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Abstract—In this paper, a constraints scattered memetic 
algorithm (CSMA), which integrates a novel constraints 
scattered genetic algorithm (CSGA) and the traditional 
interior point method, is proposed for solving constrained 
optimization problems. In CSGA, a constraint scattering 
operation, a sub-population crossover method and a new 
population performance evaluation mechanism are 
employed. The complete constraints of a problem are 
divided into several sub-populations and all these sub-
populations are crossed after their respective evolution 
process. In this way, the difficulty of obtaining feasible 
individuals in many strong constrained conditions is well 
overcome. And according to the newly defined population 
performance index, individuals with larger population 
diversity are chosen for further local search. These new 
mechanisms are combined in CSGA and interior point 
method is further employed as a local search operator for 
exploitation. Experiments and comparisons over a set of 
standard test functions show that population with better 
performance can be generated during the iteration of CSGA 
and the proposed CSMA has a better solution precision at 
less computation cost than most of the other algorithms 
reported in literature.  
 
Index Terms—memetic algorithm, constraints scattered, 
constrained optimization, interior point method 
 

I.  INTRODUCTION 

Genetic algorithm (GA) is a stochastic search 
algorithm which simulates the biological evolution. Due 
to its advantages of generality, feasibility and global 
search capability, it has been widely used in machine 
learning, pattern recognition, industrial optimal control 
and biology, etc [1,2]. However, in solving practical 
problems, especially in the constrained nonlinear 
programming problem, GA is often subjected to lower 
accuracy and high time consumption. Thereby, how to 
improve the accuracy and solution efficiency is the main 
research focus of GA. 

To improve the quality of individual solutions in the 
population, a type of hybrid genetic algorithms called 
memetic algorithm (MA) was proposed by Pablo 
Moscato in 1989 [3]. Based on the simulation of the 

process of cultural evolution, it is a marriage between a 
population-based global search and the heuristic local 
search made by each of the individuals. In many cases, 
MAs have been shown to be capable of finding (near-) 
optimum solutions [4-6]. Nevertheless, even MAs may 
still fall victim to either slow or premature convergence. 

Generally speaking, a constrained optimization 
problem in engineering application can be described as 
follows: 
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Where f(x) is the objective function of the problem, m 
is the number of inequality constraints and p is the 
number of equality constraints. Generally, a maximize 
function can be transformed to a minimize function. 

Traditional methods of dealing with constraints include 
penalty function method, ranking based method, special 
representations and operators, repair method, separation 
of objectives and constraints and hybrid methods [7]. 
These methods either deal with constraints or adjust the 
gene during evolution, which help the population find 
better feasible solutions. However, during calculation of 
all these methods, populations iterate under full problem 
constraint conditions. It is known that the more 
constraints there are for the problem, the harder it is for 
the population to generate feasible solutions, which may 
soon dominate the whole population, just to result in the 
reduction of population diversity and deterioration of the 
global search capability. Thus to reduce the inhibition of 
constraints on generating feasible solutions during 
evolution could probably makes more feasible solutions 
and better population diversity. 

In this paper, inspired by the concept of environmental 
stress in nature, a constraints scattered method is 
proposed to reduce resistance of constraints on generating 
feasible solutions, which improves population diversity 
while ensuring the generation of feasible solutions. 
Moreover, since this technique of providing diversiform 
feasible solutions mainly focuses on the global search 
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ability, the interior point method which could accelerate 
the constrained local search is further introduced into the 
approach in order to improve the algorithm accuracy.  
Thus, a constraints scattered memetic algorithm is 
proposed for constrained optimization problem to 
enhance the global exploration ability while ensuring 
local exploitation by introducing interior point method 
into genetic local search in the meanwhile.  

The remainder of the paper is structured as follows. 
This paper will first analyze the reason and strategy for 
scattering constraints and integrating interior point 
method and put forward a new indicator for evaluating 
population performance. Then the new interior point 
method based constraints scattered memetic algorithm 
(CSMA) will be proposed. Subsequently in the next 
section, a series of experiments will be carried on, not 
only to verify the effectiveness of constraint scattering 
operation on improving population diversity in genetic 
algorithm, but also to demonstrate the efficiency of the 
new CSMA on deriving more accurate optimal results 
with less time consumption. Lastly, the conclusions will 
be drawn.  

