination of aforesaid conditions may
also be set as the stopping criteria. In this work for all the
methods the stopping criteria is based on the number of
iterations without an improvement of cost function. For
all the methods the solution is represented by a twenty
five element vector.

 Here we have applied a parallel transformation scheme
to produce a feasible schedule of the given RCPSP
instance [19]. The parallel transformation scheme has a
series of steps. At each step multiple tasks that satisfy
both the precedence and resource constraints are
scheduled i.e. more than one task can be executed
simultaneously if both the constraints are met. The
parallel transformation scheme obeys the following rules
to produce a schedule from the priority vector.
1) Scheduling decision is taken at start and whenever one
of the scheduled tasks finishes its execution and some
tasks are still left to be scheduled.
2) A set of feasible tasks are chosen that satisfy the
precedence constraints resource constraints.
3) From that set of feasible tasks, tasks are selected for
execution one by one in descending order of their
priorities and resources are assigned to them as required.
4) Tasks are scheduled to start execution at the newly
determined scheduling time, and then the steps from 1)
are continued again if any tasks have not been scheduled
so far. Simulated Annealing and other five hybrid meta-
heuristic methods are described below in details:

A. Simulated Annealing (SA_RCP)
 Simulated Annealing is a well-known local search
technique which can solve complex combinatorial
problems. The general goal of local search techniques is
to find good quality solutions in reasonable amount of
time. SA_RCP is a probabilistic method. The idea of SA,
was first introduced in 1983 by Kirkpatrick, Gelatt and
Vecchi [21] and Cerny in 1985 [29]. It finds the global
optima of a cost function that may have several local
optima. It is inspired from the physical annealing process
in metallurgy. Physical annealing refers to the heating

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1159

© 2013 ACADEMY PUBLISHER

and controlled cooling of metal. This process brings the
material structure from an arbitrary initial state to the

minimum possible energy state. When heated the atoms
in the metal are displaced from their current positions and

arranged randomly. The slow cooling process helps the
atoms in finding highly structured configurations having
minimum internal energy.
 When this concept is adopted for optimization
techniques then the target is to minimize or maximize the
value of objective function. Here value of the cost
function is equivalent to the internal energy state. There
we need a control parameter that imitates the temperature
of the physical process. This control parameter controls
the probability of accepting a solution that is worse than
the current one [30, 31]. This probability is calculated by
the value of e-∆/T where ∆ indicates the difference
between cost functions of current and neighborhood
solution. First we start with a random initial solution and
an arbitrary initial value of T. Then we generate a
neighborhood solution. If the neighborhood solution is
better than the current solution we always accept that and
move to that solution. If it is worse, then we accept the
neighborhood solution based on the probability calculated
by the expression e-∆/T. The value of control parameter T
is gradually decreased throughout the process to increase
the intensification as the search reaches the promising
area.
 In this work the neighbor of a solution (i.e. solution
vector) is generated by randomly choosing a position in
the vector and then updating it to a new random value
[27]. The algorithm is given below:
Step1: Initialize
Step1.1:s GenerateInitialSolutionVector(), T T0,

s* s
Step2: While termination conditions not met do
Step2.1: s΄ PickAtRandom(N (s))
Step2.2: If f(s΄) < f(s) then s s΄,

Else accept s΄ as new solution with probability
p(T,s,s΄)

Step2.3: If f(s΄) < f(s*)then s* s΄
Step2.3: Update(T)
Step3: Return s*

Where s is current solution, s΄ is neighborhood solution,
N(s) is neighbourhood of s, neighbour generated by
modifying single element, chosen randomly, of the
current vector, f(s) is cost of s, T is Temperature i.e. the
control parameter, T0 is the initial value of T, s* holds
best known solution and f(s΄) holds cost of s΄.

