

A Task Scheduling Algorithm for Multi-Core-
Cluster Systems

Xiaozhong Geng 1,2

1Department of Computer Science & Technology Jilin University, Changchun, China
2School of Electrical & Information Technology Changchun Institute of Technology, Changchun, China

gengxiaozhongcn@sina.com

Gaochao Xu1,*, Xiaodong Fu1, Yuan Zhang2
1Department of Computer Science & Technology Jilin University, Changchun, China

2Information center of State Food and Drug Administration, Beijing, China

* Corresponding author
xugc@jlu.edu.cn, 178143370@qq.com, zhangyuan2u@gmail.com

Abstract—The quantity of cores on one chip increases
rapidly with the development of multi-core technology,
which has led to more complex structure of cluster system
and greatly increasing number of tasks. In order to schedule
tasks in multi-core-cluster systems efficiently, a task
schedule model based on the directed acyclic graph(DAG) is
built, and then a algorithm based on task duplication is
proposed. The algorithm is composed of two steps of
operations, in which the processes are assigned to processor
nodes in the first step and the threads in processes are
assigned to core nodes in the second step respectively. The
time complexity of this algorithm is less than similar
algorithms. For the algorithm, minimization scheduling
length is the primary objective, and keeping load balancing
between processing nodes is secondary objectives. It can be
seen through comparison with correlative work that the
algorithm has advantages in scheduling length; furthermore,
while the ratio of total communication cost and total
computation cost in the task schedule model becomes larger,
the advantage of this algorithm is more obvious.

Index Terms—task duplication, task scheduling, multi-core
processor, scheduling length, DAG, multi-core-cluster
systems

I. INTRODUCTION

Multi-cores architectures are becoming a mainstream
in both server processors and desktop processors. Over
the next decade, we expect to see processors with tens
and even hundreds of cores on a chip[1].

With the architecture of high-performance general
microprocessor into the multi-core era, multi-core
processors have been increasingly used in cluster systems,
Thus multi-core-cluster systems appears. Each processing
node in multi-core-cluster systems is consisted of a multi-
core processor; and the interconnection between nodes is
through some network connection. Multi-core-cluster
systems improve overall system performance by
improving the performance of nodes, so that it has with
good flexibility and scalability, which makes more
computing cores with relatively higher cost performance

ratio come true. Figure 1 shows a structure of a multi-
core cluster system.

Figure 1. Structure of a multi-core cluster system.

Multi-core clusters include a two-level storage

mechanism: Shared memory inside one node and
distributed storage between nodes; and they include two-
layer communication structure: communication between
cores in a multi-core processor(CMP) and communication
between processors. The relationship between these cores
in a CMP is tightly coupled, and these cores are often
interconnected by shared-cache or the high-speed data
channel; but the relationship between processor nodes is
loosely coupled, and these nodes are often interconnected
by interconnection network, therefore, communication
overhead between processor nodes is much larger than
that between cores.

In the parallel programming model, the programming
model based on message passing (such as MPI, PVM) is
still a mainstream[2]. Parallel program based on the model
contains multiple task(processes), and communication
between tasks is by message passing. Under the
environment of multi-core-cluster systems, in order to
utilize computing resources more efficiently, each
process may consist of multiple concurrent threads,
which can run on different processor cores, and the
communication between threads is via shared memory.
Because address space of threads which belong to the
different process is independent, communication between
these threads is only through message passing.

Multi-core cluster is similar to traditional multi-
processor cluster in structure, so we can regard each
processor node (a CMP) as a cluster at the chip-level
implementation. The mainly difference between them is
that: Task scheduling of traditional clusters is that the

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2797

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.11.2797-2804

parallel tasks will be allocated to each processor, and
only considers the communication between processor; but
task scheduling of multi-core-cluster systems is that the
parallel tasks will be allocated to each core eventually,
and considers the communication overhead both between
processors and between cores in the allocation process.
Therefore, we can improve and develop task allocation
and scheduling algorithm for traditional clusters to adapt
multi-core-cluster systems.

This paper discusses the task scheduling problem in
multi-core-cluster systems, builds a task scheduling
model, and then proposes a task scheduling algorithm
based on task duplication. Comparison test shows that the
algorithm can obtain near-optimal solutions in reasonable
time, and behave even better in scalability than genetic
algorithms. While the ratio of total communication cost
and total computation cost in the task schedule model
becomes larger, the advantage of this algorithm is more
obvious.

