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Abstract—In biomedical engineering, to extract the fetal 
electrocardiogram (FECG) exactly is a significant and 
challenging research topic, and so it has been a hot field in 
biomedical research. Now, a variety of different methods 
have been proposed to address this problem. From the 
perspective of blind signal processing, FECG extraction can 
be modeled as Blind source separation (BSS). In this paper, 
we present a novel approach, which apply the technique of 
independent component analysis (ICA) and the theory of 
wavelet transform, to obtain FECG from the real-life 
sampled recordings. And in this system diagram, we firstly 
adopt wavelet de-trending and wavelet de-noising as 
preprocessing stages to eliminate various kinds of noise, 
then for these ECG signals processed, in the view of BSS, 
FastICA algorithm as an ICA method was used to estimate 
the fetal electrocardiogram signals. Moreover, two different 
de-trending algorithms are presented to remove the baseline 
noise. The last but not the least, Performance analysis was 
provided on the results of the experiment.  
 
Index Terms—blind source separation, independent 
component analysis, wavelet detrending, wavelet denoising, 
fastICA,fetal electrocardiogram extraction 
 

I.  INTRODUCTION 

The fetal electrocardiogram is an objective indicator to 
reflect the fetus’ heart condition and its health, as well as 
being a diagnostic tool which can monitor conditions 
such as arrhythmia, and assess the fetal acidosis, and may 
be of vital importance to both mother and child when risk 
factors are present during pregnancy [1]. By analyzing 
the fetal ECG obtained, we can diagnose possible 
diseases and take some appropriate treatments earlier and 
timely before delivery. The best way to acquire accurate 
fetal electrocardiogram signals is to place an electrode 
directly on the fetal scalp during delivery. However, this 
way is only achievable during delivery, and clearly 

cannot be used to monitor the state of the fetus 
throughout pregnancy, or for an early diagnosis [2][3]. 
Therefore, one should look for noninvasive techniques. 
Generally, the extraction of the antepartum fetal ECG can 
be carried out through skin electrodes, known as leads, 
attached to the mother’s abdominal and thoracic region. 
Unfortunately, the desired fetal heartbeat signals appear 
at the electrode output buried in an additive mixture of 
undesired disturbances[4], broadly speaking, mainly 
contain the maternal electrocardiogram (MECG) 
contributions, of considerably higher amplitude than the 
fetal components, electromyography noise, power line 
interference, baseline wandering and so on. These 
contaminated signals affect the extraction of the FECG to 
a great degree, and further reduce diagnostic accuracy. 

In order to extract useful information from the noisy 
ECG records, we need to preprocess the raw ECG signals 
necessarily. And before we get ready to do something 
with the raw signals, we without no doubt need to analyze 
the components of the signal sampled by electrode. 
Broadly, ECG contaminants can be classified into the 
following categories [2][5]: 

(1). Maternal ECG contributions. 
(2). Electromyography noise. 
(3). Baseline wandering, including respiration signals. 
(4). Noise generated by electronic equipment, mainly 

contains power line interference, electrode contact noise. 
As mentioned above, in all cases where the FECG is 

observed, the MECG is higher in amplitude, so 
eliminating the MECG from the recorded signal is very 
important [6]. In [7], it said that the maternal ECG can be 
5-1000 times higher in its intensity and ability to induce 
surface potentials. As the frequency spectrum of both 
ECG signals overlapped, it is a difficult task to remove 
the maternal ECG contributions from the sampled ECG 
records directly.  

Besides, among these noises, the power line 
interference and baseline wandering are the most 
significant and can strongly affect FECG signal 
extraction. The power line interference is narrow-band 
noise centered at 60Hz (or 50Hz) with a bandwidth of 
less than 1Hz. Usually it can be suppressed by applying a 

 

Manuscript received Setemper 29, 2010; revised December 11,
2010; accepted January  10, 2011. 

The work is supported by National Natural Science Foundation of
China (61003170), Research Fund for the Doctoral Program of Higher 
Education of China (20090172120011), Fundamental Research Funds
for the Central Universities SCUT (2009ZM0295), Cooperation Project
of Industry, Education and Academy for Guangdong Province and
Ministry of Education (2009B090300268). 

