
A Hybrid Real-time Fault-tolerant Scheduling
Algorithm for Partial Reconfigurable System

Jinyong Yin

Jiangsu Automation Research Institute, Lianyungang, China
Email: yinjinyong@yahoo.com

Boxiang Zheng

Jiangsu Automation Research Institute, Lianyungang, China
Email: zboxiang@sohu.com

Zhongyi Sun

Jiangsu Automation Research Institute, Lianyungang, China
Email: sunbigman@126.com

Abstract—Partial reconfigurable system is an architecture
consisting general purpose processors and FPGAs, in which
FPGA can be reconfigured in run-time. Based on the
architecture, software tasks and hardware tasks that are
executed on processor and FPGA respectively co-exist. In
this paper, a real-time fault-tolerant scheduling algorithm is
proposed to schedule software/hardware hybrid tasks. In
the algorithm, the sufficient condition for schedulable
hybrid tasks is derived from analyzing system operation
conditions when the first deadline is missed, and
rollback/recovery and TMR approaches are used
respectively to schedule software subtasks and hardware
subtasks for fault tolerance. The experimental results
demonstrate that all deadlines of accepted hybrid tasks are
met and processor’s utilization ratio is increased greatly
compared with that of the exiting approaches when multiple
faults occur.

Index Terms—Partial reconfigurable system, Real-time
scheduling algorithm, Fault-tolerant scheduling algorithm,
Software/Hardware hybrid tasks

I. INTRODUCTION

As we all know, the FPGA’s configuration information
is stored in static RAM, which is easily affected by space
particles and electromagnetic wave. When the static
RAM is affected, the SEU (Single Event Upset) occurs
and internal circuit fails. In order to avoid the serious
consequences caused by system failure, we need to
provide the fault-tolerant ability for FPGA to ensure that
all real-time tasks’ deadlines can be met even internal
partial circuit failed.

The fault-tolerant solutions for FPGA are usually
divided into two categories which are based on hardware
and software respectively. The first one is still thinking
along the hardware redundancy which set the spare
resources in the FPGA chip to achieve fault tolerance. If
the resources are damaged somewhere, it will be replaced
by the spare resources [1]. Doumar et al [2] proposed a
solution which can move the configuration data between

the row, the column and the modules of I/O by the
special designing of the SRAM. When a failure occurs,
the configuration data of failure resource will be
transferred to the adjacent free resources according to
specific rules to make the system back to normal. The
second approach is based on hardware/software
coordination which firstly tests the FPGA chips and
stores the damaged data in the database by software, and
then the test results are read from the database to ensure
that the damaged parts are not used and finally re-layout
to resume normal operation of FPGA [3]. Above
solutions require the system to stop working when
detecting the FPGA chip which will reduce performance
and flexibility of the system. So some researchers
proposed schemes of online detection and dynamic
reconfiguration while the system is still working [4, 5].
These solutions are mainly made for non-real-time
systems offline or online fault detection while real-time
tasks can not be guaranteed.

Real-time fault-tolerant scheduling is a technology
which can achieve the ability of system fault tolerance
through software and improve the reliability of the
system with limited hardware spending. The proposed
fault-tolerant scheduling algorithms [6-15] were mainly
developed based on the technology of primary/backup
version, and when multiple processors fail at the same
time in the system, the multiple backups version is
needed for each real-time task which will result in the
processor utilization decrease rapidly.

To resolve the rapid decrease of processor utilization
and the problem of the real-time hardware task’s fault-
tolerance, this paper proposes a fault-tolerant scheduling
algorithm FT-SSHTNB (Fault Tolerant SSHTNB) for
real-time hardware/software hybrid tasks, the FT-
SSHTNB algorithm is based on SSHTNB algorithm [17].

II. TASK AND SYSTEM MODELS

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2773

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.11.2773-2780

In the system, hybrid tasks are presented by a set
T={T1,T2, … ,Tn} and each task Ti∈T is represented by a
directed acyclic graph (DAG): Ti=(STi, Ei, Ci, Di, Pi),
where STi={sti1, sti2, …, stiq} represents the hardware and
software subtasks of Ti, Ei∈STi×STi represents the
relationship of constraints between subtasks, Ci, Di and Pi
represent the execution time, relative deadline and period
of the task Ti respectively, where Di=Pi.

