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Abstract—Nonlinear dynamic model of a high-altitude 
unmanned airship, expressed by generalized coordinate, 
was built. A nonlinear compensation was introduced into 
the control loop to linearize and decouple the nonlinear 
system globally. In view of the imprecisely known inertia 
parameters of the airship, an adaptive law was proposed 
based on the feedback linearization to realize asymptotic 
tracking of any continuous time-varying desired trajectory 
from an arbitrary initial condition. The stability of the 
closed-loop control system was proved via the use of 
Lyapunov stability theory. Finally, numerical simulation 
results demonstrate the validity and effectiveness of the 
proposed adaptive control law.  

 
Index Terms—adaptive control, feedback linearization, 
trajectory tracking, high-altitude unmanned airships 

 

I. INTRODUCTION 

High-altitude unmanned airships, which have a wide 
application prospect in communication, surveillance and 
investigation, are capable of hovering for a long time. 
According to the task demands, desired trajectory is 
designated. Modeling, control method and verification 
test of high altitude unmanned airships are the focus of 
the domestic and international studies [1]~[10]. 

Trajectory tracking, based on adaptive feedback 
linearization, is designed to solve the control problem on 
imprecisely known inertia parameters of a high altitude 
unmanned airship. This paper is organized as follows: 
nonlinear dynamic model of a conventional airship is 
built, expressed by generalized coordinate in section II. In 
section III the feedback linearization control law is 
designed. Adaptive feedback linearization control law 
and estimation law of inertia parameters are designed, 
and stability is proved in section IV. The effectiveness of 
tracking desired continuous time-varying trajectory is 
validated via simulation without wind disturbance in 
section V. Finally, conclusion and future work are 
summarized in section VI. 

II. KINETIC MODEL OF THE AIRSHIP 

A. Defination of Coordinate 
This paper studies an ellipsoid full-actuated high 

altitude unmanned airship which is symmetrical with 
respect to the vertical axis, and its tail fin with the cross 
elevator and rudder, is bisymmetric. The gondola is 
equipped with a pair of differential propellers under the 
body. 

The earth reference frame is denoted by e e e eO x y z , and 
the body reference frame Oxyz  whose origin is located at 
the center of volume, as shown in Fig.1. 

ex
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Figure 1. Definition of coordinate 

B. Dynamics Fundamental Equations of Airship 
Several basic assumptions are needed: 
A1. The volume center coincides with the gross center 

of buoyancy.  
A2. The airship forms a rigid body such that elastic 

effects can be ignored.  
A3. The shape and the whole mass are constant in 

hovering. 
In view of the symmetry, the center of mass is located 

under the center of volume in longitudinal profile, and 
products of inertia satisfy 0xy yzI I= = , The dynamic 
equations of the airship can be formulated as 
follows[1]~[10] : 
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 = + +MV N G Bu&   (1) 

where T[ , , , , , ]p q r u v wV � , T[ , , ]u v w denotes linear 
velocity vector, and T[ , , ]p q r  angular velocity vector of 
the airship. 
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where , , ,x y z xzI I I I  are inertia parameters, 1 2 3, ,k k k  are 
inertial factors of the airship, ∇  is the volume of the 
airship, ρ is atmospheric density of the flying height, cz  
is the position coordinates of the center of mass, and m is 
the whole mass of the airship.

 

[ ]T1 2 3 4 5 6a a a a a a=N

 

where

 

( ) ( )1 z y xz ca I I qr I pq mz ur wp= − − + + − +

 

( )2 sin sin ,LQC β β

 

( ) ( ) ( )2 2
2 x z xz ca I I pr I p r mz wq vr= − − − − − − −

 

( ) ( )1[ cos 2 sin 2MQ C α α +

 

( ) ( )2 3sin 2 sin sin ],M MC Cα α α+

 

( ) ( ) ( )3 1[ cos 2 sin 2y x xz Na I I pq I qr Q C β β= − − − + +

 

( ) ( )2 3sin 2 sin sin ],N NC Cβ β β+

 

( )( )4 1 ca m k wq vr mz prρ= − + ∇ − − −

 

( ) ( )2 2
1 2cos cos sin 2 sin 2 ,X XQ C Cα β α α⎡ ⎤+⎣ ⎦

 

( )( )5 2 ca m k ur wp mz qrρ= − + ∇ − − −

 

( ) ( ) ( )1 2[ cos 2 sin 2 sin 2Y YQ C Cβ β β+ +

 

( )3 sin sin ],YC β β

 