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2821

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.11.2821-2828



 

notch filter, or adopt the subtraction procedure to cope 
better with this problem. The subtraction procedure has 
largely prove advantageous over other methods for power 
line interference cancellation in ECG signals [8]. 
Baseline wandering (or drift) mainly comes from 
respiration at frequencies wandering between 0.1Hz and 
2Hz. Thus, most of baseline wandering can be discarded 
by applying a linear phase high-pass filter with a cut-off 
frequency about at 2Hz. Except for these two types of 
noise, other noise may be wideband and usually a 
complex stochastic process which also distorts the ECG 
signals. 

The BSS approach provides a general versatile 
framework for extracting the signal of interest whereby 
each of the recorded signals, so-called observations, may 
contain the desired and the interfering contributions. 
Furthermore, the source signals may contain overlapping 
time-frequency spectra with possibly non-repetitive 
irregular waveforms. In its basic formulation, BSS 
assumes that each of the observations is an unknown 
instantaneous linear mixture of the sources, and aims at 
inverting the mixture in order to recover the sources. The 
FECG extraction was originally formulated as a BSS 
problem [9]. In view of BSS problem, A variety of 
approaches have been proposed to address this problem, 
techniques such as principle component analysis (PCA), 
independent component analysis (ICA) and so on. 
FastICA algorithm, a fast fixed-point algorithm using 
negentropy, which uses an approximation of the Newton 
method that is tailored to the ICA problem and provides 
fast convergence with little computation per iteration, 
was proved to cope better with BSS problem, and have 
been extended to a variety of problems in biomedical 
signal processing and other domains, like fetal ECG 
extraction and  the analysis of atrial fibrillation.  

In this article, it has put forward the corresponding 
solutions to solve problems of eliminating noise and 
extracting fetal ECG in the view of above. Wavelet de-
trending and wavelet de-noising were used as 
preprocessing stages before to derive relatively stationary 
ECG signals. 

II.  METHODOLOGY 

A.  System Diagram 
According to these analyses above, we propose an 

approach that can realize the cancellation of noise and 
interference as well as fetal electrocardiogram extraction. 
The system diagram can be depicted in Fig.1. It mainly 
contains two processed stages: preprocessing stage and 
BSS stage. 

Before we are ready to present the experimental results 
at length, it is necessary for us to analyze each module in 
details. 

 
Fig.1 system diagram for fetal electrocardiogram extraction, where 

concrete practicable methods will be introduced next. 

B. Preprocessing Stages 
B1. Wavelet Transform Theory 

As illustrated in Fig.1, it contains two steps in 
preprocessing module, mainly including baseline 
wandering remove and wideband noise suppressed. In 
term of the characteristics of these types of noise and 
interference in the recorded electrocardiogram signals, in 
theory, wavelet transform is an appropriate analytic tool 
to this application. 

The wavelet transform ,mapping a signal  from the 
time domain to the time-scale domain [2], is a useful tool 
for analyzing non-stationary and multi-component signals. 
Mathematically speaking, the wavelet transform of a 
signal s  is the family ),( baC ,which depends on two 

indices a and b , and also can be expressed as follow: 

dt
a

bt
a

tsbaC
R

)(1)(),( −
= ∫ ψ  ),0( Rba ∈>     (1) 

Where ),( baψ is the wavelet function or mother wavelet. 
Generally, formula (1) is called Continuous Wavelet 

Transform (CWT). If we discretize the parameters a and 

b like this: ,),(,2,2 2Zkjkba jj ∈== we can 
obtain the formula for Discrete Wavelet Transform 
(DWT). Form an intuitive point of view, the wavelet 
decomposition consists of calculating a “resemblance 
index” between the signal and the wavelet located at 
position at b and of scale of a. The indexes ),( baC  are 
called coefficients. 

In wavelet analysis, we often speak of approximations 
and details. The approximations are the high-scale, low-
frequency components of the signal; the details are the 
low-scale, high-frequency components. In the general 
case, we can acquire the approximations by using a low-
pass filter, and correspondingly, obtain the details 
through a high-pass filter. In the view of wavelet 
decomposition, we prefer to call approximation 
coefficients ( cA ) and detail coefficients ( cD ) rather 
than go by the name of approximations and details  in a 
great degree. Due to lack of space, not all the aspects can 
be covered in detail. Here we just talk about partial theory 
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of discrete wavelet transform for one-dimensional signals. 

