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Abstract—We consider the problem of feature extraction for 
kernel machines. One of the key challenges in this problem 
is how to detect discriminative features while mapping 
features into kernel spaces. In this paper, we propose a 
novel strategy to quantify the importance of features. Firstly, 
we derive an informative energy model to quantification of 
feature difference. Secondly, we move the features in the 
same class closer and push away those belong to different 
classes according to the model and derivate its objective 
function. Finally, gradient learning is employed to maximize 
this function. Experimental results on real data sets have 
shown the efficient and effective in dealing with projection 
and classification. 
 
Index Terms—Kernel methods, nonlinear transformation, 
feature extraction, gradient learning. 

I.  INTRODUCTION 

Obtaining important features with kernel machines is a 
challenging problem in classification tasks. It is also 
essential in exploratory data analysis, where the purpose 
is to map data onto a feature space for improved 
visualization. We are interested in methods that reveal 
discriminative features of the data sets. This can be 
achieved either by selection or by a transform from a 
large number of original features.  

Feature selection methods [1-4] keep only useful features 
and discard others. Feature transform methods [5-9] 
construct new features out of the original features. 
However, algorithms that perform feature selection often 
lead to a combinatorial problem since all features need to 
be evaluated, but feature transform only need some 
criterion related to the performance of classifiers that 
would reflect the importance of a feature or a number of 
features. For this very reason, finding a transform might 
be easier than selection features. A further motivation for 
transforms is the ability to extract distributed relevant 
information across several original features, which 
produces a more compact representation than selection. 

In this paper, we propose a novel method that aims to 
extract significant features by a new criterion within 

kernel framework in conjunction with gradient learning, 
called kernel informative feature extraction (KIFE). The 
algorithm has some distinct characteristics: (1) It can 
extract high order statistics and nonlinear discriminative 
features; (2) this method can avoid the high time usage 
associated with eigenvalue decomposition in existing 
methods; (3) traditional criterion mutual information (MI) 
can be derived within the proposed KIFE framework, 
which helps users obtaining important features. 

The rest of the paper is organized as follows. In 
Section II, we briefly summarize background and prior 
work. Then, the main algorithm is derived in Section III. 
Section IV presents the experimental results, and finally 
conclusions are drawn in Section V. 

II.  BACKGROUND AND PRIOR WORK 

A.  Notations 
Let us denote by X the original feature set and by 

variable C the class labels. cix is a sample in the input 
space X , where [1, ]c C∈ , N dX R ×∈ and [1, ]ct N∈ , N is 
the number of features in X , d  is dimensionality of the 
features, cN  is the number of classes. We make use of a 
dual notation for the feature cix in the input space, it is 
written with a single subscript ix when its class is 
irrelevant, index1 i N≤ ≤ . If the class is relevant, assume 
that we have cJ features for c th class, we write cix , where 
the class index 1 cc N≤ ≤ , and the index within 
class1 ci J≤ ≤ . 

For a given kernel function :k X X R× → , the training 
features ix , 1 ci J≤ ≤ are implicitly mapped to a feature 
space F with usually high dimensionality. Let ( )φ ⋅  
denotes the mapping from X to F and ( )i iy x Fφ= ∈ , then 

( , ) ( ), ( )ij i j i jk k x x x xφ φ= =             (1) 

B.  Related Proir work 
In general, feature extraction algorithms require certain 

criterions. Recently, research has been done on using 
different objective functions to address this problem. For 
example, Ref. [10] described a generalized discriminant 
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analysis (GDA) method, which depends on the 
eigendecomposition of the kernel matrix, which bears 
high computational complexity. Invoked by this problem, 
Ref. [11] used a low-rank approximation to a complete 
eigendecomposition of the kernel matrix. Recently, Ref. 
[12] proposed a kernel based nonlinear feature extraction, 
which transforms this problem to a kernel parameter 
learning problem. Ref. [13] presented a method for 
learning discriminative feature transforms using as 
criterion the MI between class labels and transformed 
features. Another recent paper by [14] employed 
conditional information and information losses to extract 
main features in input features. 

However, the similarity measure in many of these 
papers depends only to the Euclidean measure. When 
samples have equal Euclidean distances to training 
samples, the kernel mapped the samples into the same 
vectors. This may not perfectly fulfill the purpose of 
classification-oriented feature extraction. On the other 
hand, MI according to Shannon’s definition is 
computationally expensive. 