B. GTSA_RCP
 For solving Resource Constrained Project Scheduling
Problem here we proposed a method combining basic
Simulated Annealing, greedy approach and tabu list
named Greedy Tabu Simulated Annealing for RCPSP
abbreviated as GTSA_RCP. It is a hybrid method. It
combines some features of Tabu Search with Simulated
Annealing algorithm. The algorithm is similar to
Simulated Annealing algorithm except for two cases. We
maintain a list L, conventionally known as tabu list that
holds some attribute of last few moves [32, 33]. This list
prevents the generation of a neighbor whose attribute
matches with any element present in the list. So, tabu list

actually prevents the generation of recently accepted
solution. This algorithm also generates all or a set of
neighborhood solutions (in case the number of all the
neighbors is very high) of the current solution and then
follows a greedy approach i.e. chooses the best among
them [32, 33] and then moves to that solution according
to Simulated Annealing neighbor acceptance criteria.
This implies if the chosen solution is better than the
current solution we always accept that and move to that
solution. If it is worse, then we accept the neighborhood
solution based on the probability calculated by the
expression e-∆/T. The length of the tabu list is a very
sensitive parameter here. If the list is too short then the
same type of solutions may be generated soon and
consequently the search may be trapped in local optima.
On the other hand if the list is too long then it may
prevent some moves that are necessary to reach the global
optima. So, length of the tabu list should be chosen
carefully. Earlier in this paper we mentioned that to
generate a neighbor we choose a position in the vector
arbitrarily and change the priority value randomly. The
index of that position has been used as the attribute to be
kept in the tabu list. The algorithm is given below:

Step1: Initialize
Step1.1: s GenerateInitialSolutionVector(), T T0,

s* s , L=ø
Step2: While termination conditions not met do
Step2.1: Select s΄ in argmin[f(s΄΄)]; s΄΄∈ N΄(s)
Step2.2: If f(s΄) < f(s) then s s΄,

Else accept s΄ as new solution with probability
p(T,s,s΄) and record tabu i.e. index of modified
element for the current move in L and delete the
oldest entry if necessary

Step2.3: If f(s) < f(s*) then s* s
Step2.4: Update (T)
Step3: Return s*

Where L is the tabu list, N΄(s) is the non-tabu subset of
neighbourhood of s and f(s΄΄) indicates the cost of s΄΄.
Rest of the symbols carry the same meaning as before.

C. TSA_RCP
 We proposed another method for RCPSP that
incorporates tabu list in basic Simulated Annealing and
named it Tabu Simulated Annealing for RCPSP
abbreviated as TSA_RCP. This approach is similar to
GTSA_RCP. It differs from GTSA_RCP in one aspect.
Here instead of generating all or a set of neighbors, we
just generate a single neighbor for the current solution
and accept that according to basic Simulated Annealing
algorithm criteria. Tabu list is used here in the same way
and for the same purpose as it was used in GTSA_RCP.
The algorithm is given below:

Step1: Initialize
Step1.1: s GenerateInitialSolutionVector(), T T0,

s* s , L=ø
Step2: While termination conditions not met do

1160 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

Step2.1: s΄ PickAtRandom(N΄(s))
Step2.2: If f(s΄) < f(s) then s s΄,
 Else accept s΄ as new solution with probability
 p(T,s,s΄) and record tabu i.e. index of modified

element for the current move in L and delete the
oldest entry if necessary

Step2.3: If f(s) < f(s*) then s* s
Step2.4: Update(T)
Step3: Return s*

The symbols carry the same meaning as before.

D. GSA_RCP
 Next method we proposed is also similar to
GTSA_RCP. It differs from GTSA_RCP in one aspect.
No tabu list concept is present here. Only Greedy
approach is used to select the best neighbor among the set
of neighbors and the algorithm accepts the best neighbor
according to Simulated Annealing neighbor acceptance
criteria. This method has been given the name Greedy
Simulated Annealing for RCPSP and abbreviated as
GSA_RCP. The algorithm is given below:

Step1: Initialize
Step1.1: s GenerateInitialSolutionVector(), T T0,

s* s
 Step2: While termination conditions not met do
Step2.1: Select s΄ in argmin[f(s΄΄)]; s΄΄ ∈ N(s)
Step2.2: If f(s΄) < f(s) then s s΄,

Else accept s΄ as new solution with probability
p(T,s,s΄)

Step2.3: If f(s) < f(s*) then s* s
Step2.4: Update (T)
Step3: Return s*

The Symbols carry the same meaning as before.