 
Fig.2 The first step for DWT decomposition 

Given a signal  s of length N , the DWT consists of 
N2log stages at most. Starting from s , the first step 

produces two sets of coefficients: 1cA and 1cD . These 
vectors are obtained by convolving s with low-pass filter 
for approximation, and with the high-pass filter for detail. 
The process is described precisely in Fig.2. the next step 
splits the 1cA into two parts using the same scheme, 

replacing s by 1cA and producing 2cA and 2cD . 
Therefore, the wavelet decomposition for one-
dimensional signal s  at level j  has the structure: 

[ ]11 ,,,, cDcDcDcA jjj L− , which can be vividly 

depicted as a tree in Fig.3. 
s

1cA

2cA

3cA

1cD

2cD

3cD
 

Fig.3 Tree for the structure of decomposition coefficients of one-

dimensional signal s , where 3=j . 

Through wavelet transform or wavelet decomposition, 
signal s is split into approximation part which contains 
the low-frequency components of the signal and detail 
part containing the high-frequency components. As the 
level j grows, we can obtain more information about the 
signal s . For many signals, the low-frequency content is 
the most important part. It is what gives the signal its 
identity. The high-frequency content, on the other hand, 
imparts flavor or nuance. Take human voice for example, 
If you remove the high-frequency components, the voice 
sounds different, but you still tell what’s being said. 
However, if you remove enough of the low-frequency 
components, you hear gibberish [10]. Thus we can firstly 
distill coefficients at each level, and then process these 
coefficients obtained and finally realize removing various 
types of noise form the signal and signal compression, 
and so on. 
B2. Wavelet Selection 

As for ECG signals, in [11], The series of Daubechies 
wavelet are similar in shape to heart beat wave (QRS 
complex) and their energy spectrum are concentrated 
around low frequencies. Notably particularly, The 
wavelet filter with scaling function more closely to the 

shape of the ECG signal can achieve better performance 
in various kinds of processes, and also in [12], and also in 
[13], it shows that Daubechies 8 is optimal wavelet basis 
functions for ECG signal processing, with theoretical and 
experimental explanation. And in [2], it also selected the 
db8 as the target wavelet. For these, in this article, we 
choose the wavelet db8 as the wavelet basis function. 
B3. Baseline Remove 

As mentioned above, baseline wandering usually 
distribute at frequencies between 0.1 and 2Hz. Generally, 
we can suppress it by a linear phase high-pass digital 
filter, such as a high-pass FIR digital filter based on 
Kaiser window whose stop band edge frequency is about 
0.2Hz and pass band edge frequency 2Hz. In this paper, 
we apply wavelet de-trending to cancel baseline 
wandering by eliminating the trend of recorded ECG 
signal. Theoretically, the trend of signal s  represents the 
slowest part of signal s , in other words, the lowest-
frequency components display the trend of signal s . In 
wavelet analysis terms, this corresponds to the greatest 
scale value. Therefore, in order to remove baseline 
wandering, firstly the observation ECG signal is 
processed by wavelet decomposition at level j , and then 

set coefficients of jcA to zeros, finally reconstructed 

based on all the detail coefficients. Through these steps, 
without no doubt, we can reduce the influence of baseline 
drift. Now, we focus on the accuracy value of level j to 
yield the best performance of de-trending.  

In the [14], Kwang Eun Jang, Sungho Tak and Jaeduck 
Jang have proposed a wavelet minimum description 
length (Wavelet-MDL) de-trending algorithm to address 
the global-drift issues. And the authors have 
demonstrated and discussed advantages of the approach 
over traditional methods both theoretically and practically. 

In the Wavelet-MDL de-trending algorithm, it deduces 
that the maximum level of decomposition j can be given 
by : 

⎥⎦
⎥

⎢⎣
⎢

−
=

1
log2max M

Nj                         (2) 

Where M denotes the support length of the wavelet, and 
N is the length or number of sampling points of a 
column vector, which stands for the signal. Also need to 
note is that ⎣ ⎦X  denotes an operator that truncates X to 
the nearest integers toward zero. Optimal performance 
can be yielded only if level j is equal to maxj .  
     In the article [5], the author also have proposed a good 
de-trending algorithm. In [5], the trend level can be 
computed by the following equation: 

          
N
ttlleveltrend

2

2

log
2log: =                          （3） 

Where t is the sampling duration and N is the number of 
sampling points. And it deduces that the trend level 
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tl must be  between 0 and 1. The optimal decomposition 
level can be computed as follows: 

                ( )⎡ ⎤Ntljo 2log1 ×−=                        (4) 

While ⎡ ⎤X  means that an operator rounds the value X  

to the nearest integer greater than or equal to X .  
Theoretically speeking, the larger the decomposition 

level, the closer the estimated trend matches the input 
signal. And now we can draw a parallel between the two 
detrending algorithms. Fig.4 shows curves of function 

1y and 2y , respectively. Where  

1
log21 −

=
M

Ny  

N
N
t

y 2
2

2
2 log

log
2log

1 ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  

 
Fig.4 Two Curves for 1y  and 2y , respectively. The red curve 

represents the 1y , and the blue one corresponding to the 2y .  