IPred(stik)={stij|(stij,stik)∈Ei} represents the immediate
predecessor subtasks of the subtask stik, and if
|IPred(stik)|=0, then the stik is defined as entry subtask .

ISucc(stij)={stik|(stij,stik)∈Ei} represents the immediate
successor subtasks of the subtask stij, and if |ISucc(stij)|=0,
then the stij is defined as exit subtask .

sti3

sti4

sti2Entryi

sti1

sti5

sti6

Exiti

Hardware Subtask Software Subtask
Figure 1. Real-time task architecture.

Not lose the general case, assume that each task Ti only
has an entry subtask Entryi and an exit subtask Exiti.
Figure 1 shows a task’s instance which contains 8
subtasks, where rectangle presents hardware subtask and
circle presents software subtask.

Let Ci
CP presents the sum execution time of subtasks in

task Ti’s critical path; Let Ci
soft presents all software

subtasks’ execution time of task Ti; Let Cij
top presents the

longest path from the entry subtask to the subtask stij; Let
Cij

bot presents the longest path from subtask stij to the exit
subtask.

Subtask stij is presented by a set stij={Cij, wij, hij, typeij},
where Cij presents execution time of subtask stij, wij
presents the width of subtasks, hij presents the height of
subtasks, and typeij ={H, S} presents subtask’s type
where H presents that stij is a hardware subtask and S
presents that stij is a software subtask and if stij is a
software subtask, then wij= hij=0.

Switch

Processor

Processor

FPGA

FPGA

…
 …

…
 …

(a)

(b)

Figure 2. Reconfigurable system architecture. (a) System architecture
(b) The architecture in FPGA

Shown in Figure 2, reconfigurable system consists of
multiple processors and multiple FPGAs. Processors and
FPGAs are linked together through high speed serial bus.
Some free resources (Slots) are reserved for hardware
tasks in FPGA, where hardware subtasks can be
configured to the slots dynamically when the system is
still running. The hardware subtasks can communicate
with the software subtasks through the serial bus interface
and hardware task interfaces (HTI).

III. FT-SSHTNB SCHEDULING ALGORITHM

FT-SSHTNB algorithm has some restrictions on the
fault model and fault number. We make the following
assumptions for failure model:

1) At most f computing units fail at a time, when the
f+1th failure occurs, there is at least one of the former f
faults has been repaired and put into operation.

2) Suppose that the interval between two failures is
longer than the period of real-time tasks, namely, there is
at most one failure occurs when a real-time task executes.

Definition 1: For a task Ti, if it can tolerate k failures,
that is, when the failures are not more than k, task Ti can
be fault-tolerant scheduled by a algorithm; when the k+1
failure occurs, the algorithm will go into the exception
process, then the algorithm is called k-fault-tolerant for
the task Ti

[17].
Definition 2: For a task set T = {T1, T2,…, Tn}, if a

scheduling algorithm is ki-fault-tolerant for task Ti, then
the algorithm is (k1, k2, …, kn) - fault-tolerant for the task
set T.

We can see from the fault model that FT-SSHTNB
algorithm is f-fault-tolerant for each task Ti.

According to the place where SEU occurs, the system
failure can be divided into two categories: software failure
and hardware failure. If the SEU occurs in the main
memory, the program’s data flow and (or) instruction flow
are prone to error and if the SEU occurs in the
configuration RAM, the hardware error will occurs. FT-
SSHTNB algorithm schedules the software subtask on
two processors at one time and compares subtask
execution state in check point. By this way, processor
error and software task error can be found. And hardware
subtask error is detected and tolerated through the TMR
structure.

2774 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

A. Fault-tolerance for Software Subtasks

Check
Points

Processor1

1
ijThread

Processor2

2
ijThread

(a)

CPi CPi+2CPi+1CPi-1

③②①

1
ijThread

2
ijThread

(b)

Figure 3. Fault checking principle (a) Software subtask executing
model (b) Check point comparison and threads synchronization.