III.  THE ALGORITHM FOR THE KIFE 

In this section, we describe KIFE as Algorithm 1, 
which trained with training data X and its class label set 
C . After the kernel matrix is obtained, the algorithm has 
three stages. In the first stage, we define a function to 
quantification of the feature difference. In the second 
stage, we derive the objective function for feature 
extraction. Then, gradient learning is used to optimize the 
objective function and find the optimal coefficient matrix. 

A.  Detailed Description of Our Main Algorithm 
In the first stage of KIFE, we propose an informative 

energy model. The main idea is that we quantify the 
difference between features according to their graph 
energy [15]. Our goal is to transform the kernel space so 
that the distance in the transformed space correlated with 
the difference of the labels of features. So, we need to 
define informative energy for our method. 

The graph energy in [15] is defined as 

2

1

1( ) ( , 2 ) ( , )
N

j j i j i
i

E G x x I H x x
Z

σ σ
=

= −∑  

where 2
2

1( , ) exp
2

TG y y yσ
σ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 the Gaussian kernel 

function, jσ σ∈  is the kernel width parameter, H is an 

indicator function, 2

1 1
( , 2 )

N N

j i
j i

Z G x x Iσ
= =

= −∑∑  is a 

normalization variable. The Energy value is 1 when the 
feature ix and jx are in the same class, otherwise 0 when 
they are in the different class. 

For the feature ( )ci ciy xφ= in the kernel space, we 
define its informative energy according to the graph 
energy model. The main difference is that we consider 
each feature in the kernel space as a particle, and pull or 
push other particles in this space. This means that the 

resultant effect of a particle is the sum of the separate 
effects between the same class and the different classes.   
For each feature we defined two informative energy 
function: similar and dissimilar energy. For the features 
in the same class, the similar energy is computed as 
follows 

2

1

1( ) ( , 2 )
cJ

c ci cj ci
j

E y G y y I
N

σ
=

= −∑                  (2) 

where I  is the identity matrix. 
    Then the dissimilar energy considering features 
between different classes is computed as 

2

1 1

1( ) ( , 2 )
pc JN

p c ci pl ci
p l

E y G y y I
N

σ≠
= =

= −∑∑           (3) 

These two energy functions vary between 0 and 1. A 
high cE indicates that two features in the same class are 
quite similar. But a low p cE ≠ indicates that two features in 
the different class are quite different. We can use these 
two values to quantify the difference between any feature 
pairs. 

In the second stage, we derive the objective function 
for feature extraction. In order to improve the 
performance of the projection and classification, we need 
to move the features in the same class as close as we can. 
Meanwhile, the features belong to different classes are 
push away as far as possible.    

As mentioned above, we have the simple idea 
that ( )c ciE y should as large as possible, 
and ( )p c ciE y≠ should be as small as possible. This can 
ensure the separation between the different classes and 
the aggregation within the same class. Then, the total 
resultant effect can be computed as 

1 1

1( ) ( ) (1 ) ( )
c cN J

c ci p c ci
c i

E y E y E y
N

α α ≠
= =

= − −∑∑      (4) 

where 
22

11
1 1

cN pc
p
p c

JJ
k k

α =
≠

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥= − + ⎜ ⎟⎜ ⎟+ +⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ presents the 

effects from the same class and the different class, k is 
the number of neighborhood of ciy . The first term 
ofα means effects of all features to ciy , the second term 
means effects of other features to ciy except the features 
in class c . 

However, ( )ci ciy xφ= cannot be computed explicitly. 
So we transform it to a coefficient matrix learning 
problem. In the kernel space, we can project ciy into a new 
feature space, and define this space as F for simplicity. 
Owing to the kernel trick, we can modify ciy as following 

1 1

, ( ) ( , )
cJC

ci ci st st ci
s t

y v x K x xφ β
= =

= = ∑∑  
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where K is the kernel matrix, ( , )i j ijK x x k= , β is the 
coefficient when project the original ciy onto the 
direction v . In this form, we can compute the 
variables pl ciy y− in (2) and (3) as 

( )
,

( , ) ( , )pl ci s ci t ci
s t

y y B K x x K x x
⎛ ⎞

− = −⎜ ⎟
⎝ ⎠
∑          (5) 

where elements of B is constructed by β as well as the 
kernel matrix. 