E. TSA_AC_RCP
 This approach is similar to TSA_RCP. It differs from
TSA_RCP in one aspect. Here we have included the
concept of aspiration criteria. The concept of aspiration
criteria can be defined as a condition that has to be
satisfied to allow an otherwise tabu move to be accepted
[26, 34]. In our work the aspiration function always
accepts a solution which is better than the best solution
obtained so far, even if the solution is prohibited by the
tabu list if the basic Tabu Search Algorithm is followed.
That means when the attributes of the next solution are
already in the tabu list, then also that solution may be
accepted by this method if it improves the current best
solution. As this algorithm has been developed by
incorporating the aspiration criteria into TSA_RCP
method, we named it Tabu Simulated Annealing with
Aspiration Criteria for RCPSP which has been
abbreviated as TSA_AC_RCP. The algorithm is given
below:

Step1: Initialize
Step1.1: s GenerateInitialSolutionVector(), T T0,

s* s , L=ø

Step2: While termination conditions not met do
Step2.1: s΄ PickAtRandom(N(s))
Step2.2: If f(s΄) < f(s) then s s΄,

Else if s΄ has its attributes in the tabu list then s΄
is rejected
 Else accept s΄ as new solution with probability
p(T,s,s΄) and record tabu i.e. index of modified
element for the current move in L and delete the
oldest entry if necessary

Step2.3: If f(s) < f(s*) then s* s
Step2.4: Update (T)
Step3: Return s*

Symbols carry the same meaning as before.

F. GTSA_AC_RCP
 This approach is similar to GTSA_RCP. The aspiration
function is also included here. In this method also the
aspiration function is applied in the same way as it was
applied in TSA_AC_RCP method. We named this
method Greedy Tabu Simulated Annealing with
Aspiration Criteria for RCPSP that is abbreviated as
GTSA_AC_RCP. The algorithm is given below:

Step1: Initialize
Step1.1: s GenerateInitialSolutionVector(), T T0,

s* s , L=ø
Step2: While termination conditions not met do
Step2.1: Select s΄ in argmin[f(s΄΄)]; s΄΄∈ N(s)
Step2.2: If f(s΄) < f(s) then s s΄,

Else if s΄ has its attributes in the tabu list then s΄
rejected
Else accept s΄ as new solution with probability
p(T,s,s΄) and record tabu i.e. index of modified
element for the current move in L and delete the
oldest entry if necessary

Step2.3: If f(s) < f(s*) then s* s
Step2.4: Update (T)
Step3: Return s*

Symbols carry the same meaning as before.

IV. EXPERIMENTAL RESULTS

 We have applied all six algorithms on the given
benchmark instance of RCPSP. The problem instance is
standard and widely used [19]. The experiment in this
paper is implemented by Microsoft Visual C++.
Experiment environment is: CPU 2.6 GHz, RAM 2GB.
Same computer has been used for all experiments.
 Each of the methods has been applied 100 times or
trials (with same parameter values but with different
initial solutions generated randomly in order to include
diversity in those methods) on the same problem instance
under consideration. Table I shows the comparative
performance of these methods. The 'Solved' column
shows the number of times the problem is solved out of
100 trials, i.e., number of times optimal scheduling time
(64) is reached. This criterion measures certainty of the
algorithm. The 'Makespan r.m.s.' column denotes the

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1161

© 2013 ACADEMY PUBLISHER

r.m.s. deviation of the obtained makespans w.r.t. optimal
scheduling time. The 'Time' column shows the runtime
averaged over solved instances. The ‘Execution time
r.m.s’ denotes the r.m.s. deviations the execution time
w.r.t. average execution time over solved instances. So, it
can be used as a measure of stability. A lower value in
this field indicates that the method has high stability. And
the 'AES' column denotes the number of evaluations of
the cost function to reach the optimal value, averaged
over solved cases out of 100. The efficiency of
optimization algorithms is measured on the basis of AES.
AES stands for ‘average number of evaluations on
success’.
 From Table I it can be easily observed that the average
runtime of the methods do not vary widely. Those values
are quite close to each other. It is clear from Table I that
among all these four methods GTSA_AC_RCP was able

to produce the optimal makespan with maximum
frequency ('Solved' = 98), where GTSA_RCP is just after
it with 'Solved' = 97 and other methods are lagging
behind. GTSA_AC_RCP also has obtained the minimum
root mean square deviation (r.m.s. = 0.141) on makespan
among all the methods. So, in this criterion also
GTSA_AC_RCP has outperformed other five methods
discussed here. Therefore, depending on the 'Solved' and
'Makespan r.m.s.' GTSA_AC_RCP outperforms all other
methods. GTSA_RCP is the next best and other four
methods are falling behind. The remaining four methods
have reached the optimal makespan with same frequency
and have the same r.m.s. deviation. From table I we can
conclude that that when stability is concerned SA_RCP is
the best method followed by TSA_AC_RCP and
TSA_RCP as shown by the values under ‘Execution time
r.m.s’ column. Table I shows that GTSA_AC_RCP has