As figure 3(a) shows, each software subtask stij is
correspond to two threads threadij

1and threadij
2 which

were scheduled to two processors and executes
simultaneously. By checking the consistency of
checkpoint and the synchronization of the two threads,
processor error and software task error can be detected. If
a failure is detected, the threads are rolled back to the
appropriate checkpoint.

From the point view of threadij
1, fault detection

process is shown in Figure 3 (b), where CPi presents the
ith checkpoint, up and down arrows indicate the current
position of the thread. When threadij

1 is at the
checkpoint CPi, if the thread threadij

2 is at position , ①
then thread threadij

1 and threadij
2 roll back to the

checkpoint CPi-2; if the threadij
2 is at position , then the ②

thread threadij
1 compares the states of checkpoint CPi-1,

and if the states are not identical, then the thread threadij
1

and threadij
2 roll back to the checkpoint CPi-2 at the same

time, otherwise the thread threadij
1 saves the state of

checkpoint CPi and continues executing; if the thread
threadij

2 is at position , then the thread ③ threadij
1 saves

the state of checkpoint CPi and continues executing.
Definition 3: When threadij

1 reaches the checkpoint
CPk, threadij

2 will take at least sdk time to reach
checkpoint CPk, we call sdk as synchronization distance
at checkpoint CPk .

Definition 4: Given a constant ζ, if the sdk <ζ,
threadij1 and threadij2 are synchronized at checkpoint
CPk, otherwise threadij

1 and threadij
2 are not

synchronized.
In Figure 3, the checkpoint number is generated

dynamically during the execution of thread, each
checkpoint number increases 1 when the thread
encounters a checkpoint. The checkpoint’s state is stored
as an information block and expressed as a 4-tuple ckp =
{id1, data1, id2, data2}, where id1 and id2 are the current
checkpoint number of thread threadij

1 and threadij
2, data1

and data2 are data saved in the checkpoint. Comparison
and synchronization algorithm CmpSync is described as
follows:

Step1: Determining which thread will execute the
algorithm

If the thread is threadij
1, then thisid = id1, otherid = id2;

If the thread is threadij
2, then thisid = id2, otherid = id1;

Step2: Comparing checkpoint number
(1) If thisid > otherid, then the restore task Tre is

started to recover the status of checkpoint CPi-2.
(2) If thisid = otherid, the status of checkpoint CPi-1

are compared. If the statuses are identical, then the save
task Tsa is started to save the checkpoint CPi and thisid
increases 1, otherwise the task Tre is started to recover the
state of checkpoint CPi-2.

(3) If thisid < otherid, the task Tsa is started to save the
state of checkpoint CPi and thisid increases 1.

In algorithm CmpSync, thisid and otherid are the
checkpoint number of current thread and another thread
respectively, If thisid > otherid, then the interval of the
two threads is greater than a detection length and we can
determine that the other processor fails and recovers
checkpoint’s state. If thisid = otherid, then the thread is
ahead of the thread on the other processor and the
checkpoint is not compared, so the checkpoint will be
compared and it is determined to save the new checkpoint
or roll back to the previous checkpoint according to the
consistency of checkpoint. If thisid < otherid, the thread
is behind the thread on the other processor and the
caparison of checkpoint has complete, so it is only
needed to save the checkpoint’s state.

Both threadij
1 and threadij

2 should execute algorithm
CmpSync when they reach checkpoint, so the number of
execution is same, but the execution load of the algorithm
CmpSync is not same, because sometimes checkpoint’s
state need to be compared and sometimes not. The
following theorem will prove that the load asymmetry
does not lead threads threadij

1 and threadij
2 to lose

synchronization.
Theorem 1: Threads threadij

1 and threadij
2 will not

lose synchronization as executing CmpSync algorithm.
Proof: According to Figure 3, when the thread

threadij
1 encounters a checkpoint CPi under normal

circumstances, the thread threadij
2 may be at the position

 or .When the thread ② ③ threadij
2 is at position , the ②

thread threadij
1 compares state of checkpoint CPi-1; When

the thread threadij
2 is at position , the thread ③ threadij

2
compares state of checkpoint CPi-1, the thread threadij

1
just saves the state of checkpoint CPi.

