
Improving the Performance of a Genome Sorting
Algorithm with Inverted Block-Interchange

Deen Md Abdullah1,2,3,4, Wali Md Abdullah1,2,3,4, M. Sohel Rahman3,5

1IICT, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
2Military Institute of Science and Technology, Dhaka, Bangladesh

3A`EDA group
Department of CSE, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh

Email: 4{rabi.mist, shashi.mist}@yahoo.com, 5msrahman@cse.buet.ac.bd

Abstract— A classic problem in comparative genomics is to
find a shortest sequence of evolutionary operations that
transform one genome into another. There are different
types of genome rearrangement operators such as reversals,
transpositions, translocations, block interchange, double cut
and join (DCJ) etc. In this paper we consider reversals and
block-interchanges simultaneously and incorporate inverted
block-interchange in a heuristic algorithm, which inverts one
or both of the two swapped segments of a block-interchange.
Experimental results confirm that incorporation of inverted
block-interchange always results in a better (or at least equal)
sorting sequence.

Index Terms— Genome rearrangement, genome sorting, in-
verted block-interchange, sorting permutations.

I. INTRODUCTION

THE study of genome rearrangements has been one
of the most promising methods for tracing the evo-

lutionary history using gene order comparisons between
organisms. In a species, there are a large number of genes
and the ordering of the genes is hugely important. Since
we are interested in the order of genes, we label each gene
with a unique number. This numbers are represented by
+ or − signs. We measure the similarity of two genomes
by measuring how easy it is to transform one genome
to another by some operations. Among these operations
reversal, block interchange, tandem duplication, deletion
etc. are commonly used for genome rearrangement.

Reversals is the most widely studied type of global mu-
tations [2]–[4], which inverts a segment in the permutation
and changes the sign of each integer in that segment. In
a genome rearrangement problem if we only consider
reversals, then the problem of sorting by reversals is
to find the shortest series composed of reversals that
transform the given permutation into another [4].

Block-interchanges are also global mutations that act
on a permutation [5]–[8]. A universal double-cut-and-join
(DCJ) operation was introduced by Yancopoulos et al.
that accounts for reversals, translocations, fissions, fusions
and block-interchanges by assigning a weight of 1 to all
operations except block-interchanges, which get a weight
of 2 [8].

A preliminary version of the paper was appeared at [1].

Ying et al. introduced several approaches to examine
genome rearrangement problems by considering reversals
and block-interchanges together under various weight
assignments [9]. Their algorithm reports an acceptable
solution with theoretical guarantees and experimental
evidences. Being motivated by the work of [9], we here
consider reversals and block interchanges simultaneously
and apply inverted block-interchange to improve a heuris-
tic algorithm presented by Bader [10]. Bader considered
signed permutation. So we have also considered signed
permutation in our work.

Our contribution in this paper lies in improving a
heuristic algorithm of [10] from a practical point of
view by introducing the operation of inverted block-
interchange. In particular, we have experimentally shown
that the inclusion of inverted block-interchange operation
can provide better results for genome rearrangement. We
believe, this finding can will have some impact in tracing
the evolutionary history using gene order comparisons
between organisms.

We organize the rest of the paper as follows. In Section
III, we give the definitions and discuss preliminary con-
cepts. Result of our contribution is described in Section
IV. Finally, Section V concludes the paper.

II. RELATED WORK

More precisely, given two genomes, one wants to find
an optimal (shortest) sequence of rearrangements that
transforms this genome into the other. In the classi-
cal approach, each gene has exactly one copy in each
genome, and only operations that do not change the
genome content are considered. These “classical oper-
ations” are nowadays a well-studied subject. The most
important operations are reversals (also called inversions)
and transpositions. A section of the genome is excised,
reversed in orientation, and reinserted in reversals op-
eration. For transpositions operation a section of the
genome is excised and reinserted at a new position in
the genome. While the problem of Sorting by reversals
can be solved in polynomial time only if the underlying
permutation is signed [2]–[4], and the reversal distance
can be determined in linear time [11], the problem gets

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1119

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.5.1119-1126

more complicated if one also considers transpositions, and
there are only approximation algorithms known [5]–[7].
Also, very recently, it has been proved that Sorting by
Transpositions is NP-Hard [12]. To simplify the existing
algorithms, Yancopoulos et al. invented the double cut
and join operator, which can simulate reversals and block
interchanges (a more generalized form of a transposition),
resulting in a simple and efficient algorithm [8].