The organization of the paper is as described below.
Section 2 summarizes the related research works. Section
3 gives the task scheduling model on the basis of DAG.
Section 4 proposes a task scheduling algorithm which
consists of two steps of operations. Section 5 calculates
time complexity of the proposed algorithm. Section 6
presents experimental results by comparing the algorithm
with genetic algorithm. The last section concludes the
paper with explanation of advantages and issues of the
algorithm.

II. RELATED WORKS

The problem of task scheduling has been studied for
many years. Most of scheduling algorithms are based on
a task precedence graph (TPG) or a task interaction graph
(TIG). TPG has been described by directed acyclic graph
(DAG), in which the node represents a task and the edge
represents task execution sequence and communication
overhead. The DAG is usually used for static task
scheduling model.

A task system is composed of the subtasks which have
partial order relations and can be run in parallel or serial.
The goal of task scheduling for traditional clusters is that
subtasks be reasonably assigned to each processor
according to some strategies and executed in parallel or
serial, thus the communication overhead and latency
between the parallel execution tasks is reduced, and thus
task system execution time is cut short.

Task scheduling algorithm can be divided into two
categories, static scheduling and dynamic scheduling.
Compared with dynamic scheduling, static scheduling
algorithm is simpler and with lower overhead, etc. There
are two kinds of basic static scheduling algorithm: one is
based on random search and the other is based on
heuristics[3]. The algorithm based on the random search
includes genetic algorithm[4], annealing algorithm[5], local
search technology[6], etc.

Since it has been proved that the scheduling problem
of multiprocessor is NP-complete, many researchers have
proposed scheduling algorithms based on heuristics

[7]
.

The algorithm based on heuristic includes table

scheduling algorithm, cluster algorithm, task duplication
algorithm, etc.

The basic idea of the task replication algorithm is to
change the task communication from between different
processing nodes to the same node by running the copy of
a task which sends messages on multiple processing
nodes which receive messages. The algorithm reduces the
communication time between processing nodes by
increasing local processing time of a node. When
reasonable duplication strategies are adopted, task
duplication algorithm can obtain better scheduling
performance than other algorithms[8]. In this paper, an
algorithm based on task duplication is adopted.

There are multiple typical task duplication algorithm
such as TDS[9], OSA[10], PPA[11], CPFD [12], etc. The main
idea of TDS algorithm is to allocate one friendly parent
task and many subtasks to the same processing node, so
that subtasks can be start at the earliest start time, which
will shorten the schedule length. OSA algorithm is the
evolved edition of TDS, and which allows many parent
tasks and subtasks allocated to the same processing node,
thus the earliest start time ever of subtasks is obtained,
and then schedule length can be shorten. PPA algorithm
has improved the OSA algorithm: using the same
scheduling policy, it also optimizes the number of
processing nodes. CPFD algorithm makes use of
exploratory strategy, before the current task is scheduled,
the algorithm recursively searches its VIP(Very
Important Parent) [13] task out and copy it to the current
processing node, which makes the current task to get the
smallest and earliest start time, and thus schedule length
can be shorten.

TDS algorithm does not allow multiple parent tasks
and subtasks to be assigned to the same processing node;
therefore, it is difficult for subtasks to get a good earliest
start time. OSA, PPA, and CPFD algorithm can assign
multiple parent tasks and subtasks to the same processing
node, so the current task can get minimum start time, but
that also limits the task scheduling of its descendant or
ancestral task, and restricts optimization of scheduling
length.

So far, the research on task scheduling algorithm for
multi-core-cluster systems hasn’t been developed enough.
Task scheduling algorithm specializing in this system is
relatively few.

[14] mixed ant colony algorithm (ACO) and genetic
algorithm (GA) to execute task allocation and scheduling ,
but their system model is a multi-core system of global
and local storage.

[15] proposed a task allocation algorithm based on
iteration, which takes full advantage of the characteristics
of multi-core systems, and reduces communication
overhead during tasks execution process; however, the
algorithm fails to consider the precedence relation
between tasks.

[16] proposed a task scheduling algorithm for multi-
core processor, which considered parallel tasks execution
time and communication overhead, etc. This scheduling
algorithm is efficient and can adapt to quantity alteration

2798 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

of processing cores, but it only apply to single processor
system.