Fig.5 Curves for maxj and oj , boldline for maxj and another for 

oj . 
Decomposition level is an integer value, According the 
theory above, we can get that : 

⎣ ⎦1max yj =     ⎡ ⎤2yjo =  

And Fig.5 shows curves for maxj and oj . From Fig.4 
and Fig.5, we can get that too some extent, the Wavelet-
MDL de-trending algorithm is better than the algorithm 
proposed in [5] to remove the very low-frequency 
component.  

B4. Wideband Noise Suppressed 
As discussed in the preceding section, after baseline 

drift cancellation, the resulting ECG signals are still 
contaminated by other types of noise and interference. 
These noises affect the effectiveness of Fetal ECG 
extraction, so it is necessary to suppress them. While 
these types of noise may be complex stochastic process 
with a wideband that is to say that we cannot remove 
them by using traditional digital filters.  

Wavelet threshold de-noising method may be 
especially adapted to remove these noises with wideband, 
and there are various algorithms for wavelet threshold de-
noising. In its broadest sense, wavelet threshold de-
noising just apply a certain algorithm to deal with detail 
coefficients for each level from 1 to N  of signal s , 
which has been decomposed at level N .and reconstruct 
the signal based on the original approximation 
coefficients of level N and the modified detail 
coefficients of levels from 1 to N . More information can 
refer to [15][16][17]. Of course, the so-called certain 
algorithm is related to the soft threshold selection. 
Threshold selection rules are based on the underlying 
model: 

σε+= fy                                        (5) 

Where y represents input signal, f is an unknown 
deterministic signal, and ε is a while noise 

)1,0(N ,σ denotes the noise level. There are several 
universal rules for soft threshold selection until now. For 
example,  In [18], David L. Donoho proposed a universal 
threshold selection method. And in [19], David L. 
Donoho and Iain M. Johnstone put forward minimax 
threshold selection rule in wavelet domain. Also 
introduced a procedure, SureShrink that suppressed noise 
by thresholding the empirical wavelet coefficients in [20]. 
Another well-known threshold selection procedure is 
base on Stein’s unbiased risk estimator (SURE)[21]. In 
this paper, we adopt minimax rule to get the soft 
threshold value.  Minimax threshold selection rule uses a 
fixed threshold chosen to yield minimax performance for 
mean square error )(MSE against an ideal procedure. 
The minimax principle is used in statistical decision 
theory in order to design estimators. Since the de-noised 
signal can be assimilated to the estimator of the unknown 
regression function, the minimax estimator is the one that 
realizes the minimum of the maximum MSE obtained 
for the worst function in a given set 

C.  Independent Component Analysis and FastICA 
Independent component analysis (ICA) is a statistical 

and computational technique for revealing hidden factors 
that underlie set of random variable, measurements, or 
signals [22]. In the literature, BSS with an instantaneous 
linear mixture has been formulated as an independent 
component analysis problem. Mathematically, ICA 
assumes that n source signals T

nssss ],,[ 21 L= are 
statistically and mutually independent with no more than 
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one Gaussian source signal. The sources are 
instantaneously and linearly mixed by an unknown 

nn× matrix A .The relationship between sources and 
observations is demonstrated as follow: 

nAsx +=                                     (6) 
Where nnA × is the mixing matrix, and columns of that are 

linearly independent; T
nxxxx ],,,[ 21 L= is referred to 

as the observation signals; T
nnnnn ],,,[ 21 L=  

represents additive noise, which is statistically 
independent from the sources. ICA now consists of 
estimating both the matrix A and the source is  

( ni ,,2,1 L= ), when we only observe the 

ix ( ni ,,2,1 L= ).Note that we assumed here that the 

number of independent components is  is equal to the 
number of observed variables; this is a simplifying 
assumption that is not completely necessary. ICA aims to 
recover source signals s from observation x . The 
estimated signals can be referred as 

T
nyyyy ],,,[ 21 L= , and obtained by formula (7). 