However, restricting the genes to be unique in each
genome does not reflect the biological reality very well,
as in most genomes that have been studied, there are
some genes that are presented in two or more copies.
This holds especially for the genomes of plants, and one
of the most prominent genomes is the one of the flowering
plant Arabidopsis thaliana , where large segments of the
genome have been duplicated (see e.g. [13]). There are
various evolutionary events that can change the content of
the genome, like duplications of single genes, horizontal
gene transfer, or tandem duplications. For a nice overview
in the context of comparative genomics, see [14]. From
an algorithmic point of view, the existence of duplicated
genes complicates many existing algorithms, for example
the problem of sorting arbitrary strings by reversals [15]
and the problem of sorting by reversals and duplications
[16] have been proven to be NP-hard. So far, most of
the existing algorithms restrict duplications to have a
fixed length [17], or simulate duplications by arbitrary
insertions [18]–[20]. Even with these restrictions, it is
hard to solve most of the problems exactly, and heuristics
have to be used.

While genome rearrangement problems without dupli-
cations are a well studied subject, considering genomes
with duplicated genes is a rather new field of research.
One of the first works on this topic was done by Sankoff
[21], where the following problem was examined: Given
two genomes with duplicated genes, identify in both
genomes the “true exemplars” of each gene and remove
all other genes, such that the rearrangement distance
between these modified genomes is minimized. This ap-
proach minimizes the number of classical rearrangement
operations, but not the one of duplications and deletions.
In the work of El Mabrouk [22], for a given genome with
duplicated gene content, one searches for a hypothetical
ancestor with unique gene content such that the reversal
and duplication distance towards this ancestor is mini-
mized. Bertrand et al. [17] developed an algorithm for the
following problem: Given two genomes with duplicated
gene content, find a hypothetical ancestor such that the
sum of the reversal and duplication distance of both
genomes to this ancestor is minimized. However, in this
work, duplications are restricted to have the length of one
marker, i.e., a duplication can only duplicate segments
that are identical in the initial genomes. Therefore, this
approach is disadvantageous if large segmental duplica-
tions happened during evolution. Fu et al. extended this
approach to the greedy algorithm MSOAR for assigning
orthologous genes, which works well in practice [16],
[23]. Other approaches [18]–[20] simulate duplications by

arbitrary insertions. Recently, Yancopoulos and Friedberg
provided a mathematical model of a genome rearrange-
ment distance for genomes with unequal gene content
[24], combining the DCJ operator [8] with arbitrary but
lengthweighted insertions and deletions. Another field
of research is the “Genome halving problem”, where a
rearrangement scenario consists of a whole genome du-
plication followed by a series of classical rearrangement
operations. It has been studied first for reversals and
translocations [25], [26] and recently has been extended
to the double cut and join operator [27], [28].

To the best of our knowledge, the only approach that
creates a rearrangement scenario between two genomes,
consisting of duplications of arbitrary length and classical
genome rearrangements, is the one of Ozery-Flato and
Shamir [29]. They use a greedy algorithm that starts with
one genome and in each step applies the simplest and
most evident operation that brings this genome closer
to the target genome. If there is no evident operation,
the algorithm aborts. Although this approach fails on
complicated rearrangement scenarios, they were able to
find rearrangement scenarios for more than 98% of the
karyotypes in the “Mitelman database of chromosome
aberrations in cancer”.

A. Previous work

Bader focused on the genome arrangement problem
assuming reversals, block interchanges, tandem duplica-
tions, and deletions operations [10]. In contrast to most
of the previous works, in [10], tandem duplications and
deletions can be of arbitrary length.

There is another approach which extends to multi-
chromosomal genomes [30]. An exact algorithm for the
weight proportion of 1 : 2 is developed, and then, its
idea is extended to design approximation algorithms for
other weight assignments [9]. A framework is given to
establish an efficient correction for two models, one that
includes insertions, deletions and double cut and join
(DCJ) operations, and one that includes substitutions and
DCJ operations [31].