obtained the lowest value for AES followed by
GSA_RCP and GTSA_RCP in sequence. Remaining
three methods have quite high values of AES compared
to the three methods mentioned above. So,
GTSA_AC_RCP has performed most efficiently on the
problem instance under consideration.
 Fig. 2 plots the execution time against each solved
instance for each method. So, it can be viewed as the
graphical representation of stability of each method. So,
the conclusion that we have drawn by observing the
values of ‘Execution time r.m.s’ column of Table I can be
verified with this figure.
 For a method, the number of iterations needed to reach
the optimal value of cost function is different in different
trials, where the total number of trials is 100. Depending
on the number of iterations there are three cases. In the
best case a method reaches its optimal value of cost
function in minimum number of iterations. The same

sense in meaning applies to average and worst cases, i.e.,
in worst case a method reaches the optimal value of cost
function in maximum number of iterations. Fig. 3, Fig. 4
and Fig. 5 show how the value of cost function improves
with the number of iterations for each method and finally
reaches the optimal value for best, average and worst case
respectively. Our observation is, in best and worst case
GTSA_AC_RCP has reached the optimal value before
others. And in the average case it is in third rank. So
considering these three cases we can say that
GTSA_AC_RCP has performed better than others.
TSA_AC_RCP has performed well in average and worst
cases. In both the cases its rank is two to reach the
optimal value. Performance of GSA_RCP comes next to
GTSA_AC_RCP and TSA_AC_RCP. GTSA_RCP
performs well only in the best case. Rests of the methods
are lagging behind in performance.

Figure 2. Stability Graph

1162 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

Figure 3. Cost vs. Iteration for best case

Figure 4. Cost vs. Iteration for average case

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1163

© 2013 ACADEMY PUBLISHER

Figure 5. Cost vs. Iteration for worst case

TABLE I.

COMPARISON OF HYBRID LOCAL SEARCH METHODS ON RCPSP
Method Instances Solved Makespan r.m.s. Time (sec) Execution time r.m.s AES

SA_RCP 100 91 0.3 3.894 0.099 15178

GTSA_RCP 100 97 0.1732 4.003 0.208 10351

TSA_RCP 100 91 0.3 3.988 0.152 14279

GSA_RCP 100 91 0.3 3.896 0.222 9912

GTSA_AC_RCP 100 98 0.141 4.094 0.215 9444

TSA_AC_RCP 100 91 0.3 3.989 0.109 15498

V. CONCLUSION AND FUTURE WORK

 The Resource Constraint Project Scheduling Problem
(RCPSP) is a common problem in most of the
construction engineering projects. Methods those are able
to solve this problem effectively can significantly
improve the productivity of construction industry.
 In this work we have emphasized on the hybrid
methods because in last few years many of the
researchers have shown that for optimization problems
the hybrid meta-heuristic methods often perform better
than their pure parents. This inspired us to develop some
hybrid methods by combining some features of Tabu
Search with Simulated Annealing. Apart from basic SA
(SA_RCP), five other hybrids are namely Tabu Simulated
Annealing for RCPSP (TSA_RCP), Greedy Simulated
Annealing for RCPSP (GSA_RCP), Greedy Tabu
Simulated Annealing for RCPSP (GTSA_RCP), Tabu
Simulated Annealing with Aspiration Criteria for RCPSP
(TSA_AC_RCP) and Greedy Tabu Simulated Annealing

with Aspiration Criteria for RCPSP (GTSA_AC_RCP).
Their comparative performance has been observed and
analysed. The optimum value of makespan found for this
problem is 64.
 Experimental results show that all six methods were
able to find the optimum value for this problem. As their
average runtime over solved instances are kept close to
each other, it will be quite fair to compare their
performance based on r.m.s. deviations on makespan and
success rate. In consideration of those two criteria we see
that GTSA_AC_RCP outperformed other methods in
many criteria.