II.  INTERIOR POINT METHOD BASED CONSTRAINTS 
SCATTERED MEMETIC ALGORITHM 

A. Constraint scattering Method 
In the study of ecology, many researches believed that 

population diversity has a significant contact with natural 
environment. For example, water is one of the important 
affecting factors [8]. Water-rich areas always mean larger 
diversity of plant. The population diversity appears to be 
large in the place which is rich in water such as the 
tropical rain forest, and the diversity appears to be small 
in desert. In another word, the survival pressure from 
natural environment (i.e. whether the current environment 
is suitable for living beings to survive) has a considerable 
impact on the diversity of the population. Hostile 
environment highlights the superiority population in 
species, but in a comfortable environment, relatively 
more species can be multiplied. Analogy to the genetic 
algorithm, the number of constraints stands for the 
pressure from natural environment. If a population is to 
be evolved in a model with more constraint equations, 
then the diversity of this population will be greatly 
reduced, which will reduce the global search capabilities 
of genetic algorithm. If a large number of constraints are 
scattered, multiple sub-environments will be formed. In 
each of these sub-environments new sub-populations, for 
each of which the diversity is to be developed sufficiently, 
can be produced and thus to improve the global search 
capability of the algorithm. Each sub-population evolved 
to certain iterations represents a set of individuals which 
meet part of the original constraint functions. Thus to 
cross these sub-populations and combine the advantages 
of each sub-population can produce individuals which 
meet the whole constraint conditions faster.  

B.  Crossover of Sub-populations 
Each of the multiple sub-populations produced through 

the method above occupied a certain sub-region of the 
whole searching space. As shown in Fig. 1, A, B, C, D 
represent four sub-populations produced under different 
constraint conditions. Under weak constraint conditions, 
there may be feasible solution individuals which meet 
complete constraints generated in sub-populations. 
However, since our study is mainly about the influences 
of infeasible solutions on generation of feasible 
solutions, only the infeasible individuals in the sub-
populations are represented in the following figure. E is 
on behalf of the possible new population that may be 
generated by the crossover of four sub-populations. The 
feasible region of objective function with two variables is 
a plane, with three variables or more is a 
hyperplane. Crossing individuals from two sub-
populations is possibly to get a new individual on the 
connecting line of the two sub-regions [9]. The figure 
shows that there is a chance for the new individual on 
behalf of the solution to achieve the feasible region. For 
the traditional single-population evolution, due to the 
difficulty in guaranteeing the number of outstanding 
individuals (feasible solutions) initialized randomly and 
the overwhelming superiority of these outstanding 
individuals in evolution, the population diversity reduces 
sharply along with iteration, which leads to the premature 
of population. However, through the crossover of several 
sub-species, the number of outstanding individuals 
generated during iteration is significantly larger than the 
former. More importantly, because each sub-population 
iterates in the different constraint conditions, the diversity 
of new individuals generated through crossover in 
between is also higher.  

 
Figure 1.  Crossover between sub-populations. 

C.  Population Performance Evaluation 
In order to investigate the influence of constrains 

scattered method on the ratio of number of feasible 
solutions to population size and the diversity of feasible 
solutions, a new population performance evaluation 
index is proposed as follows. 

Assumed condition: the population size is N, 
individual length is L, and in the tth iteration, feasible 
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larger the variance is, the better the diversity of feasible 
solutions is. 

Definition 1: FSD which represent the diversity of 
feasible solutions is defined as follows: 
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Definition 2: PP which represents the population 
performance index is defined as follows: 
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The larger PP is, the better the population performance 
is, which means larger probability for the population to 
get the global optimal feasible solution. 