In Bader’s work [10], instead of searching for a se-
quence of operations that sorts identity genome into a
given genome, Bader searched for the inverse sequence
that sorts a given genome into identity genome and he
mentioned this sequence as the distance. He proved that,
the breakpoint graph of identity genome has n+1 number
of components and no loops. If the given genome is not
an identity genome then it must contain a breakpoint.
Then there will either be a loop or it will contain less
than n + 1 number of components. He showed that, at
most n + 1 sequence of operations are needed to make
n + 1 number of components in the given genome that
transforms it into identity genome. If the given genome
already contains C(π) number of components, then one
can avoid that number of operations. Again if there are
S(π) number of loops then one has to perform additional
dSi

2 e number of operations. He developed a lower bound
for this distance and also proved that this lower bound

1120 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

can be decreased by at most 1 [10]. Based on this lower
bound he developed a heuristic algorithm (Algorithm 1).

The lower bound lb(π) of the distance d(π) is as
follows:
d(π) ≥ lb(π) = n+ 1− C(π) +

∑
componentsd

Si

2 e
where Si is the number of vertices with a loop in

component Ci.
Bader’s algorithm (Algorithm 1) uses a greedy strategy

to sort the genome. In each step, it searches for operations
that decrease the lower bound, i.e. it searches for opera-
tions that increase C or decrease S, and check their effect
on the lower bound. If there is no such operation, it will
use additional heuristics to search for small sequences of
operations that reduce the number of missing elements
or duplications and creates adjacencies. The main idea
behind these heuristics is to reduce the number of missing
elements and duplicates and to create adjacencies.

We follow Bader’s algorithm and include an operation
inverted block-interchange in the set of operations of
Bader’s algorithm. Experimental results show that after
including inverted block-interchange in Bader’s algorithm,
we get sorting sequences those are better or equal for
all cases than sorting sequences which are found by the
former set of operations.

Algorithm 1 Bader’s Algorithm [10]

while π 6= id do
Find all operations that decrease lb(π)
if operation found then

apply an operation that maximizes τ(π)
else

find inverse tandem duplications
find sequences for segments with multiplicity
≥ 3
find operations that create adjacencies
find sequences for cases A,B,C
apply a sequence that maximizes τ(π)

end if
end while

III. INVERTED BLOCK INTERCHANGE AND OTHER
OPERATIONS

Genome is represented as a string over the alphabet
1, ..., n. Each element may have a positive or negative
orientation. A genome is called augmented genome if
the element 0 is added at the beginning and the element
n + 1 is added at the end. For simplicity we shall use
the term genome instead of augmented genome. The
number of occurrences of an element in genome is its
multiplicity. In a genome rearrangement problem, we are
given two genomes and a set of possible operations, where
each operation is assigned a weight, and we need to
find a sequence with minimum cumulative weight that
transforms one into another.

Figure 1. Example of block interchanges which is simulated by DCJ.

A. Operations

In this paper we shall consider the operations described
below. A reversal is an operation that inverts the order of
the elements of a segment. A block interchange changes
the position of the segments. A tandem duplication is
an operation that inserts an identical copy of a segment
immediately after this segment in a genome. A deletion
cuts a segment out of a genome.

An important point is why such a weight scheme is
used here. The idea here is to find a sequence of minimum
weight that transforms one genome into another. Yan-
copoulos et al. introduced a universal double-cut-and-join
operation that accounts for reversals, block-interchanges
by assigning weight 1 and 2 respectively [8]. So during
assigning weight for inverted block-interchange we follow
this scheme to relate it with the work of Bader [10].

B. Inverted block-interchange

To simplify the existing algorithms, Yancoupoulos et al.
invented the Double Cut and Join operator [8], which can
simulate block interchanges. Two DCJ’s are equivalent to
a single Block interchange (i.e. of weight 2) as shown in
Figure 1.