( )( ) ( )2 2
6 2 ca m k vp uq mz p qρ= − + ∇ − + + −

 

( ) ( ) ( )1 2[ cos 2 sin 2 sin 2Z ZQ C Cα α α+ +

 

( )3 sin sin ].ZC α α  

where arctan( / )w uα =
 
and arctan( cos / )v uβ α= are the 

flow angle when wind speed is zero, 2 / 2Q Vρ= is  
dynamic pressure, V is the flow speed from a distance, 

, , , , , , 1, 2,3Li Mi Ni Xi Yi ZiC C C C C C i =  are the aerodynamic 
coefficients[7].
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where g  is gravity acceleration, fB  is buoyancy acted 
on the airship, , ,θ ψ φ  are attitudes.
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where sinsξ ξ� , coscξ ξ� , 1 ,p ph x s y cξ ξ= −  

2 p ph x s y cξ ξ= + , ( , , )p p px y z and ( , , )p p px y z−  are 
position coordinates of left and right propellers about the 
body reference frame, ξ  is an angle toward outside of 
propellers, 4 ,MC 4 ,NC 4 ,YC 4ZC  are the aerodynamic 
coefficients[7]. 

 

[ ]T1 1 2 2 1 1 2 2 RUD ELVF c F c F s F sζ ζ ζ ζ δ δ=u  

Six control variables of the airship are thrust 1F  and 2F , 
turning angles 1ζ , 2ζ  about axis y , rudder angle RUDδ  
and elevator angle ELVδ , respectively. 

 

C. Dynamics Model Expessed by Generalized Coordinate  
Define generalized coordinate 

T
, , , , ,g g gx y zθ ψ φ⎡ ⎤⎣ ⎦μ �  

where ( , , )g g gx y z  is the coordinate of the center of 
volume about the earth reference frame. Based on the 
fundamental kinematics we have 
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where b
eS  is homogenous transformation matrix from 

the earth reference frame to the body reference frame of 
the airship. 
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Differentiating equation (2) yields 

 

= +V Sμ Sμ&& & &&

  

(3) 

Multiply both sides of (3) by M , and we have  

 

= +MV MSμ MSμ&& & &&

  

(4) 

Combining (1) with (4) obtains 

 ( ) ( ) ( ) ( ),+ + =M μ μ N μ μ G μ B μ u&& &   (5) 

where ( ) ( ) ( ), , ,= = − = −M μ MS N μ μ MSμ N G μ G&& & ,

( ) =B μ B . Because M and S are invertible, then 

( )M μ is invertible too. Since ( ) 0≠B μ , ( )B μ  is 
invertible. According to (5), we can derive 

 ( ) ( ) ( ),+ + =M μ μ N μ μ G μ τ&& &  (6) 

where ( ) .τ B μ u�  

III. FEEDBACK LINEARIZATION CONTROL DESIGN 

A. Control Objective 
In view of inertia parameter uncertainty, design 

feedback linearization and adaptive control law[11] to 
realize asymptotic tracking of any desired trajectory from 
an arbitrary initial condition. Let d ( )tμ  denote an 
arbitrary twice differentiable time-varying trajectory, 
with d ( )tμ& and d ( )tμ&&  are bounded. 

B. Control Law 
We choose 

 ( ) ( ) ( ),= + +τ N μ μ G μ M μ r&   (7) 
where r will be designed later. Substituting (7) into (6) 
yields 

( ) ( ) ( ) ( ) ( ) ( ), ,+ + = + +M μ μ N μ μ G μ N μ μ G μ M μ r&& & &  
Then  we get 

( ) ( )=M μ μ M μ r&&  

which is equivalent to a decoupling linear time-invariant 
system =μ r&& . When ( )d tμ  is given, ( )d tμ& and 

( )d tμ&& are known. Let error be d= −e μ μ , and  

 
( ) ( )d d d p d

d d p

= + − + −
= + +

r μ K μ μ K μ μ
μ K e K e
&& & &

&&&  (8) 

where dK and pK  are positive definite matrices, then (8) 
can be rewritten as 

 d p 0+ + =e K e K e&& &   (9) 
Thus, ( ) ( ), 0,0=e e& is exponentially stable. For any 

initial condition ( )0 0,μ μ& , there exists ( ) ( )d d, ,→μ μ μ μ& & . 
Substituting (8) into (7)yields the expression of the 
feedback linearization control law 

 ( )( ) ( ) ( )d d p= ,+ + + +τ M μ μ K e K e N μ μ G μ&&& &   (10) 