From the above analysis, we can see that the
comparison operation of the checkpoint is always
implemented by thread at ahead, so the threads threadij

1
and threadij

2 will not lose synchronization due to the
implementation of algorithm CmpSync. □

③

②

①
1
ijThread

1
ijThread

1
ijThread

2
ijThread

2
ijThread

2
ijThread

Figure 4. Rollback length when fault occurs in different parts.

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2775

© 2012 ACADEMY PUBLISHER

As shown in Figure 4, when the thread threadij
1

encounters a checkpoint, the maximum rollback length of
task is different according to the location of the thread
threadij

2.
Suppose that the detection interval length of subtasks

stij is Cin
ij, when the thread threadij

2 is at position , the ①
task’s rollback length is 2Cin

ij + Csa + Cre; when the
thread threadij

2 is at position , the task’s rollback ②
length is Cin

ij + Csa + Cre; when the thread threadij
2 is at

position , the task’s rollback length is longer than ③ Cin
ij +

Csa + Cre but less than 2Cin
ij + Csa + Cre. Therefore, when

the thread threadij
2 is in position , the rollback length is ①

the longest, and denoted as:
 Cij

R = 2Cin
ij + Csa + Cre (1)

Assuming that the subtask stij sets mij checkpoints and

the detection intervals are equal, that is ij
inC =

1−ij

ij

m

C
,

when no fault occurs during the execution of the subtask
stij, the execution time of stij is:

Cij
N = Cij + mijCsa (2)

When one fault occurs during the execution of the
subtask stij, the maximum execution time of stij is:
 R

ij
N
ij

T
ij CCC += (3)

 When r faults occur, the maximum execution time of
task Ti’s software subtask is:

StypestSTst

CCC

ijiij

r

R
ij

N
ij

rsoft
i

=∧∈∀
⎭
⎬
⎫

⎩
⎨
⎧

+= ∑∑−

.

max ，
 (4)

Checkpoints can effectively reduce the task execution
time, but if the cost of checkpoint is large or too many
checkpoints are set, the total execution time may be
longer than the execution time with no checkpoint [16].
According to equation (3), when the task’s execution
time Cij, checkpoint recovery time Cre and saving time
Csa are certain, the task’s maximum execution time
depends on checkpoint’s number mij.

Theorem 2: Suppose Csa < Cij, when mij =

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+1

2

sa

ij

C

C
or

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+1

2

sa

ij

C

C
, the execution time of

subtask stij reaches the minimum.
Proof: Take the equation (1) and (2) into equation (3),

we can get:

R
ij

N
ij

T
ij CCC += = mijCsa +2

1−ij

ij

m

C
+ Cij+Csa+Cre.

The first order differential equation and second order
differential equation of T

ijC for mij are:

ij

T
ij

dm

dC
= Csa - ()21

2
−ij

ij

m

C
, 2

2

ij

T
ij

dm

Cd
= ()31

4
−ij

ij

m

C
.

Because mij ≥ 2 (we set a checkpoint at the entry and the
exit of subtask stij respectively), so the second order

differential equation 2

2

ij

T
ij

dm

Cd
 > 0. When the first order

differential equation
ij

T
ij

dm

dC
= 0, that is 1

2
+=

sa

ij
ij C

C
m ,

T
ijC will obtain the minimum value. As mij is a positive

integer, so when mij =
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+1

2

sa

ij

C

C
or

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+1

2

sa

ij

C

C
,

T
ijC will obtain the minimum value. □

B. Fault-tolerance for Hardware Subtasks

Based on the existing technology, saving and
recovering circuit’s state still can not be implemented or
the cost is too large, so when the hardware subtask fails,
strategy of rollback/recovery should not be taken. In this
paper, we use TMR technology to detect and tolerate
hardware subtask’s failure.