In the third stage, we need to employ optimization 
methods to maximize the objective function (4). There 
are many algorithms we can used, such as traditional 
quotient method of GDA, but it bears 
eigendecomposition problem, which may result in high 
computational complexity. Recently, semi-definite 
programming (SDP) is widely used for this optimization 
[16]. But it is also quite time consuming when the number 
of features is large, so we adopt gradient ascent algorithm.  

Substituting (5) into (4), we can transform the feature 
y learning problem to the coefficient matrix B learning 

problem as follow 

 
1 1

1( ) ( ) (1 ) ( )
c cN J

c ci p c ci
c i

E B E y E y
N

α α ≠
= =

= − −∑∑        (6) 

Maximizing (6) creates a transformed feature space 
with wide separation of the different class and better 
clustering of the same class. The gradient for the 
objective function is 

1 1

( )( )1 (1 )
c cN J

p c cic ci

c i ci ci

E yE yE
B N y y

α α ≠

= =

∂∂∂
= − −

∂ ∂ ∂∑∑         (7) 

In Eq. (7), the computation of 
( )c ci

ci

E y
y

∂
∂

by chain rule is 

c c ci

ci

E E y
B y B

∂ ∂ ∂
=

∂ ∂ ∂
and

( )p c ci

ci

E y
y
≠∂

∂
is p c p c ci
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E E y
B y B
≠ ≠∂ ∂ ∂
=

∂ ∂ ∂
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E
y
∂
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2
2

1
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σ
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and p c
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E
y
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∂
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2
2

1 1
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p lci

E y y
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and ciy
B

∂
∂

is 

( , )ci
s ci

s

y
K x x

B
∂

=
∂ ∑                          (10) 

substituting (8) (9) and (10) into (7), we can obtain the 
gradient of the objective function. 

Maximizing the objective function (6) using gradient 
ascent algorithm, we can get the final coefficient 
matrix B , which can be used for classification and 
projection. 

Finally, the KIFE is briefly described by the following 
 

Algorithm 1. KIFE 
    Input: Training data set X , class label set C , and 
integer k . 

Output: A coefficient matrix B . 
// Initialization 
Compute the kernel matrix 1 ,1( )ij i N j NK k ≤ ≤ ≤ ≤= . 
// The first stage 
Get the graph energy of each feature according to (2) 

and (3). 
// The second stage 
Construct the objective function according to (6). 
// The third stage 
Run the gradient learning optimization method 

according to (7), (8), (9) and (10). 
Return the final coefficient matrix B . 

In this section we will explain how the gradient of the 
objective function (6) provides information on the 
geometry and statistical variables to predicting the class 
label given a new feature. Our KIFE is motivated by the 
following idea: the gradient is a local concept as it 
measures local changes of the objective function (6). In 
the optimization processing for the objective function, we 
found that B varying with the gradients of (6) as follows 

1r r
EB B
B

η+

∂
= +

∂
 

where r is the learning step,η is learning rate, these two 
parameters can be obtained using the cross-validation 
method.   

We present visualization experiment with synthesized 
data. In this example we learn a nonlinear projection from 
a high-dimensional feature space onto a discriminative 
direction for visualization purposes, specially to visualize 
classification ability. The data is non-Gaussian densities. 
It is three-dimensional, and two classes. Class one has 
200 samples from a bimodal Gaussian distribution, with 
centers at (1,0,0) and (-1,0,0). Class two has 200 samples, 
also from a bimodal Gaussian distribution, with centers at 
(0,1,0) and (0,-1,0). 

Since we have two classes, KIFE is able to produce a 
two-dimensional projection. In this example, GDA was 
used as the initial state to learn the KIFE-projection. The 
result is presented in Figure 1. Using the gradient ascent 
algorithm, KIFE can converge to the global optimum in 
16 iterations, which now exhibits much better separation. 

Figure 1 shows our KIFE results on synthesized data, 
the synthesized data is presented in Figure 1(a), the sub 
graph in Figure 1(a) is reference features we consider in 
this example. We use “☆” denoting the feature in class 
one, the symbol “.” represents the other features in class 
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(a) The origianl data       (b) Before learning      (c) After learning

Figure 1.  Projection results on synthesized data.

one, the symbol “×” is those features in class two. Figure 
1(b) shows the status of the original features in the input 
space. After KIFE learning, the final status is presented in 
Figure 1(c).  