D.  Interior Point Method based Constraints Scattered 
Memetic Algorithm (CSMA) 

Hybrid with the constraints scattered operation and 
crossover of sub-populations mentioned above, a new 
hybrid algorithm of CSGA is formed. The CSGA is 
supposed to be more promising in getting global feasible 
solutions with larger diversity. However, it still suffers 
from the drawback of slow convergence in the later 
iterations of genetic algorithm. Since MA which applies 
local search operators to improve the quality of individual 
solutions in the population can improve the searching 
efficiency of genetic algorithm greatly, it is considered to 
replace the genetic algorithm in CSGA. For constrained 
minimization, a suitable local search should be applied in 
the MA. Interior point method, which solves a sequence 
of approximate minimization problems derived by 
penalty function method by a series of attempts of 
Newton or conjugate gradient steps, represents the state 

of art in constrained minimization. Though it has been 
successfully applied in many scientific and engineering 
constrained optimization problems in the last several 
decades, it has the obvious drawbacks of dependence on 
initial feasible solutions and tendency to fall into local 
optima.  Therefore, the interior point method is here used 
as a special operator to solve the local search in this paper. 
And together with the CSGA, which is supposed to 
provide various feasible individuals to serve as the initial 
points for interior point method, the interior point method 
based constraints scattered memetic algorithm (CSMA) is 
formed. The specific method is that we apply interior 
point method as the local search to each feasible 
individual after crossover of sub-populations derived 
after iterations of constraints scattered genetic algorithm. 
In this way, the local search for every feasible individual 
can help us to find a better solution.  

It is worth to notice that, not all the feasible individuals 
would be selected to run the interior point method search 
for the consideration of computational cost, and neither 
may there be enough candidate feasible individuals for 
selection in some strong constrained problems. In this 
case, a repair method proposed by Chootinan [11] is 
introduced here to add additional feasible individuals. In 
this algorithm, the gradient information derived from the 
constraints is use to fix the infeasible individuals, then 
more feasible solutions can be generated.   

Thus, the proposed CSMA is formed through 
combining the constraints scattered method, crossover of 
sub-populations and interior point method. The step of 
algorithm is described as follows: 

Step 1: Initial the population and set the parameters 
(population size, crossover and mutation rate). 

Step 2: Divide the population into several sub-
populations with scattered constraints.  

Step 3: In each sub-population use penalty function 
method to deal with constraints and use the individuals to 
perform crossover and mutation to generate the offspring. 

Step 4: Cross all the sub-populations and reserve all 
the feasible individuals. 

Step 5: Choose a certain number of feasible 
individuals to do the local search. If the number of 
feasible solution individuals is less than the set point, use 
repair method to generate additional feasible individuals.  

Step 6: Export the global best feasible solution if the 
termination criteria are met, otherwise go to step 2. 

III.  EXPERIMENT AND COMPARISON 

A.  Comparison of CSGA and Standard Single-population 
Genetic Algorithm(SGA) 

For comparing the constraints scattered genetic 
algorithm with the standard genetic algorithm, the 
standard test function g04 is taken. In CSGA, the 
complete constrains are scattered into 3 sub-population, 
each sub-population has two constrains. The population 
size is 120 and each sub-population size is 40. 10 is set as 
the iteration number for sub-population evolution. Other 
parameters are set the same in two algorithms as follows: 
the crossover rate is 0.5, mutation rate is 0.05, and 
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arithmetical crossover and uniform mutation are taken. 
The crossover and mutation operators are described as 
follows: 
Arithmetical crossover: 
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Where t
Ax and t

Bx  are the parent individuals, 
1+t

Ax and 1+t
Bx are the offspring, [ ]1,0∈θ  is a constant 

value which derived empirically as 0.5. 
Uniform mutation: 
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mutating individual, for a random integer [ ]nk ,1∈ , the 

mutant 'x  is: 
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Where min,kx  and max,kx are the bounds of variable kx , 

[ ]1,0∈γ  is a random variable. 
Fifty independent experiments are taken and the 

results of 20 runs randomly selected among them are 
shown in Fig. 2. 
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Figure 2.  Population performance comparison of CSGA and SGA for 

g04 of 20 independent runs. 