In order to increase the utilization of reconfigurable
resource, hardware subtasks with precedence constrains
are partitioned into the same group and all subtasks in a
group are configured into one slot. The partition
algorithm is described as fellows:
Partition (Ti)
{

// each while circle partition a group of subtasks
while(Ti has unmarked hardware subtask)
{

Group = Φ；
MaxTask =the unmarked widest subtask of task Ti；
Mark the MaxTask；
Group= Group { MaxTask }∪ ；
// mark MaxTask's predecessor subtasks
CurTask= MaxTask；
while(CurTask has predecessor subtask)
{

if CurTask has unmarked predecessor subtask，
then Pred = CurTask's unmarked widest
predecessor subtask，otherwise Pred = CurTask's
first predecessor subtask；
if Pred is unmarked，then Group=Group {Pred} ∪

and mark Pred；
CurTask=Pred；

}
// mark MaxTask's successor subtasks
CurTask= MaxTask；
while(CurTask has successor subtask)
{

if CurTask has unmarked successor subtask，then
Succ = CurTask's unmarked widest successor
subtask，otherwise Succ = CurTask's first
successor subtask；
if Succ is unmarked，then Group=Group {Succ} ∪

and mark Succ；

2776 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

CurTask=Succ；；
}

}
}

After the subtasks are grouped by Partition algorithm,
subtasks belonging to the same group are configured to
three slots at the same time. The hardware subtask stij are
presented as stij

1, stij
2 and stij

3 in three slots. By
comparing the execution results of stij

1, stij
2 and stij

3,
hardware subtask stij’s error can be masked off.

C. Tasks’ Schedulability Test

According to the theorem 4-1 in paper [17], if a set of
periodic tasks T = {T1, T2, …, Tn} satisfies the

inequality ⎡ ⎤ CP
kk

k

i

soft
iik CmmDCPD)1(/

1
−−≤∑ =

,

then T can be scheduled by SSHTNB algorithm on m
processors without fault-tolerant requirements. During
the execution of task Tk, the critical path will be changed
if some processors fail. So the critical path must be found
when different processors fail.

Theorem 3: For a set of periodic tasks T = {T1,
T2,…,Tn}, if each task Ti∈T satisfies the inequation(5),
then tasks set T can be f-fault-tolerant scheduled by FT-
SSHTNB algorithm on m processors.

()

frfmg

CCggD

CCC
P

D

r

R
kj

CP
kk

rsoft
k

rf

R
ij

k

i

soft
i

k

i

，，，

，

L0

max1

max1

1

=−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

+−−≤

+
⎭
⎬
⎫

⎩
⎨
⎧

+⎥
⎥

⎤
⎢
⎢

⎡

∑

∑∑ −

−

−

=

 (5)

Proof: Just need to prove that when f processors fail,
the task set T can be scheduled by FT-SSHTNB
algorithm on m-f processors.

The second term of left side in inequation 5 represents
the sum of k-1 high-priority tasks’ f-r longest rollback
length. During the execution of task Tk, if the Tk’s
processor fails r times, then the other processors in the
system at most fail f-r times. So the demands of k-1 high-

priority tasks at most increase
⎭
⎬
⎫

⎩
⎨
⎧
∑
−rf

R
ijCmax and the

demand of task Tk is rsoft
kC − in one period of task Tk.

Because the increase of each path of task Tk is less than

or equal to
⎭
⎬
⎫

⎩
⎨
⎧∑

r

R
kjCmax , the length of task Tk’s critical

path is at most
⎭
⎬
⎫

⎩
⎨
⎧

+ ∑
r

R
kj

CP
k CC max when processors

fail r times during the execution of task Tk.
According to theorem 4-1 [17], if the inequation (5)

holds, the tasks set T can be scheduled by FT-SSHTNB
algorithm on m-f processors. □

D. FT-SSHTNB Algorithm Description

The SSHTNB algorithm [17] can schedule
software/hardware hybrid real-time tasks without fault-
tolerant requirement. Based on this, rollback/recovery
mechanism is introduced to FT-SSHTNB algorithm to
schedule tasks with multiple software and hardware faults.
The following part only describes the content related to
fault tolerance in FT-SSHTNB and the other content is
similar to SSHTNB in paper [17].

FT-SSHTNB algorithm includes two parts: static
algorithm and dynamic algorithm. In static algorithm,
each real-time task Ti’s fault-tolerant number ki is
determined and schedulability of tasks is tested according
theorem 3. Dynamic algorithm includes following parts:

Scheduling hardware subtasks:
 (1) A thread threadij

k is created for each subtask stij
k(k

= 1,2,3) , and the thread is responsible for passing
parameters from processor to the hardware subtask stij

k
and reading the execution results from subtask stij

k to
processor.