From Figure 1 we can found out several characteristics 
of this example: (1) features in the same class are 
clustered; (2) features in the different class are pushed 
away.  

Recall that informative energy function (2) and (3) can 
reflect the distance of features in the kernel space. The 
central quantity is an estimate of the gradient of the 
difference of features, which is controlled by those 
neighborhoods. So we find k neighborhoods of ciy , those 
in the same class are moving closer and in the different 
class are push away. From the view of nearest 
neighborhood (NN), this can improve the performance of 
classification and projections. Then our KIFE can be 
viewed as a graph, each node is the feature in transformed 
space and is connected with its nearest neighborhood. 

B.  Relation to MI criterion 
We show that different setting of the trade-off 

parameter α will lead to special versions of KIFE 
algorithm, which are highly related to the popular 
criterion MI. 

We have the following theorem: 

Theorem 1. Letα in (6) a constant, when 1k N= − , then 
our objective function (6) is the same as MI criterion. 
Proof. In [13], MI is computed by Renyi entropy, 
according to definitions in our method, we can rewrite the 
MI computed in [13] as 

2IN ALL BTWMI V V V= + −                          (11) 

where the quantities appearing in (11) are as follows 

2
2

1 1 1
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p pc J JN
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p k l

V G y y I
N
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= = =

= −∑∑∑           (12) 

2
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2
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1 1 1
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p
BTW pj k
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J
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= = =
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substituting (12), (13) and (14) into (11), we can obtain 
the MI values. 

In our KIFE, the objective function is 

1 1

1( ) ( ) (1 ) ( )
c cN J

c ci p c ci
c i

E B E y E y
N

α α ≠
= =

= − −∑∑  

where 
22

11
1 1

cN pc
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p c
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≠

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥= − + ⎜ ⎟⎜ ⎟+ +⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ . 

When we consider all 1N − features in the kernel space 
as neighborhoods of certain feature ciy , this 
means 1k N= − . Then, we can computed the parameter 
in (6) as 

22

1
2

1 cN pc c
p
p c

JJ J
N N N

α =
≠

⎛ ⎞⎛ ⎞= + + −⎜ ⎟⎜ ⎟
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∑                   (15) 

substituting (15) into (6), we rewrite (6) as 

( )1 2 3
2

1( )E B E E E
N

= + +  

where 1E , 2E , 3E are computed as follows, for convenient, 
we write 2( , 2 )G Iσ⋅− ⋅ as ( )G ⋅ − ⋅  

1
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For 1E , it computes informative energy in the same 
class, this is the same as INV in (12) except the 

normalization factor 2

1
N

. So, 1
2

1
INE V

N
= . 

For 2E , we can find that
1

( )
cJ

cj ci
j

G y y
=

−∑ computes 

informative energy for class ( )c c p≠ , the other term 

1
( )

pJ

pl ci
l

G y y
=

−∑ computes informative energy for class 

( )p p c≠ . The sum of these two terms can be merged 
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into one term without considering the class label. 
Then 2E can be modified as 

2
2

1 1

2

1
( , 2 )

cN N N
p

k l
p k l

J
G y y

N
E Iσ

= = =

⎛ ⎞⎛ ⎞
⎜ ⎟ −⎜ ⎟⎜ ⎟⎝ ⎠

=
⎝ ⎠
∑ ∑∑  

 For 3E , 
1 1 1

( ) ( )
pc c JJ N

cj ci pl ci
j p l

p c

G y y G y y
= = =

≠

− + −∑ ∑∑ computes 

informative energies for class ( )c c p≠  and 
class ( )p p c≠ , they can be merged into one term 

as 2
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substituting 1E , 2E and 3E into ( )1 2 3
2

1( )E B E E E
N

= + + , 

we obtain 

( ) 2IN ALL BTWE B V V V= + −  

Compare 1E , 2E and 3E with (12), (13) and (14), we 
know that when 1k N= − , ( )E B is equal to MI. 