                               xWy T=                                     (7) 

Where W denotes the demixing matrix. Thus, all kinds of  
ICA methods’ focus is how to acquire the demixing 
matrix.. 

FastICA is a fast fixed-point algorithm using 
negentropy. It uses negentropy combines the superior 
algorithmic properties resulting from the fixed-point 
iteration with the preferable statistical properties due to 
negentropy [22].Because BSS algorithms in general 
assume that each component of sources is a extraneous 
variable with zero mean, and the components of the 
signals s  are mutually uncorrelated, hence, the centering 
and whiteness are necessary as preprocessing steps in 
BSS model. Further more, as a matter of fact, they are 
highly useful and widely used in independent component 
analysis, partly due to that the speed of convergence can 
be accelerated. The whole process of FastICA can be 
illustrated in Fig.6. For detailed information about 
FastICA algorithm, please refer to [22].  

 
Fig.6 FastICA model, and the whole process of the FastICA 

algorithm. Where centering is just to remove the mean of each 
component of x , that is, after centering step, Components of 

Observation x are all rand vector with zero mean 

III.  EXPERIMENT AND RESULT 

Fig.7 shows the cutaneous potential recordings used in 
this  experiment, which are obtained from [23]. The 
signals in Fig.7 were recorded from eight skin electrodes 
located on different points of a pregnant woman’s body. 
The sampling frequency is 250Hz,and the sampling time 
10 seconds, so each signal is composed of 

2500=N samples. The horizontal axis displays the 
sample number n ,with respect to the vertical axes the 
relative amplitude. For details about data acquisition, 
please refer to [23].  

 
Fig.7 Eight-channels set of cutaneous data recordings. 

 
According to information about the sampled recordings, 

the value of M is equal to 16, N is 2500, and the 
sampling duration t  is 10. Based on Formulate (2), maxj  
gets the value 7. while according to the equation (3), the 
trend level tl is equal to 0.3829, and the optimal 
decomposition level oj  gets the value of  7 according to 
the formulation (4). It is interesting and a coincidence 
that these two different detrending algorithms get the 
same result. 

In Fig.7, the first five recordings correspond to 
electrodes located on the mother’s abdomen. In them a 
mixture of maternal ECG ,fetal ECG and other types of 
noise are visible. For channels 6-8 electrodes have been 
placed on the thorax. Due to large amplitudes of the 
Maternal ECG in thoracic region, the Fetal ECG is less 
visible. Moreover, the abd4 lead presents an relatively 
clear baseline wandering. 

Fig.8 shows the ECG recordings after wavelet de-
trending. Via wavelet de-trending, The trend of each 
channel ECG is cancelled from recorded ECG, also 
illustrated in Fig.9. And in Fig.10, it shows the frequency 
spectrum of baseline respectively. From Fig.10, we can 
see that the baseline, mainly contains respiration, is a 
low-frequency signal indeed. Also in Fig.8, each channel 
ECG signal is more stationary and explicit than that in 
Fig.7.  

Centering Whitening 
matrix V 

Demixing 
matrix W 

Observation x   ^
x  

^
xVxw =w

T xWy =
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Fig.8 The ECG recordings after wavelet de-trending, that is, the 

baseline wandering was removed. 

 
Fig.9 The trend of recorded ECG signal from each electrode, obtains by 

wavelet de-trending method. 

     
Fig.10 The frequency-spectrum of the trend corresponding to Fig.7, 
where the horizontal axis displays the value of frequency (Hz), with 

respect to the vertical axes, which represents the amplitude. 
Fig.11 demonstrates the signals after wavelet threshold 

de-noising . From Fig.11, we can say that the wideband 
noise is suppressed to a great degree, while most of the 
details of the ECG signals are kept invariant. The 
estimated ECG signals through FastICA algorithm are 
displayed in Fig.12. As is reported in [2][24], the 
bioelectric activity of the maternal heart can be 
represented by a three-dimensional dipole current. In 
another words, Maternal ECG signals can be  expressed 
as  the  linear  combination of three statistically 
independent vectors, which form the MECG-subspace. 
The FECG-subspace, on the other hand, which describes 
electric activity of fetus’ heart, doesn’t consist of three 
vectors, but subject to changes during the period of 
pregnancy. As depicted in Fig.9, channels 1, 3 and 4 
describe the MECG-subspace; The Maternal ECG also 
appears in channel 6. Estimated Fetal ECG can be clearly 
seen in channel 2, and also appears in channel 5, in spite 
of not clear. Channels 7 and 8 mainly show noise 
contributions. 