(2) If two subtasks in stij
k (k = 1, 2, 3) are completed,

then the execution results should be compared. If the
execution results are consistent, the results as the final
results are accepted and the 3rd subtask is canceled;
otherwise three execution results are compared.

Scheduling software subtasks:
(1) If a processor start executing the threadij

1, then the
other processor is notified to start executing threadij

2.
(2) Suppose that threadij

1 and threadij
2 are executing

on processor Pro1 and Pro2 respectively and threadim
1

and threadim
2 are executing on processor Pro3 and Pro4

respectively. If the states of threadij
1 and threadij

2 are not
consistent or threadij

1 and threadij
2 lose synchronization at

checkpoint, threadij
1 and threadij

2 will be rolled back to
the pervious checkpoint and threadij

1 and threadim
1 are

scheduled to Pro3 and Pro1. The states will be compared
again at checkpoint, if the states of threadij

1 and threadij
2

are not consistent or threadij
1 and threadij

2 lose
synchronization, then the processor Pro2 fails, if the
states of threadim

1 and threadim
2 are not consistent or

threadim
1 and threadim

2 lose synchronization, then the
processor Pro1 fails, otherwise the subtask stij fails.

E. The Analysis of Real-time Capability

Because of the reliability of computing units, all real-
time systems can not guarantee each real-time task's
deadline when some computing units fail. So we give the
definition of real-time capability for a task as follows:

Definition 5: the real-time capability of a task Ti is the
probability P(Ti) that task Ti can be finished within its
deadline.

SEU is a random event with the characters: (1) in time
interval [t, t+ Δt], the probability of SEU happening k
(k≥0) times only depends on interval length Δt and has
no relation with interval endpoints t, t+ Δt ; (2) One SEU
happens independently to the others in time intervals
without overlaps; (3) the probability of SEU happening
two or more times can be thought as zero when the time
interval is small enough. So SEU flow can be regarded as
Poisson flow. Let Xi represents the times of SEU

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2777

© 2012 ACADEMY PUBLISHER

occurring to a computing unit within task Tk’s period Pk,
and suppose the intensity of SEU flow as λ, and then the
probability of the computing unit failing during task Ti
executing is:

P(Xi≥1)=1- P(Xi=0)=1- kPe λ− (6)
Let nF represents the number of computing units that

fail. Because the computing unit fails independently, the
probability of q computing units failing in the same time

within a system containing M computing units during
task Tk executing is:

P(nF=q)= () () qM
P

q
Pq

M
kk eeC

−−−− λλ1 (7)

When q≤f, the task Tk can be finished within its
deadline according to FT-SSHTNB algorithm, so the
real-time capability of task Tk is:

P(Tk)= P(nF=0)+P(nF=1)+…+P(nF=f) (8)

TABLE I.
REAL-TIME CAPABILITY OF TASK TK UNDER DIFFERENT CONDITIONS

Faults number f
P(Tk)

Pk=100 Pk =200 Pk =300 Pk =400 Pk =500

0 0.951229 0.904837 0.860709 0.818730 0.778800

1 0.998814 0.995411 0.990009 0.982804 0.973987

2 0.999981 0.999854 0.999527 0.998915 0.997957

3 0.999999 0.999996 0.999985 0.999948 0.999880

Suppose the real-time system contain 50 computing

units and the SEU flow intensity λ = 10-5, the real-time
capability of task Tk is shown in table I according to
formula 8.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In these experiments, we have simulated processor
utilization under different conditions and compared with
the related algorithms, and the results are shown in table
II, table III and table IV as below.

TABLE II.