To this end, the actual control input can be calculated 
as 

( ) ( )( ) ( ) ( )1
d d p ,− ⎡ ⎤= + + + +⎣ ⎦u B μ M μ μ K e K e N μ μ G μ&&& &  

IV. ADAPTIVE CONTROL LAW DESIGN 

A. Adaptive Control Law 
Denote the imprecisely known inertia parameter vector 

as T[ , , , , ]x y z xz cI I I I mz=η  and the estimated one as 
Tˆ ˆ ˆ ˆˆ ˆ[ , , , , ]x y z xz cI I I I mz=η . The feedback linearization 

control law is modified as 

 ( )( ) ( ) ( )d d p
ˆˆ ˆ= ,+ + + +τ M μ μ K e K e N μ μ G μ&&& &  (11) 

The actual control input can be obtained: 

( ) ( )( ) ( ) ( )1
d d p

ˆˆ ˆ[ , ]−= + + + +u B μ M μ μ K e K e N μ μ G μ&&& &  

where ˆˆ ˆ, ,M N G  are the estimated matrices of , ,M N G of 
η̂ . Substituting (11) into (6) yields 

 
( ) ( ) ( )
( )( ) ( ) ( )d d p

,
ˆˆ ˆ ,

+ +

= + + + +

M μ μ N μ μ G μ

M μ μ K e K e N μ μ G μ

&& &

&&& &
 (12) 

Since d = +μ e μ&&&& &&  and (12) can be formulated as a 
linear function about the dynamics parameter vector: 

 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

d p
ˆ ( ) )

ˆ ˆ ˆ, , , ,

, , , , ,

, ,

, ,

+ +

= − + − + −

= + +

⎡ ⎤= + +⎢ ⎥⎣ ⎦

M μ e K e K e

M μ η η μ N μ μ η η G μ η η

M μ μ η N μ μ η G μ η

M μ μ N μ μ G μ η

Y μ μ μ η

&& &

%% %&& &
) )

%% % %&& &
) ) )) )

%&& &

%& &&�

 (13) 

where ˆˆ ˆ ˆ, , ,− − − −M M M N N N G G G η η η%% % %� � � � . 

Usually we have ˆ ,≠η η and thus 0≡/M% , 0≡/N% , 0≡/G% . 
Since (13) can’t be changed to linear constant system like 
(9), a real-time estimator to the parameters needs to be 
designed to realize 0, 0→ →e e& . 
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Assume the estimated parameter η̂  renders ˆ ( )M μ  
invertible, so the following the closed-loop system can be 
obtained 

 ( ) ( )1
d p

ˆ , ,−+ + =e K e K e M μ Y μ μ μ η Φη&& & % %& && �  (14) 

Let 
TT T,⎡ ⎤= ⎣ ⎦x e e& ，and then (14) can be written as 

 
p d

0 0⎡ ⎤ ⎡ ⎤= + +⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

I
x x Φη Hx DΦη

K K I
& % %�   (15) 

In view of the positive definite matrices dK and pK   
H  is Hurwitz, and there exists a positive definite matrix 
Q such that 

T + = −H R RH Q  

Which has an unique positive definite matrix solution R , 
Choose parameter estimator 

 1 T Tˆ −=η Γ Φ D Rx&  （ 0>Γ ） (16) 

The parameter estimator (16) and control law (11) 
constitute the adaptive feedback linearization trajectory 
tracking control design of the airship. 

B. Stability Proof 
Since the unmanned airship operates in the vicinity of 

the cruise altitude 20km, inertial parameters η can be 
regarded as a constant vector, and the parameter 
estimation law (16) can be written as 

 1 T T−= −η Γ Φ D Rx&%   (17) 

The state vector is defined as 

⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

e
x

e
η

η
&

%
%

 

Select the candidate Lyapunov function as 

T T( )L t = +x Rx η Γη% %  

The derivative of trajectory can be calculated along the 
closed-loop system (15) and (17): 

( )
T T T T

T T T T T

T

( )
2

0

L t = + + +

⎡ ⎤= + + +⎣ ⎦
= − ≤

x Rx x Rx η Γη η Γη
x H R RH x η Φ D Rx Γη

x Qx

& && & & % % % %

&% %   (18) 

Therefore, the state of closed-loop system T T T[ , ]x η% is 
bounded.  