Obviously, the PP of CSGA is much larger than that 
of SGA, meaning a better population performance. For 
CSGA, the average feasible solution number is 64.89, and 
the diversity of feasible solutions is 22.0339, comparing 
with 48.65 and 10.59 of the standard GA. From this 
experiment we can see CSGA can get much more number 
of feasible solution which will benefit the interior point 
method to find the globe optimal. 
Another experiment was carried out for analyzing the 

performance of PP versus iteration.  All parameters are 
set as the same as in the first experiment except the 
iteration value is set equal to 300. The PP values during 
iterations are shown in Fig. 3. 
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Figure 3.  Evolution comparison of CSGA and SGA for g04 in a 

specific run 

As shown in Fig. 3, the PP values in both algorithms 
are decreasing during the iterations, and PP of CSGA 
converged to about 10 after 25 generations. But as we can 
see, PP of SGA decreased sharply to 2 with convergence, 
which is apparently less than that of CSGA. Furthermore, 
the values of PP have a large oscillation than normal 
algorithm mainly due to the variety individuals of 
different sub-population. But it does not affect the 
performance of the whole algorithm, which is acceptable 
in the later experiments. 

For the investigation of the effect on constrained 
optimization problem with less constrains, another 
experiment are carried out. In this experiment, all 
parameters are set as in the above experiment except the 
test function is replaced by g06, which only has two 
constraints. In CSGA, the two constraints are divided into 
two sub-populations. Fifty independent experiments are 
taken and the results of 20 runs randomly selected among 
them are shown in Fig. 4 and the detail data are shown in 
Table I. 
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Figure 4.  Population performance comparison of CSGA and SGA for 

g06 of 20 independent runs. 

From Fig. 4, the PP of CSGA is still larger than SGA. 
But with a deeper analysis from Table I we can see that 
the feasible solution number generated by two methods 
are nearly the same, compared 36.1000 with 33.4500. 
The reason for a larger PP derived by CSGA is that the 
diversity of feasible solutions obtained by CSGA is 
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20.3942, which is larger than 11.6416 obtained SGA, 
which confirmed the supposition in our previous analysis. 

TABLE I.   
COMPARISON OF CSGA AND SGA FOR G06 

Methods SGA CSGA 

FSN 
Mean 36.1000 33.4500 
St.dev 13.1665 12.3095 

FSD 
Mean 11.6416 20.3942 
St.dev 4.2310 6.4611 

PP 
Mean 3.4706 5.8526 
St.dev 1.8330 2.9984 

 

B.  Test on Constraint Allocation Scheme 
In the study of CSGA, it is found that the way to 

scatter the constraints of a problem has a great impact on 
the result. In most circumstances, feasible solution can be 
generated by crossover operation of two infeasible 
solutions only if they are on different sides of the feasible 
area. If two sub-populations are on the same side of a 
feasible area, the crossover operation can hardly generate 
a feasible solution. In Fig. 1, for instance, area A and B or 
area C and D are respectively on both sides of the feasible 
area, the solution generated by them can reach the 
feasible area most probably. On the contrary, area A and 
C or area A and D are on the same side of the feasible 
area, and then there is little chance to find a feasible 
solution according to our analysis. 

It can be seen that with the same initial population 
size and other parameters, a larger number of sub-
population(less sub-population size) means a greater 
chance to generate an effective crossover, but small sub-
population size limit the number of feasible solutions 
generated. Meanwhile, a larger sub-population size 
(fewer sub-populations) can generate more feasible 
solution if the sub-populations are on both sides of the 
feasible area, but there will be much fewer feasible 
solutions if they are on the same side of the feasible area.  

In order to achieve a balance between sub-population 
size and number, the allocation scheme of constraints is 
tested here. In this experiment, we use three different 
ways of constrains scatter for g04. Type-1 is that six 
constrains of g04 are divided into six sub-populations; 
Type-2 is that constrains are divided into three sub-
populations, each one includes two constrains; Type-3 
means that constrains are divided into two sub-
populations and each one gains three constrains. Fifty 
independent experiments are taken and results are shown 
in Fig. 5 and Table II. 
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Figure 5.  Population performance comparison of three constraints 

allocation schemes for g04. 