There is also some research for task allocation of multi-
core DSP processor and network processors[17], but that
does not apply to multi-core-Cluster systems because that
only takes into account single processor system and fine-
grained parallel.

III. TASK SCHEDULING MODEL

Suppose the multi-core-cluster system is composed of
Nnode processor nodes D0, D1, … -1nodeND , and each
processor is composed of Ncore processing cores
C0,C1,… N -1coreC ；the parallel application to be allocated

is composed of Nproc processes P0, P1, … N -1procP , and

process Pi is composed of Mi threads T0,T1, … M -1iT .

Then the total number of threads:
Nproc-1

thread i
1

N M
i=

= ∑ .

A parallel program usually represented by a DAG,
which is also called a task graph. A DAG consists of a
tuple G = (T, E, R, W), where:

1) T is the set of vertices {T i}, Ti is the corresponding
task number to a vertex.

2)E is the set of directed edges {Eij}. Eij stands for the
edge from task Ti to Tj, Eij∈E shows that, Tj can't be
executed until Ti has been completed. Here Ti is called a
predecessor of Tj while Tj is a successor of Ti .

3)R is the set of execution time of task vertex {R (Ti)}.
R(Ti) is the additional information of a vertex, which
shows the execution time of task Ti.

4) W is the set of communication overhead between
two tasks, which is expressed by {W(Eij)}. W(Eij) is the
additional information of an edge, which shows
communication overhead between task Ti and task Tj.

5）pred(Ti)={Tj|Eji E};∈ |pred(Ti)| is the number of
predecessor tasks of Ti;

succ(Ti)={Tj|Eij E};∈ |succ(Ti)| is the number of
successor tasks of Ti;

If |pred(Ti)| = 0, Ti is start task, which is denoted by Ts;
If |succ(Ti)| = 0, Ti is end task, which is denoted by Te;
If |pred(Ti)| 2, T≧ i is a join task;
If |succ(Ti)| 2, T≧ i is a fork task;
The Fork-Join structure is one of the basic modeling

structures for parallel processing. Most of the structures of
the task graph can be simplified to a combination of join
and fork structure.

Convention: As a group of ordered tasks can be
represented as a DAG, so each node in the DAG
corresponds to a task in the order task group, the nodes in
DAG are called task or task node ; there are two types of
task: process or thread.

The model is based on data flow diagram. Task is
executed by a non-preemptive way, where a task node has
to wait until all of its predecessor nodes have been
executed. Communication overhead between tasks on the
same processing node has been assumed zero in this paper.

Figure 2 shows a DAG graph which contains 12 tasks,
where each box represents a vertex Ti, and a vertex
consists of two parts. Ti indicates the task i, and the

number below Ti represents the estimated running time of
Ti, which can be expressed as R(Ti). Each arrow
represents a directed edge Ei, and parameter attached to
the arrow represents W(Ti, Tj) of the directed edge.

Figure.2 An example of DAG

For generality, we assume there are only one start task

and one end task in DAG. If there are multiple start nodes
or end nodes, a virtual start node or end node can be added
in. It is assumed computing cost of the virtual node is 0;
communication edges from start nodes or end nodes to
virtual nodes are built, on which communication overhead
is 0. Figure 3 shows an example of DAG with two virtual
nodes T0 and T9 .

T2
6

T1
4

T3
6

T4
2

T5
4

T3
4

T6
4

T7
4

T8
2

0 0 0

105 4

7

8

7

5
2

7

0

T0
0

T9
0

0 0

11

Figure.3 An example of DAG with virtual nodes

The goal function of task scheduling can be expressed

as a function f, by which each task node is assigned to an
on-duty processing node, and meanwhile both
communication overhead and program execution time are
minimized. Function f can be expressed as following:

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2799

© 2012 ACADEMY PUBLISHER

f : {Ti}→{Cj}，i=0,1,2,…,n-1；j=0,1,2,…,k-1; i is the
number of tasks, and j is the number of processing nodes.
And the following conditions are both met:

1) -1 -1

0 0
min

n k

ij
i j

W
= =
∑∑

2) min(the overall program running time)

IV. TASK SCHEDULING ALGORITHM

SL indicates scheduling length of a multi-core-cluster
system:

SL=max(SL(Pi)),i=1,2,3,…,m (1)

 where:
m indicates the number of processor nodes;
SL(Pi) indicates the earliest possible completion time of

all tasks which have been assigned to the processor Pi.