 
Fig.11 The ECG recordings after processed by wavelet de-noising . 

 
Fig.12 Source estimates obtained by means of preprocessing module 

and FastICA algorithm. 

 
Fig.13 Source estimates obtained directly by means of FastICA. 

Fig.13 demonstrates the estimated signals through BSS 
by using FastICA algorithm. While a big difference is 
that the result recordings were directly throng FastICA 
processed, not processed by preprocessing module. That 
is to say, wavelet de-trending and wavelet de-noising 
were not used.  

Now, the key issue is how to evaluate their 
performance according to Fig.12 and Fig.13. In general 
case, Performance Index (PI) is very useful for 
performance evaluation purpose. However, it provided 
that the mixing matrix A  is known. In terms of 
engineering application, the sources s and the mixing 
matrix A are both unknown, in such a case; it seems PI 
has significant restriction. To be exact, PI cannot be a 
evaluating indicator in engineering field, like the 
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biomedical application in this paper. Hence, in this article, 
As far as effectiveness of BSS be concerned, Firstly, 
From the visual point, it is somewhat better in Fig.12 than 
that in Fig.13. Further more, we consider value of 
kurtosis as evaluation criterions to illustrate the 
performance of both methods. Kurtosis is a classical 
measure of non-Gaussianity of a signal. Signals with 
negative kurtosis are called sub-Gaussian, while those 
with positive kurtosis are referred to as super-Gaussian 
[2]. For a Gaussian signal, kurtosis is zero. Generally, the 
greater the absolute value of kurtosis value, the better 
convergence of the signal for ICA methods [25]. That is 
to say, the strong non-Gaussianity of signals will be 
useful in convergence behavior of  ICA approaches. And 
it can reduce the time of extracting fetal ECG by ICA 
methods.  

TABLE.1  
KURTOSIS VALUES OF SAMPLED RECORDINGS 

 Recordings W-de-trending W-de-noising
Abd1 8.3341 8.6911 8.8702 
Abd2 13.8271 13.9177 13.9476 
Abd3 15.0838 15.8044 15.8342 
Abd4 6.8025 15.0176 15.6673 
Adb5 15.8416 15.9907 15.9389 
Thr1 20.8363 20.8530 20.8664 
Thr2 16.4521 16.4630 16.4792 
Thr3 16.8044 16.8373 16.8887 

As can be observed in Table.1, the kurtosis value of 
each ECG signal, processed by wavelet transform, from 
sampled ECG recordings  is greater than that of 
corresponding column in the ECG recordings.  In this 
respect, the proposed method can improve the 
performance of BSS-ICA for extracting Fetal ECG. 
Where ‘Recordings’ stands for the kurtosis of the 
observation ECG signals, ‘W-de-trending’ means the 
kurtosis of the ECG signals before wavelet de-trending 
step, and ‘W-de-noising’ shows the kurtosis of the ECG 
signals before wavelet de-noising step. 

III.  CONCLUSION 

A variety of different approaches have been proposed 
to cancel artifacts and enhance signals of interest in the 
ECG until now. In this paper, we provide a novel 
approach based on the characteristics of recorded ECG 
signals, obtained by sampling through skin electrodes 
attached to the mother’s body, in terms of theory to 
extract Fetal ECG. During the entire process, Wavelet 
detrending and wavelet threshold de-noising are adopt as 
preprocessing stages, and FastICA algorithm as a BSS 
method to derive fetal ECG. The experiments presented 
and discussed show this method is feasible and successful 
to the noninvasive fetal ECG extraction problem. 
Moreover, Compare with the method that is lack of 
preprocessing stage, directly adopts FastICA algorithm, 
we find that this approach is more robust and can get 
better performance for extracting fetal ECG, although the 
superior performance is attained at the expense of an 
increase operational complexity. Yet the achieved FECG 
extraction quality offers promising prospects for the use 
of this technique in prenatal medical diagnosis, and 

what’s more, it may provide a new insight into how to 
tackle the fetal ECG extraction problem effectively. 
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