Inverted block-interchange is a more specified form of
a block interchange. During rejoining the blocks, this
operation gives the option to the blocks for reversing
their orientation. These blocks reverse their orientation
when they are in non-increasing order. If no blocks are
in non-increasing order then Inverted block-interchange
performs like Block interchange. According to Ying et al.
[9], two DCJ’s are also equivalent to an Inverted block-
interchange. So, it also has weight 2.

There may be three cases:

• CASE 1: Two blocks are in non-increasing order.
So, both blocks reverse their orientation before in-
terchange as shown in Figure 2;

• CASE 2: Only first block is in non-increasing order.
So, first block reverses its orientation before inter-
change as shown in Figure 3;

• CASE 3: Only second block is in non-increasing
order. So, second block reverses its orientation before
interchange as shown in Figure 4.

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1121

© 2013 ACADEMY PUBLISHER

Figure 2. Example of Inverted block-interchange where two blocks
 reverse their orientation before interchange.

Figure 3. Example of Inverted block-interchange where first block
 reverses its orientation before interchange.

IV. RESULTS

In this section we present our experimental results. The
experiments were performed using Intel Celeron M CPU
430 at 173GHz processor having 256MB RAM running
Linux operating system. Using the same environment
we have implemented Bader’s work as well. During
our experiment we followed the same procedures that
Bader followed in his work [10] and also used the same
simulated data as follows.

We generated test cases by creating the identity genome
id of size n and applying random sequences of αn
operations for different values of α (0.1 ≤ α ≤ 1). For
each value of α, we created 11 test cases for different
values of n such as n = 20, n = 50, n = 80, n = 100
etc. We tested the algorithm with Bader’s set of operations
as well as with the set of operations we proposed. For
all values of n we got equal or better performance than
Bader.

For testing and performance comparison, first we ap-
plied 110 test cases to Bader’s algorithm with his given
set of operations. From each test case we got its calculated
operation. Then we calculated the average number of
calculated operations which are reported in Table I, III,
V and VII.

Then we applied the same test cases including inverted
block-interchange into the previous set of operations and
do the same calculations as before. The results are re-
ported in Tables II, IV, VI and VIII. The results for which
we got better results are highlighted with boldfacing.
From performance comparison we observed that, for all
values of n including inverted block-interchange gives

Figure 4. Example of Inverted block-interchange where second block
 reverses its orientation before interchange.

better or equal performance.
The results of these experiments have been plotted in

Figure 5(a)-5(d). The X-axis corresponds to the sequence
weight used to obtain the test case, while the Y-axis
corresponds to the weight of the reconstructed sequence.
Each value is the average of 11 created test cases. The
number of operations required to obtain the test cases is
called performed operation and the number of operations
required to reconstruct the sequence is called calculated
operation. From the experiment we can see that, if we
increase the number of performed operation, our work
gives less number of calculated operation than the Bader’s
work. So, our work will give better performance for
increasing the probability of Inverted block-interchange.
i.e. for higher value of α and n.

A. Discussion
Inverted block-interchange is a more specified form of

a block interchange. Experimental results of our work
showed that after including inverted block-interchange in
Bader’s algorithm, we got sorting sequences those were
better or equal for all cases than sorting sequences which
were found by the former set of operations. Thus, inverted
block-interchange could be easily included in any heuris-
tic algorithm where block interchanges or transpositions
are mainly used. On the other hand, when frequency of
inverted block-interchange is high in any test cases of an
algorithm then this could give better performance.

V. CONCLUSION

We mainly studied genome rearrangement problem by
considering inverted block-interchange, which we used
with a heuristic algorithm for better performance. Ex-
perimental results showed that our work finds sorting
sequences which are better or equal for all cases than
the previous heuristic algorithm. In Section III-B we
showed three cases where inverted block-interchange
is better than block interchange. Further research can
apply inverted block-interchange in different heuristic
algorithm for finding better performance.

ACKNOWLEDGMENT

The authors would like to thank Martin Bader for
his valuable support and the reviewers for their useful
comments.