TABLE II.   
COMPARISON OF CSGA WITH THREE CONSTRAINTS 

ALLOCATION SCHEMES AND SGA FOR G06 

Methods SGA CSGA 
Typ e - 1 Typ e - 2 Typ e - 3

FSN
Mean 48.6500 12.5000 65.3000 17.5000
St.dev 13.3775 6.2761 8.2199 7.4125 

FSD
Mean 10.5922 19.6936 21.0025 21.8417
St.dev 3.4522 8.1886 5.8419 7.3703 

PP 
Mean 4.1916 1.9891 11.4458 3.5198 
St.dev 1.4225 1.1124 3.7442 2.6138 

 
Fig. 5 shows population performance comparison of 

three constraint allocation schemes of 20 runs in a 
histogram form. It is obvious that Type-2 achieves the 
best results in three types, the average PP of which is 
11.4458, while the average PP of the Type-1 is 1.9891 
and of Type-3 is 3.5198. Further from Table II, it can be 
seen that a proper way of constrains scattering has a 
significant effect on feasible solution searching, and if is 
chosen correctly, such as Type-2, a better population 
performance than standard genetic algorithm can be 
derived. 

We can also see that if we can set the sub-population 
exactly on the both sides of the feasible area, then the 
effect of each crossover operation are guaranteed, leading 
to a better feasible solution searching. But in this paper 
we haven’t do enough research on this problem and all of 
the constraints allocation schemes are determined by 
empirical method. 

C.  Experiments on the Influences of Population Size on 
Population Performance 

In this section we did a series of experiments on the 
effect of sub-population size on feasible solution 
searching. Constraints allocation scheme Type-2 is 
chosen and the whole population size are set from 120 to 
360(sub-population size is from 40 to 120). Fifty 
independent experiments are taken and the results are 
shown in Fig. 6 and Table III. 
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Figure 6.  Variation of population performance versus population size.  

TABLE III.   
COMPARISON OF CSGA WITH THREE CONSTRAINTS ALLOCATION 

SCHEMES AND SGA FOR G06 

popsize 
Results of PP FEs Max Min Mean St.dev

120 19.1531 5.7875 11.4421 3.2209 1200
150 23.1774 6.5296 12.7613 4.0489 1500
180 22.4325 9.1632 13.8296 2.9906 1800
210 21.8330 8.9780 14.4948 3.0542 2100
240 19.8600 9.0229 14.8200 2.4167 2400
270 19.6035 8.9569 14.5767 2.2110 2700
300 19.8034 9.8058 14.3992 1.9236 3000
330 17.8805 10.0585 14.5472 1.9921 3300
360 19.0649 11.1347 14.5472 1.8091 3600

 
From Fig. 6, the value of PP increases with the 

increasing population size, till the population size reaches  

about 240, when the value of PP stop increasing and 
stabilizes to about 15. Also the stability of population 
performance is getting better with the increase of 
population size. It proves that the greater the population 
of a species, the greater the chance to survive. But as in 
genetic algorithm, computational cost is considered as a 
performance evaluation criterion, we should choose a 
proper population size to improve the algorithm’s 
performance while ensuring the acceptance of 
computational cost as well. 

D.  Experiments on Standard Test Functions 
In order to prove the feasibility and validity of the 

proposed method, the comparisons are taken among the 
three state-of-the-art approaches that are Simple Multi-
membered Evolution Strategy (SMES) [12], Self 
Adaptive Penalty Function (SAPF) [13], and Cultured 
differential evolution (CULDE) [14]. The standard test 
function g01, g04, g07, g10 are taken because they have 
relatively more constraints. These test functions are listed 
in Appendix A. All of their constraints are divided into 
three sub-populations. The parameters are set as follows: 
popsize is 120, crossover rate is 0.6, mutation rate is 0.05. 
70 feasible individuals are selected from the sub-
population crossover. And the arithmetical crossover and 
uniform mutation are taken. 