SL(Pi)= max(SL(Cik))，k=1,2,3,…,n (2)

 where:
n indicates the number of processing cores in Pi;
SL(Cik) indicates the earliest possible completion time

of all tasks which have been assigned to the processing
core k in processor Pi.

()() () 3
j ik

ik j

T C

SL C R T
∈

= ∑

By analyzing (1), (2) and (3), the theory is derived as
follows: Task scheduling length is closely related to the
earliest possible end time of tasks, and the earliest possible
end time of a task is related to the location and completion
time of its parent task, thus, the optimization of the
scheduling length is transformed into the optimization of
tasks sequence which have been assigned to some
processing node in multi-core-cluster systems. Because
multi-core-cluster systems contain two-level processing
nodes, the algorithm of this paper consists of two
optimizations: Process sequence to processor nodes and
threads sequence to processing cores. Because task
execution time is certain, the algorithm of this paper takes
minimizing inter-node communication as the main
purpose.

When two tasks are assigned to different processing
nodes, the communication delay between them is very
large, which on the contrary is slight enough to be
ignored if the same node is chosen instead of different
ones[18].

The task scheduling algorithm based on task
duplication is to eliminate the communication overhead
through the above principle. That is, some tasks in DAG
are allocated redundantly to some processing nodes, so as
to realize the purpose of reducing communication
overhead between tasks. This means, task duplication is
to copy task when processing nodes are idle, to avoid the
transmission of predecessor calculation data, thereby the
waiting time of processing nodes is reduced and the task
can be started in advance.

The main idea of the proposed algorithm is that: setting
the goal of “the current task with the earliest start time”,

shorten the whole the task execution time by dividing
tasks into different groups.

The proposed algorithm is composed of two steps of
operations, in which the processes are assigned to
processor nodes in the first step and the threads in
processes are assigned to core nodes in the second step
respectively. There are two strategy would be used in
each step operation, which will be introduced in detail in
A and B.

A. Grouping Strategy
All the task nodes in the DAG structure graph have

been scheduled in turn according to task depth. The task
depth is determined by (4).

{ }i

()

0, level(T)
max () 1,

j i

i s

j
T pred T

T T
level T

∈

==
+

（4）
others

The task with small sequence number is scheduled
preferentially when task depth is the same. By (4), it is
known that the task depth of parent tasks must be less
than that of subtasks, which ensures the parent task is
prior scheduled to the sub-task. The start task is firstly
scheduled and the end task is lastly scheduled, which
meet precedence relations between tasks in DAG.

And then the following selection policy is adopted to
generate scheduling groups or set for each task node.

1) If the node has no predecessor task node, the node
itself is regarded as a scheduling group.

2) If the node has only one predecessor task node, then
a scheduling group is formed by merging it to the
scheduling group of its predecessor node according to
their priorities.

3) If the task contains multiple predecessor tasks(this
task is join node), scheduling group or set will be
generate according to the following operation:

First, select a predecessor task group whose sum of
execution time R and communication time W is the
largest to form scheduling group with the join node, If
there are several predecessor task nodes with the same (R
+ W), then the predecessor node with bigger W would be
selected, which means, that selection can schedule critical
task to the same processing node so that the join node
starts earlier.

And then select a node from the rest of predecessor
task nodes of the join node, which is assumed Ti. The
total computing time of the nodes in scheduling group
except join node is Q. There are two value are calculated
respectively: one is the start time of the join task node
when merging the predecessor node into task scheduling
group of the join node, expressed as S1= Q+R(Ti), while
the other is the start time of the join task node without
merging, expressed as S2= R(Ti)+W. if S1 S2, then ≦
merge the predecessor node into task scheduling group of
the join node, which runs on the same processing node; if
S1﹥S2，then a new scheduling group relevant to the
join node should be formed based on the predecessor task,
which will be run on other processing nodes. select the
rest of the predecessor nodes following the above steps

2800 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

until the entire predecessor nodes have been scheduled;
finally a join node task scheduling group or a scheduling
set is formed.