1122 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

TABLE I.
PERFORMANCE WITHOUT INVERTED BLOCK INTERCHANGE (n = 20)

α αn Calculated Operations in different test cases Average # of
1 2 3 4 5 6 7 8 9 10 11 calculated operation

0.1 2 2 2 2 2 2 2 2 2 2 2 2 2
0.2 4 4 4 5 2 4 4 4 4 2 4 4 3.73
0.3 6 5 6 6 6 6 7 6 5 6 6 6 5.91
0.4 8 7 8 5 6 7 6 6 7 8 8 7 6.82
0.5 10 9 10 6 12 10 8 10 10 7 7 10 9
0.6 12 9 12 16 10 12 12 9 11 12 9 12 11.27
0.7 14 13 7 18 15 14 8 13 11 13 13 14 12.64
0.8 16 10 17 14 16 13 16 13 11 13 17 14 14
0.9 18 14 16 15 12 15 11 15 11 15 12 13 13.55
1 20 18 11 13 12 13 15 17 17 13 18 13 14.55

TABLE II.
PERFORMANCE WITH INVERTED BLOCK INTERCHANGE (n = 20)

α αn Calculated Operations in different test cases Average # of
1 2 3 4 5 6 7 8 9 10 11 calculated operation

0.1 2 2 2 2 2 2 2 2 2 2 2 2 2
0.2 4 4 4 5 2 4 4 4 4 2 4 4 3.73
0.3 6 5 6 6 6 6 7 6 5 6 6 6 5.91
0.4 8 7 8 5 6 7 6 6 7 8 8 7 6.82
0.5 10 9 10 6 12 10 8 10 10 7 7 10 9
0.6 12 9 12 16 10 12 12 9 11 12 9 12 11.27
0.7 14 13 7 18 15 14 8 13 11 13 13 14 12.64
0.8 16 10 17 14 16 13 16 13 11 13 17 13 13.91
0.9 18 14 16 15 12 15 11 15 11 15 12 12 13.45
1 20 18 11 13 11 13 15 17 17 13 18 12 14.36

TABLE III.
PERFORMANCE WITHOUT INVERTED BLOCK INTERCHANGE (n = 50)

α αn Calculated Operations in different test cases Average # of
1 2 3 4 5 6 7 8 9 10 11 calculated operation

0.1 5 5 5 5 5 3 5 5 5 5 5 5 4.82
0.2 10 11 8 10 9 10 9 10 11 9 10 10 9.73
0.3 15 14 12 16 16 15 16 10 16 13 9 13 13.64
0.4 20 15 18 19 17 26 18 21 18 15 16 15 18
0.5 25 30 25 29 32 23 25 27 28 26 21 28 26.73
0.6 30 30 37 23 30 29 23 27 33 29 29 29 29
0.7 35 27 36 42 47 35 36 23 36 30 35 35 34.73
0.8 40 33 30 35 32 31 27 42 34 29 46 34 33.91
0.9 45 36 40 39 69 29 57 54 42 42 34 42 44
1 50 42 50 45 60 35 37 41 22 51 26 41 40.91

TABLE IV.
PERFORMANCE WITH INVERTED BLOCK INTERCHANGE (n = 50)

α αn Calculated Operations in different test cases Average # of
1 2 3 4 5 6 7 8 9 10 11 calculated operation

0.1 5 5 5 5 5 3 5 5 5 5 5 5 4.82
0.2 10 11 8 10 9 10 9 10 11 9 10 9 9.64
0.3 15 14 11 16 16 14 16 9 16 12 9 12 13.18
0.4 20 14 18 19 17 26 18 21 18 15 16 14 17.82
0.5 25 30 25 29 32 23 25 27 28 26 21 28 26.73
0.6 30 30 37 23 30 29 23 27 33 29 29 29 29
0.7 35 27 36 42 47 35 36 23 36 30 35 35 34.73
0.8 40 33 30 35 32 31 27 42 34 29 46 34 33.91
0.9 45 36 40 39 69 29 57 54 42 42 34 42 44
1 50 42 50 45 60 35 37 41 22 51 26 41 40.91

REFERENCES

[1] D. M. Abdullah, W. M. Abdullah, and M. S. Rahman,
“An improved heuristic algorithm for sorting genomes with
inverted block-interchanges,” in Computer and Information
Technology (ICCIT), 2011 14th International Conference
on, 2011, pp. 128–133.