The value of function evaluations (FEs) is an important 
evaluation criterion for the computational cost. Less FEs 
indicate higher solution efficiency. Fifty independent 
experiments are taken for each test function. Comparing 
with the current three state-of-the-art approaches, the 
results are shown in Table IV.  

TABLE IV.   
COMPARISON OF CSMA WITH RESPECT TO SMES, SAPF AND CULDE 

Function Method Best known Best Mean Std Worst AvgFEs 

g01 

CSMA

-15 

-15.000 -14.999 2.0996E-4 -14.999 2474 
SMES -14.999 -14.960 2.10E-1 -13.828 240000 
SAPF -15.000 -14.552 0.700 -13.097 500000 

CULDE -15.000000 -14.999996 0.000002 -14.999993 100100 

g04 

CSMA

-30665.539 

-30665.539 -30665.538 6.8704E-4 -30665.537 4642 
SMES -30665.539 -30665.531 1.35E-2 -30665.473 240000 
SAPF -30665.401 -30665.9221 2.043 -30656.471 500000 

CULDE -30665.53867 -30665.53867 0.000000 -30665.53867 100100 

g07 

CSMA

24.306209 

24.306221 24.306301 1.0594e-4 24.306495 15956 
SMES 24.473 24.734 2.15E-1 25.401 240000 
SAPF 24.838 27.328 2.172 33.095 500000 

CULDE 24.306209 24.30621 1E-6 24.306212 100100 

g10 

CSMA

7049.25 

7049.248 7050.484 1.5023 7058.762 51841 
SMES 7076.725 7330.398 153.72E+0 7816.830 240000 
SAPF 7069.981 7238.964 137.773 7489.406 500000 

CULDE 7049.248058 7049.248266 0.000167 7049.248480 100100 
In the problem g01, the best result obtained by our 

approach was f(x) =-15.000, with x={1.000, 1.000, 1.000, 
1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 3.000, 3.000, 
3.000, 1.000} and the values gi(x) ={0.000, 0.000, 0.000, 
-5.000, -5.000, -5.000, 0.000, 0.000, 0.000} for the 
constraints. SMES and SAPF can also reach the optimum, 
however they were not very robust in this problem, for 
the mean and worst value performed not well enough 
than ours. CULDE had competitive results of best mean 

and worst value compared with CSMA, and the standard 
deviation value is even better than ours. 

G04 is a problem which is easy to solve, The best 
result obtained for this problem is f(x) =-30665.539, with 
x={1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 
1.000, 3.000, 3.000, 3.000, 1.000} and gi(x) = {0.000, 
0.000, 0.000, -5.000, -5.000, -5.000, 0.000, 0.000, 0.000} 
for the constraints. SMES and CULDE can also find the 
optimal solution but SAPF failed. Our CSMA can obtain 
a value very close to the optimum in all runs, which is 
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better than SMES and SAPF. CULDE had the almost 
same result with ours. 

The best result obtained by CSMA in g07 is f(x) 
=24.306221, with x= {2.1719970, 2.363683, 8.773922, 
5.0959875, 0.990655, 1.430576, 1.321644, 9.8287253, 
8.2800905, 8.3759219} and gi(x) = {-0.000001, 0.000009, 
-0.000001, -0.000152, -0.000013, -0.000009, -6.148508, -
50.023938}. Only CULDE can find the optimum in this 
problem, and both SMES and SAPF were failed. Our 
method obtained a value which is very close to the 
optimum and was more robust than SMES and SAPF. 

 In g10, our approach can reach the optimal solution 
f(x) =7049.248, with x= {579.310, 1359.990, 5109.947, 
182.018, 295.602, 217.982, 286.416, 395.602} and the 
values gi(x) = {0.000, 0.000, 0.000, 0.033, -0.236, 0.300} 
for the constraints. Again, SMES and SAPF failed to find 
the optimum, and their robust were also not very well. 
CULDE obtained competitive results in best, mean and 
standard deviation value and had a worst value which was 
better than ours. 

The results of SMES were obtained with 240000 
evaluations of the fitness function, the results of SAPF 
required 500000 evaluations, and the results of CULDE 
required 100100 evaluations of the fitness function. 
ISHGA only need 66000 FEs, which was apparently 
much less than the other three techniques. 