There are more complicated RCPSP with multiple
objectives. Incorporation of uncertain activity duration
and pre-emption need to be analysed in future. As
optimal parameter setting plays a crucial role in
producing good quality result that should also be focused
and exercised.

1164 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

REFERENCES

[1] J. Blazewicz, J.K. Lenstra, and A. H. G. Rinnooy Kaw,
“Scheduling Subject to Resource Constraints:
Classification and Complexity”, Discrete Applied
Mathematics, 5(1), 1983, pp.11-24.

[2] E. Demeulemeester and W. Herroelen, “A Branch
and Bound Procedure for the Multiple Resource
Constrained Project Scheduling Problem”,
Management Science, Vol. 38, No. 12, 1992, pp.
1803-1818.

[3] P. Brucker, S. Knust., A. Schoo and O. Thiele, ‘‘A
Branch and Bound Algorithm for the Resource
Constrained Project Scheduling Problem’’,
European Journal of Operational Research, Vol. 107,
No. 2, 1998, pp. 272-288.

[4] Rainer Kolisch, Sonke Hartmann, “Experimental
Investigation of Heuristics for Resource-constrained
Project Scheduling: An Update”, European Journal
of Operational Research, Vol. 174, No. 1, 2006, pp.
23-37.

[5] L. G. Fendley, “Toward the Development of a
Complete Multiproduct Scheduling System”, J.
Industrial Engineering, Vol. 19, 1968, pp. 505-515.

[6] Mao N, Chen Q X and Chen X, “An Extension to
the DH Branch and Bound Algorithm for
MRCPSP”, Control Theory and Applications, Vol.
18, 2001, pp. 119–126. (in Chinese)

[7] Shou Y Y, “Iterative Technique for Scheduling
Resource Constrained Multiple Projects”, Journal of
Zhejiang University (Engineering Science), Vol. 38,
2004, pp. 1095–1099. (in Chinese)

[8] Cheng X and Wu C Q, “Hybrid Algorithm for
Complex Project Scheduling”, Computer Integrated
Manufacturing Systems, Vol. 12, 2006, pp. 585–
589. (in Chinese)

[9] J.H. Cho and Y.D. Kim, “A Simulated Annealing
Algorithm for Resource Constrained Project
Scheduling Problems”, Journal of the Operational
Research Society, Vol. 48, No. 7, 1997, pp. 736-744.

[10] J.K. Lee and Y. D. Kim, “Search Heuristics for
Resource Constrained Project Scheduling”, Journal
of the Operational Research Society, Vol. 47, No. 5,
1996, pp. 678–689.

[11] F.F. Boctor, “Some Efficient Multi-heuristic
Procedures for Resource Constrained Project
Scheduling”, European Journal of Operational
Research, Vol. 49, 1990, pp. 3–13.

[12] Y. C. Toklu, “Application of Genetic Algorithms to
Construction Scheduling with or without Resource
Constraints”, Canadian Journal of Civil Engineering,
Vol. 29, 2002, pp. 421-429.

[13] W. Chan, D. K. H Chua and G. Kannan,
“Construction Resource Scheduling with Genetic
Algorithms”, Journal of Construction Engineering
and Management, ASCE, 122(2), 1996, pp.125-132.

[14] S. Leu, and C. Yang, “GA-Based Multicriteria
Optimal Model for Construction Scheduling”,
Journal of Construction Engineering and
Management, ASCE, 125(6), 1999, pp. 420-427.

[15] T. Hegazy and M. Kassab, “Resource Optimization
Using Combined Simulation and Genetic
Algorithms”, Journal of Construction Engineering
and Management, ASCE, 129(6), 2003, pp. 698-705.

[16] S Hartmann, “A Competitive Genetic Algorithm for
Resource-Constrained Project Scheduling”, Naval
Research Logistics, Vol. 45, 1998, pp. 733-750.

[17] S. Hartmann, “A self-adapting Genetic Algorithm
for Project Scheduling under Resource Constraints”,
Naval Research Logistics, Vol. 49, No.5, 2002, pp.
433-448.

[18] U. Dorndorf and E. Pesch, “Evolution Based
Learning in a Job Shop Scheduling Environment”,
Computers and Operations Research, Vol. 22, 1995,
pp. 25-40.

[19] Hong Zhang, Heng Li and C.M. Tam, “Particle
Swarm Optimization for Resource-constrained
Project Scheduling”, International Journal of Project
Management, Vol. 24, 2006, pp. 83-92.