[2] S. Hannenhalli and P. A. Pevzner, “Transforming cabbage
into turnip: polynomial algorithm for sorting signed per-

mutations by reversals,” Journal of the ACM, vol. 46, no. 1,
pp. 1–27, Jan. 1999.

[3] E. Tannier, A. Bergeron, and M.-F. Sagot, “Advances on
sorting by reversals,” Discrete Applied Mathematics, vol.
155, pp. 881–888, Apr. 2007.

[4] Y. Han, “Improving the efficiency of sorting by reversals,”
in BIOCOMP’06, 2006, pp. 406–409.

[5] T. Hartman and R. Shamir, “A simpler and faster 1.5-
approximation algorithm for sorting by transpositions,”

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1123

© 2013 ACADEMY PUBLISHER

TABLE V.
PERFORMANCE WITHOUT INVERTED BLOCK INTERCHANGE (n = 80)

α αn Calculated Operations in different test cases Average # of
1 2 3 4 5 6 7 8 9 10 11 calculated operation

0.1 8 9 8 7 8 7 8 8 8 8 8 8 7.91
0.2 16 15 17 17 15 15 18 11 14 14 18 15 15.36
0.3 24 29 23 25 20 20 30 31 25 26 26 26 25.55
0.4 32 31 24 27 27 34 37 34 26 29 35 31 30.45
0.5 40 40 52 41 31 48 53 34 38 45 33 41 41.45
0.6 48 60 42 51 54 30 43 66 68 54 49 51 51.64
0.7 56 85 84 83 47 56 84 69 32 35 48 56 61.73
0.8 64 79 75 61 87 61 80 43 64 67 50 67 66.73
0.9 72 97 96 81 60 50 62 79 83 101 91 81 80.09
1 80 106 88 73 52 85 79 100 59 32 73 73 74.55

TABLE VI.
PERFORMANCE WITH INVERTED BLOCK INTERCHANGE (n = 80)

α αn Calculated Operations in different test cases Average # of
1 2 3 4 5 6 7 8 9 10 11 calculated operation

0.1 8 9 8 7 8 7 8 8 8 8 8 8 7.91
0.2 16 15 17 17 15 15 18 11 14 14 18 15 15.36
0.3 24 29 23 25 20 20 30 31 25 26 26 26 25.55
0.4 32 31 24 27 27 34 37 34 26 29 35 31 30.45
0.5 40 40 52 41 31 48 52 33 38 45 33 41 41.27
0.6 48 60 42 50 54 30 43 66 68 54 49 51 51.55
0.7 56 84 83 83 47 56 83 69 32 35 48 56 61.45
0.8 64 79 75 60 87 60 79 43 64 67 50 67 66.45
0.9 72 97 96 81 60 50 62 79 83 101 91 81 80.09
1 80 106 88 73 51 85 79 100 59 32 73 73 74.45

TABLE VII.
PERFORMANCE WITHOUT INVERTED BLOCK INTERCHANGE (n = 100)

α αn Calculated Operations in different test cases Average # of
1 2 3 4 5 6 7 8 9 10 11 calculated operation

0.1 10 8 10 10 10 10 11 10 10 10 11 10 10
0.2 20 25 21 23 23 21 18 21 26 25 22 23 22.55
0.3 30 22 41 34 28 30 23 26 23 28 26 28 28.09
0.4 40 40 29 41 47 45 33 39 33 41 39 40 38.82
0.5 50 58 45 47 70 57 55 65 36 40 47 47 51.55
0.6 60 47 77 47 61 67 51 61 114 93 68 67 68.45
0.7 70 91 89 70 51 86 60 90 51 106 54 70 74.36
0.8 80 121 139 62 78 124 87 75 52 125 119 87 97.18
0.9 90 126 66 87 84 134 73 106 117 148 63 106 100.91
1 100 120 126 102 107 79 89 157 56 70 81 102 99

TABLE VIII.
PERFORMANCE WITH INVERTED BLOCK INTERCHANGE (n = 100)