Redundancy tasks are generated from task duplication.
In the process of generating scheduling group, redundant
tasks in the same group may be properly eliminated if the
start time of successor task nodes will not be delayed, so
the final performance of the task scheduling is not
affected. Similarly, redundant scheduling groups in
scheduling set can also be properly eliminated.

We take Figure 2 as an example to generate scheduling
groups or set for each node:

Scheduling group of T0 is (T0) because T0 hasn’t
predecessor task nodes, and its execution time is 2.

Scheduling group of T1 is (T0,T1) because T0 has only
one predecessor task node, and its execution time is 5.

Similarly, Scheduling group of T2 is (T0,T2), and its
execution time is 7.

Scheduling group of T3 is (T0,T1,T3), and its execution
time is 9.

Both T1 and T2 are predecessor nodes of T4 node.
(R+W) of T1 is 11 ((R+W) is the execution time of
scheduling group of T1 plus the communication time
between T1 and T4). (R+W) of T2 is 15,for 11<15,so
obtains the group (T0,T2,T4) by merging T4 into the
scheduling group of T2. If T1 is merged into the
scheduling group of (T0,T2,T4), and then get (T0，T1，

T2，T4). Now start time S1 of T4 is 10, that is S1=10, and
meanwhile set {(T0,T2,T4), (T0,T1)} is obtained without
merging, thus S2=11(S2 is start time of T4);for S1<S2，
so that the scheduling group of T4 is (T0, T1, T2, T4), and
its execution time is16.

Similarly, the scheduling group of T5 is (T0，T1，T2，
T5), and its execution time is 16. The scheduling set of T6
is {(T0,T1,T2,T4,T6), (T0,T1,T3)}, and its execution time
is18. The scheduling set of T7 is {(T0,T2,T7), (T0,T1,T3)},
and its execution time is 17. The scheduling set of T8 is
{(T0,T2,T7,T8), (T0,T1,T3)}, and its execution time is 21.
The scheduling set of T9 is {(T0,T1,T2,T4,T6,T9),
(T0,T1,T3)}, and its execution time is 22. The scheduling
set of T10 is {(T0,T1,T2,T5,T10)，(T0,T2,T7), (T0,T1,T3)},
and its execution time is 21. The scheduling set of T11 is
{(T0,T1,T2,T5,T10,T11) ， (T0,T2,T7,T8), (T0,T1,T3) ，
(T0,T1,T2,T4,T6,T9)}, and its execution time is 33.

Grouping strategy can be realized by function Group(),
and the concrete realization of Group() as follows:

void Group (G, scheduling_set)
{

//input: G = (T, E, R, W)
//output: a scheduling set
Ascending order by task depth for all tasks in DAG;
for(i=0; i<v; i++)
{
Construct tasks scheduling groups or set for each task;
for(j=0; j< in-degree of the current task, j++)
{
Seek critical parent task for each current task ;
Merge the current task to the scheduling group of its

critical parent task according to their priorities;

}
// Eliminate redundant tasks in a scheduling groups

for(k=0; k<the number of tasks in each scheduling
groups; k++)

{
Count the number of occurrences for each task;
Eliminate redundant tasks;
}// end of eliminate redundant tasks

}// end of construct tasks scheduling groups
}// end of Group()

In summary, the process of constructing scheduling
groups or set is based on task duplication. A task and its
critical parent task are allocated to the same processing
node, which minimize the communication overhead, so
that current task can be started at the earliest start time,
which will shorten the schedule length.

B. Adjusting Strategy
The process, adjusting scheduling set according to the

number of processing nodes, can diminish redundant task
nodes without influencing the task execution efficiency.

1）When the number of processing nodes is less than
that of task scheduling groups in the scheduling set, find
out two scheduling groups which contain the most
number of same task nodes to merge, so that the
execution time of a merged scheduling group is
minimized. Because some task nodes have been copied to
different scheduling groups, where might appear the same
task repeatedly. At last, the number of scheduling groups
can be reduced to less than or equal to the number of
processing nodes by way of merging.

2) When the number of processing nodes is more than
that of task scheduling groups in scheduling set, directly
allocate each task group for one processing nodes. The
parallel program execution time is the execution time of
the task group whose task completion time is the longest.