 Then, MI criterion is a special case of our objective 
function (6).                                                                     □ 

As mentioned above, we can get the same criterion as 
MI, the main difference is that we can change the 
parameter k to obtain the high performance of 
classification and projections, and this is the same idea as 
NN algorithms. However, we cannot necessarily hope to 
preserve the quality of quantification of difference of 
features, we may sacrifice its power to obtain 
corresponding gains in classification accuracy and 
computational efficiency. Experimental results show that 
KIFE appears promising in the contexts of classification 
and projections. This feature is especially desirable for 
kernel-based methods such as those yield very large 
kernel matrices for important feature extraction. 

C.  KIFE for Dimension  Reduction  via  Gradient 
Learning 

In this section, we show how to using KIFE for 
dimension reduction. The main problem in the kernel 
space is that its dimensionality depends on the number of 
features. So we need reduce the dimensionality for 
visualization and complexity reduction. Here, we employ 
the gradient learning algorithm [17]. It has some merit suit 
for our model: (1) it is simple to run; (2) it holds for 
Euclidean spaces as well as the manifold setting.  

Firstly, we define graph Laplacian 
1 2 1 2L I D WD− −= −                             (16) 

where I is the identity matrix, ii ij
j

D W= ∑ , ijW is a 

similarity metric between two points iy and jy . 

In literature [17], they defined a regression function to 
compute ijW . Here, we propose a novel similarity metric 
according to the difference quantification function (4) 

( ) ( ) 22 1
2

1 2

( , )

( ) ( )
    exp

ij E i j

i j i ji j

W W y y

E y E y y yy y
σ σ

=

⎛ ⎞∇ +∇ ⋅ −−⎜ ⎟= − −⎜ ⎟⎜ ⎟
⎝ ⎠

 

where ( )i
i

EE y
y
∂

∇ =
∂

, 1σ and 2σ are parameters. 

In the similarity metric ijW , 
2

i jy y− represents the 
local geometry of the marginal distribution and the 
second term pastes together gradient estimates between 
neighboring features. 

The main differences between the metric in [17] and 
ours  are: (1) the first term in [17] is used in unsupervised 
dimension reduction such as Laplacian eigenmaps or 
diffusion maps, but we can use it considering its class 
label; (2) the second term in [17] can be interpreted as a 
first order Taylor expansion leading to the following 
approximation 

( ) ( )1 ( ) ( ) ( ) ( )
2 i j i j i jE y E y y y E y E y∇ +∇ ⋅ − ≈ − . 

But ours can be computed explicitly according to the 
function (4); (3) the method in [17] is defined in the input 
space X , but ours is defined in the feature space F . 

Once the similarity metric ijW is obtained, we can 
compute the graph Laplacian according to (16). Then, 
dimension reduction is achieved by projection onto a 
spectral decomposition of the matrix L . 

The pseudo-code of KIFE for dimension reduction is in 
the following form. 

 
Algorithm 2. KIFE for dimension reduction using 
gradient learning 
    Input: Training data set X , class label set C , and 
integer k . 

Output: A dimension reduction matrix. 
// Initialization 
Give an integer D , it represent the final dimension. 
// The first step 
Compute the similarity metric ijW . 
// The second step 
Compute the graph Laplacian L according to (16). 
// The third step 
Run decomposition on L . 
// The fourth step 
Pick the top D eigenvectors. 
Return the final dimension reduction matrix. 

IV.  EXPERIMENTAL RESULTS  

In this paper, we develop KIFE for feature extraction 
based on kernel gradient learning. Our main results are 
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(a) GDA                       (b) MMI                         (c) KIFE 

Figure 2.  Projection results on Statlog. 

the algorithms 1 and 2 of Section III. The algorithm 1 is 
mainly used as a preprocessing for classification tasks. 
The algorithm 2 is used for dimensional reduction.  

In this section, we evaluated KIFE on real benchmark 
data sets of varying size and difficulty. The Phoneme set 
is available with maximize mutual information (MMI) 
algorithm in [13]. The rest of data sets are cited from the 
UCI data sets (http://archive.ics.uci.edu/ml/). The data 
sets and some of their characteristics are presented in 
Table 1.  

In Table 1, Training/Sampling means that the number 
of the original features/the number of features sampling 
for training, D is the dimension reduction number for 
projection, d is the original dimension of the data set. 