From the definition of the Lyapunov function ( )L t and 
(18), one has 

( ) ( ) ( )00 ,L L t L t≤ ∞ ≤ ≤ < ∞   0 0t t∀ ≥ ≥  

and 

( ) ( ) ( ) ( )2 2
02 2

0 m m L t L tλ λ≤ + ≤ ≤ < ∞R x Γ η%  

,x η%  are bounded, and from (18) we get  

( ) ( ) 2

2mL t λ≤ − Q x&  

Thus, 

( ) ( ) ( ) ( ) ( )

( ) ( )

0 0

2

0
2

0 0

1 1

1 , 0

t t
m m

m

L t dt L t L

L t t t

λ λ

λ

∞ ∞
≤ − = − ∞⎡ ⎤⎣ ⎦

≤ < ∞ ∀ ≥ ≥

∫ ∫x
Q Q

Q

&

 

so x is square integrable. 
Because ,x ,η% d ,μ d ,μ& d ,μ&& η  are bounded, from 

control law expression (11) ,μ ,μ& τ  are bounded, The 
boundedness of μ&&  yields the boundedness of 

d

d

−⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

e μ μ
x

μ μe
& & &

&
&& &&&&

 

Since x  is square integrable and x&  is bounded, x is 
uniformly continuous. Barbalat lemma guarantees 

( )0 t→ →∞x , i.e. 0, 0,→ →e e&  d ,→μ μ d→μ μ& & . 

V. SIMULATION 

A. Parameter Values 
The elements of matrix ( )6 5

, ,
×

Y μ μ μ& && can be obtained 
from (13) , where 

3 2 1 1 2 111 ,s cy μ μ μ μ μ μ= − −&& && & &  

( )( )12 1 3 2 1 3 1 3 2 1 3 ,y c c s s c cμ μ μ μ μ μ μ μ μ μ= + −& & & &  

2
14 1 3 2 1 3 2 1 1 3 1 2 1 32 ,y s c c s c s s cμ μ μ μ μ μ μ μ μ μ μ μ μ= − + +&& && & & &  

( )15 1 3 4 2 3 1 2 3y gc s s c s c sμ μ μ μ μ μ μ μ= + − −&&  
( )5 2 3 1 2 3 6 1 3 ,c c s s s c sμ μ μ μ μ μ μ μ μ+ −&& &&  

21 1 3 3 2 3 1 3y s c cμ μ μ μ μ μ μ= − + +& & & &  
2

1 2 1 3 2 1 1 3 ,s s s c cμ μ μ μ μ μ μ μ−& & &  
( )22 2 3 1 3 1 1 3 1 3y c c s s cμ μ μ μ μ μ μ μ μ= − + −& & & &&  

1 3 3 2 1 3 ,s c sμ μ μ μ μ μ+& & &&  
23 1 3 3 2 3 1 3y s c cμ μ μ μ μ μ μ= − −& & & &  

2
1 2 1 3 2 1 1 3 ,s s s cμ μ μ μ μ μ μ μ+& & &  

( ) ( )2 22 2 2
24 1 2 3 2 1 1 3y c cμ μ μ μ μ μ μ= − + + − + −& & & & &   

( )2
2 3 1 2 1 3 1 2 1 3 32 2 ,s c c c c sμ μ μ μ μ μ μ μ μ μ μ− +& & & & &  

25 1 4 1 2 5 1 2 6 1,y gs c c c s sμ μ μ μ μ μ μ μ μ= + + −&& && &&  
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( )( )31 2 1 3 1 3 2 1 3 ,y s c c sμ μ μ μ μ μ μ μ= − +& & & &   

( ) ( )32 3 2 1 1 3 2 1 3 ,y s c c sμ μ μ μ μ μ μ μ= − +& & & &   

( )33 2 1 3 2 1 1 3 3 1 3y c c s c c sμ μ μ μ μ μ μ μ μ μ= − + −&& & & &   

1 3 1 3 3 ,s cμ μ μ μ μ−&& & &  

34 3 2 1 1 2 1y s cμ μ μ μ μ μ= − + + −&& && & &  

( )( )1 3 2 1 3 1 3 2 1 3 ,c c s s c cμ μ μ μ μ μ μ μ μ μ+ −& & & &  

35 0,y =  

41 42 43 44 0,y y y y= = = =  
2

45 2 1 1 3 2 3 1 32y s c c c cμ μ μ μ μ μ μ μ= − + +& & &  

1 3 1 3 3 2 1 32 ,c s c sμ γ μ μ μ μ μ μ− +&& & & &&  

51 52 53 54 0,y y y y= = = =  
( ) ( )2 22

55 1 2 1 3 1 3 3 1 2 1 3y c c c s c sμ μ μ μ μ μ μ μ μ μ μ= − − +& & & & &  

( )22
2 1 1 2 1 3 3 2 1 3 ,c c c s sμ μ μ μ μ μ μ μ μ μ+ + −& & & && &&  

61 62 63 64 0,y y y y= = = =  
( ) ( )2 2

65 3 2 1 1 3 2 1 3 .y s c c sμ μ μ μ μ μ μ μ−= − − +& & & &  

In order to validate the feedback linearization adaptive 
control algorithm, the airship simulation model 
parameters[7] are shown in table I and table II. The 
parameter values in table II are dimensionless. 