For a more intuitive observation of the convergence 
process of our new proposed method, the evolution curve 
of CSMA for g04 in a specific run is compared with that 
of SGA and the result is shown in Fig. 7. 
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Figure 7.  Evolution comparison of CSMA and SGA for g04. 

In Fig. 7, the optimal solution (-30665.539) obtained 
by CSMA is much better than the one (-3.02e+4) 
obtained by SGA. Meanwhile the CSMA has an 
outstanding converge rate (converged at about 300 FEs), 
which is better than SGA (converged at about 1000 FEs), 
showing that the combination of CSGA and interior point 
method is successful. 

In short, our CSMA approach performs well in 
solution precision and efficiency, which is better than 
SMES and SAPF. CULDE has the almost same solution 
ability but the computation cost is much larger than our 
method. 

IV.  CONCLUSIONS 

In this paper, a constraint scattering method is 
employed in memetic algorithm to construct a novel 
constraints scattered memetic algorithm (CSMA) for 
solving constrained optimization problems. Three new 
mechanisms are combined in the new constraints 
scattered genetic algorithm (CSGA). In our proposed 
CSGA, the individuals evolve in a relatively weak 
constrained environment to gain more feasible solutions 
with larger diversity in each sub-population. In order to 
assess the effectiveness of this strategy, a new population 
performance evaluation index is defined, and experiments 
have shown that CSGA can get much more number of 
feasible solutions with larger population diversity. 
Further, constraint allocation schemes are discussed to 
help enlarge the whole population feasible solution 
number and diversity. Moreover, after a selection of 
feasible individuals, the interior point method is used here 
as the local search operator of the memetic algorithm to 
replace the genetic algorithm in CSGA especially for 
constrained optimization problems. The results of 
experiments on four standard test functions demonstrate 
that our method can achieve a better optimal solution 
with less computational cost (measured in FEs). Our 
future work is to improve the robustness of this algorithm 
which means to reduce the dependence on parameter 
selection for different problems. 

APPENDIX A  TEST FUNCTIONS 
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where )9,,1(10 L=≤≤ ixi , 

)12,11,10(1000 =≤≤ ixi , 10 13 ≤≤ x . 
The optimum solution is 

)1,3,3,3,1,1,1,1,1,1,1,1,1(* =x where 15)( * −=xf . 
 
A.2. g04 

2794 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER



Minimize 
141.40792293239.37
8356891.03578547.5)(

1

51
2
3

−+
+=

x
xxxxf

 

s.t.  

,0200019085.00012547.0
0047026.0300961.9)(

,0250019085.00012547.0
0047026.0300961.9)(

,0900021813.00029955.0

0071317.051249.80)(

,01100021813.00029955.0

0071317.051249.80)(

,00022053.00006262.0
0056858.0334407.85)(

,0920022053.00006262.0
0056858.0334407.85)(

4331

536

4331

535

2
321

524

2
321

523

5341

522

5341

521

≤+−
−−−=

≤−++
+=

≤+−−

−−=

≤−++

+=

≤+−
−−=

≤−−
++=

xxxx
xxxg

xxxx
xxxg

xxx

xxxg

xxx

xxxg

xxxx
xxxg

xxxx
xxxg

 

where 
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The optimum solution is 
)887758129057.33,45,829952560256.29,33,78(* =x , 

where 539.30665)( * −=xf  
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where )10,,1(1010 L=≤≤− ixi .The optimum 
solution is 

)375927.8,280092.8,828726.9,321644.1,430574.1
,095984.5,773926.8,363683.2,171996.2(* =x

where 3062091.24)( * =xf . 
 
A.5. g10 
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where 10000100 1 ≤≤ x , )3,2(100001000 =≤≤ ixi , 

)8,,4(10010 L=≤≤ ixi . 
The optimum solution is 

)5979.395,40.286,9799.217
,5985.295,0174.182,92.5109,13.1360,19.579(* =x

where 25.7049)( * =xf  
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