We will conduct two experiments: dimension 
reduction for projection and classification. We compare 
KIFE with two existing methods. In order to facilitate the 
comparison, we duplicate the GDA in [10] and the MMI 
in [13]. The kernel widthσ is selected by the method in 
[13]. 

A.  Visualization of Class Separation 
In the first experiment, we illustrate a projection from 

36-dimensional Statlog feature space onto two. We 
employ algorithm 2, the extension of KIFS, to perform 
dimension reduction. Two existing dimension reduction 
methods are duplicated for comparison: GDA and MMI. 
GDA uses the label information to find informative 
projection such that the separation of data of different 
classes can be maximized and data of same classes should 
be highly aggregated. To that end, GDA tries to 
maximize the inter-class scatter matrix and minimize the 
intra-class scatter matrix simultaneously. However, GDA 
suffers from the singular problem when dealing with 
high-dimensional data, and its dimension reduction 
number is controlled by the number of classes. MMI is a 
non-parametric learning method. Promising performance 
of MMI have been shown in [13] for classification, but it 
is mainly used as a linear projection algorithm. Since our 
quantification method is based on a energy function 
which is similar to MMI, we empirically compared our 
method with GDA and MMI. 

The Statlog is the Statlog satellite image database from 
UCI Machine Learning Repository. It has 4435 features 
for training, and 2000 for testing. Its dimensional is 36 
and the number of classes is six.  For dimension reduction 
task, we randomly sample 1800 from the training data 
and use total testing data. Those six classes are according 
to the label in Figure 2, where C1 represents red soil, C2 
is cotton crop, C3 is grey soil, C4 is damp grey soil, C5 is 
soil with vegetation stubble, and C6 is very damp grey 
soil. This data is one of the many sources of information 

available for a scene. The interpretation of a scene by 
integrating spatial data of diverse types and resolutions 
including multispectral and radar data, is a difficult task. 
The GDA projection is presented in Figure 2(a), MMI-
projection in Figure 2(b), and KIFE-projection in Figure 
2(c). 

From the Figure 2, we observed that GDA separates 
C1, C2 and C5 very well. MMI separates C2 and C5 but 
places other four classes almost on the top to each other. 
The criterion of KIFE is a combination of representing 
each class as compactly as possible and as separated from 
each other as possible. Figure 2(c) has achieved this: all 
classes are represented as quite compact clusters. But we 
should note that C1 is scattered and has small cross parts 
with other classes. We can obtain the following 
conclusions: (1) GDA can separate the red soil, cotton 
crop and vegetation stubble. The other three soil features 
are overlapping with each other. (2) MMI can separate 
the cotton crop and vegetation stubble, but the other four 
soil features cannot be separated well. (3) KIFE firstly 
separate the cotton crop from other soil features, the other 
four soil features are separate well except the red soil. 
This means that the gradient information in the transform 
processing may be useful for classification problem.  

In order to evaluate how the features transform 
according to KIFE, we plot the gradient of each feature 
until the coefficient matrix is obtained. In this setting, 
linear discriminant analysis (LDA) is used as an initial 
state of MMI, and GDA for KIFE. We also used LDA as 
an initial state of KIFE, experimental result has shown 
that our method is not sensitive to the initialization, but 
need 41 steps to converge to the optimal solution. 

Figure 3 shows the iteration status of 24 steps using 
gradient learning. Figure 3(a) shows the gradient learning 
about MMI, we can find out why MMI cannot separate 
other four classes. The direction of C3 has no regular 
arrangement, and it overlaps with C1. However, KIFE 
shows better results. All classes have better clustering 
performance except C1. From the direction of C1 in 
figure 3(b), we find out that features in C1 have the 
tendency toward the within class center, and C1 has little 
overlapping area with C3. 

TABLE I.   
CHARACTERISTICS OF THE DATA SETS AND PARAMETER SETTINGS  

Data Training/Sampling Testing/Sampling cN / d / D

Iris 150/105 150/45 3/4/2 
Statlog 4435/1800 2000/2000 6/36/2 
Letter 16000/2000 4000/1500 26/16/8 

Phoneme 1962/1962 1961/1961 20/20/9 
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(a) Iteration status of MMI     (b) Iteration status of KIFE 

Figure 3.  Iteration status of 24 steps using gradient learning. 