[20] P. P. Das and S. Acharyya, "Meta-heuristic Approaches
for Solving Resource Constrained Project Scheduling
Problem: A Comparative Study", Proc IEEE Int Conf on
Computer Science and Automation Engineering (CSAE),
Shanghai, China, 2011.

[21] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi,
“Optimization by Simulated Annealing”, Science,
Volume 220, Number 4598, 1983, pp.671-680.

[22] A. Hertz and D. Werra, “The Tabu Search
Metaheuristic: How We Used It”, Annals of
Mathematics and Artificial Intelligence, Vol. 1,
1990, pp. 111-121

[23] J. Wei, L. Guangbin and L. Dong, “Elite Particle Swarm
Optimization with Mutation”, Proc Asia Simulation
Conference — 7th Intl. Conf. on Sys. Simulation and
Scientific Computing, 2008, pp. 800-803.

[24] D. Costa, “A Tabu Search Algorithm for Computing
an Operational Time Table”, European Journal of
Operational Research, Vol. 76, 1994, pp. 98-110.

[25] A. Moilanen, “Parameterization of a Metapopulation
Model: An Empifical Comparison of Several Different
Genetic Algorithms, Simulated Annealing and Tabu
Search”, IEEE Int. Conf. on Evolutionary Computation,
1995, Vol. 2, pp. 551-556.

[26] J. Euchi and H. Chabchoub, “Tabu Search Metaheuristic
Embedded in Adaptative Memory Procedure for the
Profitable Arc Tour Problem”, World Congress on Nature
& Biologically Inspired Computing (NaBIC), 2009, pp.
204-209.

[27] P. J. M. V. Laarhoven, E. H. L. Aarts, and J. K.
Lenstra, “Job Shop Scheduling by Simulated
Annealing”. Operations Research, 40(1), 1992, pp.
113-12

[28] A. Hertz, “Finding a Feasible Course Schedule
Using Tabu Search”, Discrete Applied Mathematics,
Vol. 35, 1992, pp. 255-270.

[29] V. Cerny, “A Thermodynamical Approach to the
Travelling Salesman Problem”, Journal of
Optimization Theory and Applications, Vol.15,
1985, pp. 41-51

[30] Z. N. Azimi, “Comparison of Meta-heuristic
Algorithms for Examination Timetabling Problem”,

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1165

© 2013 ACADEMY PUBLISHER

J. Appl. Math. & Computing, Vol. 16, No. 1 – 2,
2004, pp. 337 – 354.

[31] Dai Chen, “A Comparative Study of Meta-heuristic
Algorithms for the Fertilizer Optimization Problem”,
Thesis, University of Saskatchewan, Saskatoon,
2006.

[32] F. Glover, "Tabu Search, Part I", ORSA Journal on
Computing, Vol. 1, 1989, pp. 190-206.

[33] Dell’Amico, M. and M. Trubian, “Applying Tabu
Search to the Job-Shop Scheduling Problem”,
Annals of Operations Research, Vol. 41, 1993,
pp.231-252.

[34] U. Ahmed and G. N. Khan, “Embedded System
Partitioning with Flrxible Granularity by Using a Variant
of Tabu Search”, CCGEI, 2004, pp. 2073-2076.

Partha Pratim Das obtained B.Tech in Information
Technology from University of Kalyani, West Bengal, India in
2004 and M.E. in Computer Science and Engineering from
West Bengal University of Technology, West Bengal, India in
2010. His research interests include Combinatorial Optimization,
Scheduling and Meta-heuristic Search.

Currently, he is an Assistant Professor at The Heritage
cademy, Kolkata, West Bengal, India.

Sriyankar Acharyya obtained M. Tech. and Ph.D. in
Computer Science and Engineering from Calcutta University.
His research interests include Constraint Satisfaction Problems
(CSP), Meta-heuristic Search, Combinatorial Optimization,
Scheduling and Bio-informatics.

He worked in Bhabha Atomic Research Centre as Scientific
Officer (C) from 1989 to 1995. Then, he was Reader in Physics
at Vivekananda College and Reader in Computer & System
Science at Visva Bharati University. At present he is Associate
Professor in Computer Science and Engineering, West Bengal
University of Technology (WBUT), West Bengal, India.

1166 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