α αn Calculated Operations in different test cases Average # of
1 2 3 4 5 6 7 8 9 10 11 calculated operation

0.1 10 8 10 10 10 10 11 10 10 10 11 10 10
0.2 20 25 21 23 23 21 18 21 26 25 22 23 22.55
0.3 30 22 41 34 28 30 23 26 23 28 26 28 28.09
0.4 40 40 29 41 47 45 33 39 33 41 39 40 38.82
0.5 50 58 45 47 70 57 55 65 36 40 47 47 51.55
0.6 60 47 77 47 61 67 51 61 114 93 68 65 68.27
0.7 70 91 89 70 51 86 60 90 51 106 54 70 74.36
0.8 80 121 139 62 78 124 87 73 51 125 119 86 96.82
0.9 90 126 66 86 84 132 71 106 117 146 62 106 100.18
1 100 120 126 102 107 79 89 157 56 70 81 102 99

Information and Computation, vol. 204, no. 2, pp. 275–
290, 2006.

[6] I. Elias and T. Hartman, “A 1.375-approximation algorithm
for sorting by transpositions,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 3, no. 4,
pp. 369–379, 2006.

[7] T. Hartman and R. Sharan, “A 1.5-approximation algorithm
for sorting by transpositions and transreversals,” Journal of
Computer and System Sciences, vol. 70, no. 3, pp. 300–

320, 2005.
[8] S. Yancopoulos, O. Attie, and R. Friedberg, “Efficient sort-

ing of genomic permutations by translocation, inversion
and block interchange,” Bioinformatics, vol. 21, no. 16,
pp. 3340–3346, 2005.

[9] Y. C. Lin, C.-Y. Lin, and C. R. Lin, “Sorting by reversals
and block-interchanges with various weight assignments,”
BMC Bioinformatics, vol. 10, p. 398, Dec. 2009.

[10] M. Bader, “Sorting by reversals, block interchanges, tan-

1124 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

(a) (b)

(c) (d)

Figure 5. Performance Comparison

dem duplications and deletions,” BMC Bioinformatics,
vol. 10, no. S1, Jan. 2009.

[11] D. A. Bader, B. M. E. Moret, and M. Yan, “A linear-
time algorithm for computing inversion distance between
signed permutations with an experimental study,” Journal
of Computational Biology, vol. 8, pp. 483–491, 2001.

[12] L. Bulteau, G. Fertin, and I. Rusu, “Sorting by transposi-
tions is difficult,” in ICALP (1), 2011, pp. 654–665.

[13] G. Blanc, A. Barakat, R. Guyot, R. Cooke, and M. Delseny,
“Extensive duplication and reshuffling in the arabidopsis
genome,” The Plant Cell, vol. 12, pp. 1093–1101, 2000.

[14] D. Sankoff, “Gene and genome duplication,” Current
Opinion in Genetics and Development, vol. 11, pp. 681–
684, 2001.

[15] D. A. Christie and R. W. Irving, “Sorting strings by
reversals and by transpositions,” SIAM Journal on Discrete
Mathematics, vol. 14, no. 2, pp. 193–206, 2001.

[16] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi,
and T. Jiang, “The assignment of orthologous genes via
genome rearrangement,” IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, vol. 2, no. 4, pp.
302–315, 2005.

[17] D. Bertrand, M. Lajoie, N. El-Mabrouk, and O. Gascuel,
“Evolution of tandemly repeated sequences through du-
plication and inversion,” in Proceedings of the RECOMB
2006 international conference on Comparative Genomics,
ser. RCG’06, vol. 4205. Springer-Verlag, 2006, pp. 129–
140.

[18] N. El-Mabrouk, “Sorting signed permutations by reversals
and insertions/deletions of contiguous segments,” Journal
of Discrete Algorithms, vol. 1, pp. 105–122, 2001.

[19] M. Marron, K. M. Swenson, and B. M. E. Moret, “Ge-
nomic distances under deletions and insertions,” Theoreti-
cal Computer Science, vol. 325, no. 3, pp. 347–360, 2004.