CAPABILITY COMPARISON OF FT-SSHTNB WITH RELATED ALGORITHMS

Algorithms
Items FT-RMFF HTFS Liu DABCBF FT-SSHTNB

Independent tasks √ √ √ √ √

Precedence Constraint tasks × × × × √

S/H hybrid tasks × × × × √

One processor fault √ √ √ √ √

Multi processor faults × × × × √

FT-RMFF [6] algorithm is a classic fault-tolerant

scheduling algorithm for periodic tasks base on RM
scheduling algorithm; HTFS algorithm [12] uses FT-RMFF
algorithm to test the schedulability of periodic tasks and
aperiodic tasks also can be fault-tolerant scheduled;
DABCBF algorithm [13] improved the FT-RMFF
algorithm by deferring the execution of task’s active slave

copy to increase the processor utilization; Liu [8] presents
a new algorithm to test the schedulability of periodic tasks
with fault-tolerant requirement. As can be seen from
Table II, the above mentioned algorithms can only
schedule independent software tasks and tolerate one
processor failure. Compared with these algorithms, FT-
SSHTNB algorithm’s capability is much stronger.

2778 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

TABLE III.

PERFORMANCE COMPARISON OF FT-SSHTNB WITH RELATED ALGORITHMS

Algorith
ms

Fault numbers
FT-RMFF HTFS Liu DABCBF FT-SSHTNB

1 61.582990 59.347181 48.993356 71.990353 32.932836

2 41.051221 39.564787 32.662204 47.993568 31.870486

3 30.788416 29.673590 24.496653 35.995176 30.808136

4 24.630732 23.738872 19.597322 28.796141 29.745787

5 20.525610 19.782393 16.331102 23.996784 28.683437

Because FT-RMFF, HTFS, Liu and DABCBF

algorithms adopted primary/slave copy technology, if
each real-time task has multiple slave copies, these
algorithms also can tolerate multiple processor failures. In
this experiment, task’s execution time accords to the
uniform distribution in (0, 0.5Pi] and independent
software periodic tasks are fault-tolerant scheduled on 32

processors, and the scheduling results are shown in Table
III. From Table III we can see that FT-SSHTNB
algorithm has low processor utilization when fault-
tolerant number is few, however the processor utilization
of FT-SSHTNB algorithm is higher than that of other
algorithms with the fault-tolerant number increases.

TABLE IV.

AVERAGE PROCESSOR UTILIZATION UNDER DIFFERENT CONDITIONS (%)

Fault numbers
Processor numbers m

8 16 32 64

0 39.820220 38.293705 36.966333 35.613902

1 36.184924 35.493393 36.533091 35.420144

2 30.142350 33.961544 34.924395 34.499440

3 26.073210 30.281818 33.183477 34.133673

4 20.432851 28.085570 32.150187 33.606462

5 15.167190 26.550720 30.587747 32.861652

Table IV shows the scheduling results of

software/hardware hybrid tasks with parameters same to
SSHTNB algorithm. As can be seen from Table IV, the
average utilization ratio of processor decreases with the
fault-tolerant number increase, however the decrease
becomes unobvious with the processor number increase.
For example, when there are 8 processors in the system,
the processor’s utilization ratio decreases by 24.7%,
however when there are 64 processors, the ratio only
decreases 2.8%. The reason is that if the fault-tolerant
number is f, the task set T must be scheduled on m-f
processors according theorem 3. When m is few, the
task’s load will too large to be scheduled on m-f
processors, so the processor utilization ratio is lower.

V. CONCLUSIONS

In this paper, a method of processor and software task
fault detection and tolerance is given firstly. When there
are multiple processor failures, this method can effectively
improve the processor utilization. Secondly, the hardware
subtask fault detection and tolerance issues are researched,
and each hardware subtask is configured to 3 slots in
FPGA and fault tolerance is realized by TMR technology.
Finally, a real-time fault-tolerant algorithm (FT-SSHTNB)
is proposed to schedule software/hardware hybrid tasks.
The experimental results show that FT-SSHTNB algorithm
can tolerate multiple hardware failures and guarantee all
real-time task deadlines to be met with low hardware cost.

REFERENCES

[1] CH. Chapman, B. Dufoet, “Using laser defect avoidance to
build large-area FPGAs,” IEEE Design & Test of
Computers, 1998, 15(4): 75-81.

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2779

© 2012 ACADEMY PUBLISHER

[2] Doumar A, Kaneko S, Ito H, “Defect and fault tolerance
FPGAs by shifting the configuration data,” Proceedings of
the 14th International Symposium on Defect and Fault-
Tolerance in VLSI Systems, Albuquerque, NM, 1999: 377-
385.