TABLE I.   

PARAMETER VALUES OF THE MODEL 

Parameter Value Unit Parameter Value Unit

m  55749.7 kg ρ  0.072157 kg/m3

D  736311 m3 xI  5x107 kg·m2

yI
 

2.9x108 kg·m2 zI  2.9x108 kg·m2

xzI  -6x104 kg·m2 cz  15 m 

TABLE II.   

PARAMETER VALUES OF THE MODEL 

Param
-eter Value Param-

eter Value Param-
eter Value 

1k  0.1054 2k  0.8259 3k  1773.2 

1XC  227.8 2XC  2307.1 1LC  24059 

2LC  8080 1YC  2307.1 2YC  3037.6 

3YC  9932.7 4YC  657.3 1ZC  2307.1 

2ZC  3037.6 3ZC  9730.7 4ZC  657.3 

1MC  384515.9 2MC  356916.5 3MC  373391 

4MC  77238.5 1NC  384515.9 2NC  356916 

3NC  373391 4NC  77238.5   

B. Simulation 
A helix is chosen as the desired trajectory to be 

followed and expressed as 

( )
( )

d

d

d

500sin 0.01

500cos 0.01
20000 0.01

x t

y t
z t

=⎧
⎪

=⎨
⎪ = − −⎩

 

Referred to [10], the desired attitude can be calculated 
through the airship dynamic model and the corresponding 
Frenet –based kinematic description:   

( ) ( )( )
d

d

d

0.1974rad

arctan 2 sin 0.01 ,cos 0.01 rad

0rad

t t

θ

ψ

φ

=⎧
⎪

= −⎨
⎪ =⎩

 

The initial condition and control parameters in 
simulation are summarized as follows:  

[ ]T0 0,0,0,0,505, 20150 ,= −μ 7 2
0

ˆ 1.5 10 kg m ,xI = × ⋅   

8 2
0 0

ˆ ˆ 1 10 kg m ,y zI I= = × ⋅ 4 2
0

ˆ 4 10 kg m ,xzI = − × ⋅  

5
0ˆ 4.4 10 kg m,cmz = × ⋅ ,fB mg= d 6 62 ,×=K I  

p 6 6 ,×=K I 4 7 7 4 4diag(10 ,10 ,10 ,5 10 ,10 ),− − − − −= ×Γ  

12 12 .×=Q I  

It is noted that the solution matrix R can be sovled by 
the Lyapunov equation, and control law expressions are 
obtained by (16) and (11) , and the simulation result can 
be therefore performed.  

Without considering wind disturbance the system cruise 
simulation results are shown in Fig. 2 ~ Fig. 4. The 
trajectory tracking errors are asymptotically stable, as 
depicted in Fig. 2. The attitudes track the desired ones 
quickly and accurately as depicted in Fig. 3. As shown in 
Fig. 4, all of the inertial parameters estimations are stabile, 
although they do not converge to the true values, which is 
consistent with the theoretic analysis. It is found from the 
values of the longitudinal coordinate in Fig. 4 that the 
inertia parameters are very large so that the variation of 
the estimated values is quite subtle. 

 
Figure 2.  Trajectory tracking errors 
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Figure 3. Euler attitudes 

 

 
Figure 4.  Estimated inertia values 

VI. CONCLUSION 

An adaptive feedback linearization control method is 
proposed, with online inertial parameter compensation, 
which renders asymptotic tracking of any given 
continuous time-varying trajectory from any initial 
conditions. The closed-loop stability is proved, although 
the estimated values of the inertial parameters don’t 
converge to their true values. The simulation result is 
coincident with the theoretical analysis. The method is 
only suitable for a full-actuated airship with the inertial 
parameters imprecisely known. The trajectory tracking 
control method for the under-actuated airship [12] [13] under 
the control constraint [14], as well as the actuator 
saturation should be studied further. 
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