The threshold is used to control load balancing, which
is the number of tasks that each processing node should
load, and it fluctuates within a limited range. The
threshold values for the processor node and core nodes
can be calculated as follows respectively:

thread
processor max

core

NThreshold max(,) (1)
N

M α= × +

(0≤α ≤1) (5)

processor
core

core

ThresholdThreshold (6)
N

=

The Mmax in expression (5) is the maximum number of

threads in a process, and α is a percentage value in
expression (5), which is used to balance between load
balancing and communication decreasing.

When α is larger, edges with bigger weight are
selected by the algorithm, which tends to reduce the
communications; When α is smaller, edges with large
weight are more likely to be given up, this time the
algorithm further aims to balance the load.

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2801

© 2012 ACADEMY PUBLISHER

Normally, a solution may be obtained after several
times’ combine. The solution might become impossible
to work out if the load balance conditions are strict, and
in that case the threshold should be increased for iterating
again.

Adjusting strategy can be realized by function Adjust
(), and the concrete realization of Adjust () as follows:

void Adjust(scheduling set, multiple scheduling group)
{
//input: a task scheduling set
//output: multiple scheduling groups
Count the number of processing nodes;

if (the number of scheduling groups in the scheduling
set> the number of processing nodes)

{
do
{

Find out two scheduling groups which contain the
most number of same task nodes to merge;

}while(the number of scheduling groups in the
scheduling set> the number of processing nodes)

}// end of if
Assign each task scheduling group to one processing
nodes according to the threshold;
}//end of Adjust ()

C. Algorithm Description in General
Multi-core-cluster systems possess the features both

shared storage architecture and distributed storage
architecture, thus they are supportive for task-level inter-
node coarse-grained parallel and intra-node fine-grained
parallel. Accordingly, the algorithm is composed of two
steps of operations, in which the processes are assigned to
processor nodes in the first step and the threads of
processes are assigned to processing cores in the second
step respectively.

Step1: allocation of processes
1) Construct processes scheduling groups or set on the
basis of processes DAG.
2) Adjust scheduling Sets.
3) Assign processes scheduling groups to some
processors.
Step2: allocation of threads
1) Change processes that have been allocated to each

processor into threads, and generate threads DAG for
each processor, so the thread DAG is a part of entirety
DAG.

2) Construct thread scheduling groups or set on the
basis of threads DAG for each processor.

3) Adjust scheduling sets.
4) Assign thread scheduling groups to some cores.

D Considerations Task Scheduling for Multi-core-SMP-
Cluster Systems

The hierarchy of the system becomes more complex in
the multi-core-SMP-cluster system, where the processing
nodes consist of SMP nodes, processor nodes, and cores
nodes. Processors in a SMP node share main memory,
and they coupled looser than cores inside of a processor,
but tighter than between SMP processing nodes.

Based on the above considerations, the task allocation
in multi-core-SMP-cluster systems can be done by a
revision of the above the proposed algorithm. At this time,
the algorithm is composed of three steps of operations
instead of two steps, that is, processes are allocated to
SMP nodes in the first step, threads are allocated to
processors nodes in the second step, and threads are
allocated to processing cores in the third step.

V. COMPLEXITY ANALYSIS

Each step of operation both includes function Group()
and function Adjust(). In the first step operation, the
cycle index of extrinsic cycle in Group() is v1 ,and v1 is
the number of processes in the process DAG; the
cycle index of internal recycle in the worst case is e1, and
e1 is the maximum of in-degree in processes DAG, so the
time complexity of Group() is O(e1*v1). In function
Adjust(), all processes are not related in the worst case,
and then the number of scheduling groups is v1. If the
number of processor is p1, as above the maximum
cycle index of process combination is:

1

1

(1 1) (1 1 1) 2
v

i p

i v p v p
=

= + × − +∑

So the time complexity of adjust() is O(v12). Thus the
time complexity for the first step operation is
O(e1*v1)+O(v12)=O(v12).

Similarly, the time complexity for the second step
operation is O(e2*v2)+O(v22)=O(v22),in which e2 is the
maximum of in-degree in threads DAG, v2 is the number
of threads in the threads DAG.

The time complexity of the proposed algorithm is
O(v12)+ O(v22)= O(c2), c is the largest between v1 and v2.

The time complexity of [11][12][15] is O(v2), where v
is the number of all threads in entirety threads DAG, so
the time complexity of the proposed algorithm is less than
others.