[3] Hanchek F, Dutt S, “Methodologies for tolerating cell and
interconnect faults in FPGAs,” IEEE Transactions on
Computers, 1998, 47(9):15-33

[4] Abramovici M, Stroud C, Wijesuriya S, et al., “Using
Roving STARs for on-line testing and diagnosis of FPGAs
in fault-tolerant applications,” IEEE International Test
Conference, Atlantic City, NJ, 1999: 973-982.

[5] Emmert J, Stround C, Skaggs B, et al., “Dynamic fault
tolerance in FPGAs via partial reconfiguration,” IEEE
Symposium on Field-Programmable Custom Computing
Machines, Napa Valley, CA, 2000: 165-174.

[6] Bertossi A, Mancini LV, Rossini F, “Fault-tolerant rate-
monotonic first-fit scheduling in hard real-time systems,”
IEEE Transactions on Parallel and Distributed Systems.
l999, 10(9) 934- 945.

[7] QIN Xiao, HAN Zong-Fen, PANG Li-Ping, “Real-Time
Scheduling with Fault-Tolerance in Heterogeneous
Distributed Systems,” Chinese Journal of Computers,
2002,25(1): 49-56

[8] LIU Huai, FEI Shu-Min, “A Fault-Tolerant Scheduling
Algorithm Based on EDF for Distributed Control Systems.
Journal of Software,” 2003,14(8): 1371-1378

[9] Al-Omari R, Somani AK, Manimaran G, “A new fault-
tolerant technique for improving schedulability in
multiprocessor real-time systems,” Proceedings of the 15th
IEEE Parallel and Distributed Processing Symposium, 2001:
32-33

[10] ZHANG Yong-Jun,ZHANGYi, PENGYu-Xing, et al., “A
Multiprocessor-Based Fault-Tolerant Real-Time Task
Scheduling Algorithm,” Computer Research and
Development, 2000,37(4): 425-429

[11] Yang CH, Deconinck G, “A fault-tolerant reservation-based
strategy for scheduling aperiodic tasks in multiprocessor
systems,” Proceedings of the l0th IEEE Euromicro
Workshop on Parallel, Distributed and Network-based
Processing, 2002: 3l9-326.

[12] YANG Chun-Hua, GUI Wei-Hua, JI Li, “A Fault-Tolerant
Scheduling Algorithm of Hybrid Real-Time Tasks Based
on Multiprocessors,” Chinese Journal of Computers, 2003,
26(11): 1480-1486

[13] Luo Wei, Yang Fumin, Pang Liping, et al., “A Real-Time
Fault-Tolerant Scheduling Algorithm for Distributed
Systems Based Deferred Active Backup-Copy,” Journal of
Computer Research and Development, 2007, 44(3):521-528

[14] Luo Wei, Yang Fumin, Pang Liping, et al., “A Real-Time
Fault-Tolerant Scheduling Algorithm of Periodic Tasks in
Heterogeneous Distributed Systems,” Chinese Journal of
Computers, 2007, 30(10): 1740-1749

[15] WU Jun, “Fault-tolerant scheduling algorithm for
heterogeneous distributed control systems based on dual
priorities queues,” Journal of Southeast University (Natural
Science Edition), 2008, 38(3):407-412

[16] Punnekkat S, Burns B, Davis R, “Analysis of checkpointing
for real-time systems,” Real-Time Systems, 2001, 20(1):83-
102

[17] Yin Jinyong, “Research on Real-time Task Scheduling
Algorithm of Reconfigurable System,” PhD dissertation,
College of Computer Science & Technology ， Harbin
Engineering University，June 2010

Jinyong Yin was born in Shandong,
China in September 1978. He received the
bachelor’s degree from Department of
mechanical engineering, Wuhan
University of Science and Technology in
2001. And he received the MS and Ph.D
degrees from College of Computer
Science and Technology, Harbin
Engineering University, China in 2007
and 2010 respectively. Now he is a senior

engineer in Jiangsu Automation Research Institute, Lianyungang,
China. His current research interests include high performance
computing, reconfigurable computing and real-time embedded
system.

2780 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