 
Figure 4.  Influence of the k values. 

This result is useful when the feature is difficult to 
classify. We can predict its potential class label according 
to its move direction in feature space. 

B.  Classification Results 
In the second experiment, we applied our feature 

extraction method to improve the classification of nearest 
neighbor algorithm knnclassify in Matlab.  

We must first determine k , the number of the nearest 
neighbor to construct the objective function. We selected 
the k from {3,5,7,9,11} according to their classification 
performance. We averaged over 100 runs with random 
sampling of Landsat data set according to Table 1. Figure 
4 shows the interaction between the value of k and the 
accuracy of nearest neighbor algorithm. 

It can be observed that we can obtain high 
classification performance when 5k = . Therefore, we 
assigned 5k = . 

In order to evaluate whether our KIFE feature 
extraction method actually results in a new space that 
characterizes the difference between features better, we 
perform our algorithm using other data sets showed in 
Table 1. Iris is perhaps the best known data used in the 
pattern recognition literature. The data set contains three 
classes of 50 instances each, where each class refers to a 
type of iris plant. One class is linearly separable from the 
other two, the latter one are not linearly separable from 
each other. For this small sample, we use cross-validation 
to random select features for training and testing. The 
Phoneme is widely used resource for research in speech 
recognition. It contains 20 classes of 20 dimensional. The 
Letters is a database of character image features. It 
contains 26 capital letters, we randomly sample 2000 
from 16000 for training and 1500 from 4000 for testing. 
Detailed description is listed in Table 1, we run 
experiments 10 runs, the performance of these methods 
are show in Table 2. 

On the other hand, we report the computation time of 
the KIFE algorithm, as KIFE avoids the 
eigendecomposition of GDA. For MMI and KIFE, we 
terminate the algorithms when the iteration step is up to 
24. We can observe that KIFE has the similar 
computational complexity, and they are all superior to 

GDA. However, the classification performance of GDA 
is superior to MMI, because GDA can extract nonlinear 
features. KIFE combines the merits of these two 
algorithms, so it shows high performance on these data 
sets. 

The above experiments show that it may be beneficial 
to combine KIFE with classifiers, because KIFE can 
extract important features and can be used for dimension 
reduction. 

Other advantages of our algorithm are 
• KIFE can be easily extended to dimension 

reduction based on gradient learning. It can be 
used in many applications, such as in [18-20].  

• It can extract high order statistics and nonlinear 
statistics from data sets. Contrary to GDA and 
MMI, our method holds both for Euclidean and 
manifold setting. 

• Computational efficiency. Our approach naturally 
draws advantages from gradient ascent 
implementation. But the extension of KIFE for 
dimension reduction needs eigendecomposition, 
which can be considered as a preprocessing step 
for classification or regression tasks. 

• Extraction ability. The important feature 
extracted by our method can improve the visual 
ability of projection, and can be used for 
classification task when the number of features is 
large.  

The informative energy function can be used as a 
quantification of feature difference.  We expect that this 
function can be used in bioinformatics in future work. 

V.  CONCLUSION 

A novel algorithm, KIFE, for feature extraction is 
presented. The algorithm works in an iterative fashion 
and the final coefficient matrix is obtained during 
successive iterations. Experimental shows that KIFE has 
lower time complexity than GDA, and it is superior to 
MMI in classification performance.  

TABLE II.   
TEST PERFORMANCE OF PROJECTION ALGORITHMS(%/S) 

 Iris Statlog Phoneme Letters 
GDA 96.67/0.098 90.5/35.126 86.7/30.354 89.9/13.446
MMI 96.67/0.084 89.5/3.804 85.3/2.745 88.6/1.806
KIFE 97.33/0.093 91.3/4.059 86.7/2.743 92.1/1.849
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Another algorithm for dimension reduction is also 
evaluated, which is an extension of KIFE. This can be 
considered as a preprocessing step for classification. 
Nevertheless, the fascinating idea of using our approach 
is that we build a connection between feature extraction 
and gradient learning.  

In future work we intend to apply the proposed method 
to larger data sets, especially for bioinformatics. We also 
want to modify our algorithm to parallel implementations. 
In addition, how gradient of the objective function 
influence the performance of the classifiers is an 
interesting topic. 
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