VI. EXPERIMENTS AND EVALUATION

Task scheduling has no recognized test project, and the
number of actual example sets for test is fairly small, so
using random task graph as input set for task scheduling
test is a common method[19].

The most basic performance measure of task is the task
execution time[20]. Usually, the length of the task
scheduling is used to reflect the task execution time,
which is expressed as schedule length, and it is also the
latest task completion time.

Random graphs are used as input set of task scheduling
testing in this experiment, and the algorithm has been
evaluated through comparing the scheduling length,
namely the latest task completion time[21].

Both the algorithm and genetic algorithm are realized
respectively by programming in the experiment. The two
algorithms have been evaluated and analyzed by using
1400 task precedence graphs which are randomly
generated. The number of threads is between 64 and
1024，and they belong to 16 ~ 64 processes; the weight
of edge between two thread nodes or process nodes is

2802 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

random in the range of from 0 to 50. The weights of
processes node belongs to [20, 30]，The weights of
threads node belongs to [10,15] ， Tasks have been
allocated on a variety of hardware platforms where the
number of multi-core processors are from 8 to 32 and the
number of processing cores are from 4 to 32，and α=0.15
in (6).

Figure 4 shows the optimal rate and error rate of our
algorithm, in which the error rate is calculated as follows
according to the sum of weights between threads assigned
to different processing nodes (noted as LSW: Left Sum of
Weights):

(our algorithm_LSW) _
100%_

optimal LSW
errorrate optimal LSW

−∑ ∑= ×∑
 (7)

number of thread

Figure 4. Optimal rate

number of thread

Figure 5. Error rate

As Figure 5 shows, although the percentage of optimal

solutions decreases with increasing of thread number,
error rates are always lower than 5%. This means that the
proposed algorithm can always find near-optimal
solutions.

Some of the experiment data are listed in Table 1,
where the final task execution time is an average value.
Figure 6 shows the static performance curve of the
algorithm.

TABLE 1
AVERAGE EXECUTION TIME CONTRAST OF THE PROPOSED

ALGORITHM AND GENETIC ALGORITHMS

Number
of
processor

Number
of
core

Number
of
process

Number
of
thread

SL of
This
Algorithm

/ms

SL of
genetic
algorithm
/ms

8 4 16 64 48 72
8 24 185 56 85

16 12 32 310 69 90
16 40 400 93 110

24 20 48 512 123 145
24 52 726 189 261

32 28 56 896 232 312
32 64 1024 278 362

Figure 6. The static performance curve of the algorithm

We can see from table 1 and figure 6 that the algorithm

can find better solution than genetic algorithm, that is, the
algorithm could get shorter final task execution time.
From figure 6 we can find that when the task is fewer, the
algorithm performance is more similar to genetic
algorithm, but with the increase of the number of tasks,
this algorithm is obviously better than genetic algorithm.
So this algorithm has better performance in the CMP with
large number of tasks.

In the experiment, when the weight of edge between
two threads or processes is increased from [0, 50] to
[60,100], the rate of SL of the proposed algorithm and SL
of genetic algorithm is smaller than before, which
demonstrates that the performance of the proposed
algorithm is better as the ratio of total communication
cost and total computation cost in the task schedule
model becomes larger.

VII. CONCLUSION

This paper discusses the task scheduling problem in
multi-core-cluster systems, builds the task scheduling
model, and then proposes a task scheduling algorithm
based on task duplication which consists of two steps of
operations, and respectively establishes a mapping from
task scheduling groups to some processing nodes. For the
algorithm, minimization scheduling length is the primary
objective, and keeping load balancing between processing
nodes is secondary objectives. The time complexity of
this algorithm is less than similar algorithms.

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2803

© 2012 ACADEMY PUBLISHER

Comparison test shows that the algorithm can obtain
near-optimal solutions in reasonable time, and behave
even better in scalability than genetic algorithms.
Furthermore, while the ratio of total communication cost
and total computation cost in the task schedule model
becomes larger, the advantage of this algorithm is more
obvious.

REFERENCES

[1] S. Y. Borkar, P. Dubey, K. C. Kahn, D. J. Kuck, H.
Mulder,S. S. Pawlowski, and J. Rattner. Platform 2015:
Intel®processor and platform evolution for the next decade,
White Paper, Intel Corporation, 2005.