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1125

© 2013 ACADEMY PUBLISHER

[20] K. Swenson, M. Marron, J. Earnest-Deyoung, and
B. Moret, “Approximating the true evolutionary distance
between two genomes,” ACM J. Experimental Algorith-
mics, vol. 12, pp. 1–17, 2008.

[21] D. Sankoff, “Genome rearrangement with gene families,”
Bioinformatics, vol. 15, pp. 909–917, 1999.

[22] N. El-Mabrouk, “Reconstructing an ancestral genome us-
ing minimum segments duplications and reversals,” Jour-
nal of Computer and System Sciences, vol. 65, pp. 442–
464, 2002.

[23] Z. Fu, X. Chen, V. Vacic, P. Nan, Y. Zhong, and T. Jiang,
“A parsimony approach to genome-wide ortholog assign-
ment,” in Proceedings of the 10th annual international
conference on Research in Computational Molecular Biol-
ogy, ser. RECOMB’06. Springer-Verlag, 2006, pp. 578–
594.

[24] S. Yancopoulos and R. Friedberg, “Sorting genomes with
insertions, deletions and duplications by dcj,” in Pro-
ceedings of the international workshop on Comparative
Genomics, ser. RECOMB-CG ’08. Springer-Verlag, 2008,
pp. 170–183.

[25] N. El-Mabrouk, J. H. Nadeau, and D. Sankoff, “Genome
halving,” in Combinatorial Pattern Matching. Springer,
1998, pp. 235–250.

[26] N. El-Mabrouk and D. Sankoff, “The reconstruction of
doubled genomes,” SIAM Journal on Computing, vol. 32,
no. 3, pp. 754–792, 2003.

[27] R. Warren and D. Sankoff, “Genome halving with double
cut and join,” in APBC, 2008, pp. 231–240.

[28] J. Mixtacki, “Genome halving under dcj revisited,” in
Proceedings of the 14th annual international conference
on Computing and Combinatorics, ser. COCOON ’08.
Springer-Verlag, 2008, pp. 276–286.

[29] M. Ozery-Flato and R. Shamir, “On the frequency of
genome rearrangement events in cancer karyotypes,” in
Proc 1st RECOMB Satellite Workshop in Computational
Cancer Biology, 2007, p. 17.

[30] M. Bader, “Genome rearrangements with duplications,”
BMC Bioinformatics, vol. 11, no. S-1, p. 27, 2010.

[31] M. D. V. Braga, R. Machado, L. C. Ribeiro, and J. Stoye,

“On the weight of indels in genomic distances,” BMC
Bioinformatics, vol. 12 Suppl 9, 2011.

Deen Md Abdullah received his B.Sc. Engg. degree from
the Department of Computer Science and Engineering (CSE),
Military Institute of Science and Technology (MIST), Dhaka,
Bangladesh, in 2010. He is currently an M.Sc. student at IICT,
Bangladesh University of Engineering and Technology (BUET),
Dhaka, Bangladesh. He is a lecturer in the Department of CSE,
Primeasia University, Dhaka, Bangladesh. His research interests
include Bioinformatics, Artificial Intelligence, Meta-heuristics
and Networks.

Wali Md Abdullah received his B.Sc. Engg. degree from
the Department of Computer Science and Engineering (CSE),
Military Institute of Science and Technology (MIST), Dhaka,
Bangladesh, in 2010. He is currently an M.Sc. student at IICT,
Bangladesh University of Engineering and Technology (BUET),
Dhaka, Bangladesh. He is a lecturer in the Department of CSE,
MIST. His research interests include Meta-heuristics, Networks,
Bioinformatics and Artificial Intelligence.

M. Sohel Rahman received his B.Sc. Engg. degree from
the Department of Computer Science and Engineering (CSE),
Bangladesh University of Engineering and Technology (BUET),
Dhaka, Bangladesh, in 2002 and the M.Sc. Engg. degree from
the same department, in 2004. He received his Ph.D. degree from
the Department of Computer Science , King’s College London,
University of London, London, UK in 2008. He is currently
an Associate Professor in the Department of CSE, BUET.
His research interests include String and sequence algorithms,
Bioinformatics, Musicolgy, Design and analysis of Algorithms,
Meta-heuristics etc.

1126 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