[2] Dummler, J., Rauber, T., Runger, G..Mapping
Algorithms for Multiprocessor Tasks on Multi-core
Clusters. In:Parallel Processing, 2008. ICPP '08. 37th
International Conference

[3] T. Agarwal, A. Sharma, and L. V. Kale. Topology-aware
task mapping for reducing communication contention on
large parallel machines. In Proc. of the 20th Intl. Parallel
and Distributed Processing Symposium (IPDPS 2006).
IEEE, 2006.

[4] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn.
Mpipp: an automatic profile-guided parallel process
placement toolset for SMP clusters and multiclusters. In
ICS '06: Proc. of the 20th Int. Conf. on Supercomputing,
pages 353-360, New York, NY, USA, 2006. ACM.

[5] N. Vydyanathan, S. Krishnamoorthy, G. Sabin, U.
Catalyurek, T. Kurc, P. Sadayappan, and J. Saltz. Locality
conscious processor allocation and scheduling for mixed
parallel applications. In Proc. of the 2006 IEEE Int. Conf.
on Cluster Computing. IEEE, 2006.

[6] Gerasoulis A, Yang T. A Comparison of Clustering
Heuristics for Scheduling DAGs on
Multiprocessors[J].Journal or Parallel and Distributed
Computing,Dec.1992,16:276-291

[7] YUAN Yun, SHAO Shi, Tasks scheduling algorithm for
parallel system with multi-core processor,
ComputerApplications, 2008,28(12),280-283

[8] Pasham,S.,WM.Lin,"Efficient task scheduling with
duplication for bounded number of
processors",Proceedings.11th International Conference on
Volume 1, 20-22 July 2005 Page(s):543-549 Vol.1

[9] Darbha S, Agrawal D P. Optimal scheduling algorithm for
distributed-memory machines. IEEE Transactions on
Parallel and Distributed Systems, 1998, 9(1): 87-95

[10] Park C-I, Choe T-Y. An optimal scheduling algorithm
based on task duplication. IEEE Transactions on
Computers, 2002, 51(4): 444-448

[11] Zhou Shuang-E, Yuan You-Guang, Xiong Bing-Zhou, Ou
Zhong-Hong. An algorithm of processor pre-allocation
based on task duplication. Chinese Journal of Computers,
2004, 27(2): 216-223

[12] Ahmad I, Kwork Y K. On exploit task duplication in
parallel program scheduling. IEEE Transactions on Parallel
and Dis-tributed Systems, 1998, 9(9): 872-892

[13] Kruatrachce B, Lewis T. Grain size determination for
paral-lel processing. IEEE Software, 1998, 1: 23-32

[14] Li Min,Wang Hui,Li Ping. Tasks mapping in multi-core
based system:hybrid ACO&GA approach[C].In
Proceedings of 5th International Conference on ASIC, Oct
2003.

[15] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating Tasks in
Multi-core Processor based Parallel Systems. In 2007 IFIP
International Conference on Network and Parallel
Computing Workshops (NPC2007), 2007.

[16] Zhao Lei, Research on task scheduling for multi-core
processor, Harbin university of science and technology
[D].,2010.

[17] Ennals Robert, Sharp, Richard, et al. Task partitioning for
multi-core network processors[C].In Proceedings of 14th
International Conference on Compiler Construction, April
2005.

[18] Attiya G, Hamam Y. Two phase algorithm for load
balancing in heterogeneous distributed
systems//Proceedings of the 12th Euromicro Conference on
Parallel, Distributed and Network-Based Processing. A
Coruna, Spain, 2004: 434-439

[19] Tsuchiya, T., Osada, T., Kikuno, T. A new heuristic
algorithm based on GAs for multiprocessor scheduling
with task duplication. This paper appears in: Algorithms
and Architectures for Parallel Processing, 1997. ICAPP 97.,
1997 3rd International Conference on

[20] Bansal S, Kumar P, Singh K. An improved two-step
algorithm for task and data parallel scheduling in
distributed memory machines [J]. Parallel Computing,
2006, 32(10):759-774

[21] LAN Zhou, SUN Shi-Xin. An Algorithm of Allocating
Tasks to Multiprocessors Based on Dynamic Critical Task,
journal of computers,2007,30(3):454-461

2804 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

