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Abstract—Partial reconfigurable system is an architecture 
consisting general purpose processors and FPGAs, in which 
FPGA can be reconfigured in run-time. Based on the 
architecture, software tasks and hardware tasks that are 
executed on processor and FPGA respectively co-exist. In 
this paper, a real-time fault-tolerant scheduling algorithm is 
proposed to schedule software/hardware hybrid tasks. In 
the algorithm, the sufficient condition for schedulable 
hybrid tasks is derived from analyzing system operation 
conditions when the first deadline is missed, and 
rollback/recovery and TMR approaches are used 
respectively to schedule software subtasks and hardware 
subtasks for fault tolerance. The experimental results 
demonstrate that all deadlines of accepted hybrid tasks are 
met and processor’s utilization ratio is increased greatly 
compared with that of the exiting approaches when multiple 
faults occur. 
 
Index Terms—Partial reconfigurable system, Real-time 
scheduling algorithm, Fault-tolerant scheduling algorithm, 
Software/Hardware hybrid tasks 

I.  INTRODUCTION  

As we all know, the FPGA’s configuration information 
is stored in static RAM, which is easily affected by space 
particles and electromagnetic wave. When the static 
RAM is affected, the SEU (Single Event Upset) occurs 
and internal circuit fails. In order to avoid the serious 
consequences caused by system failure, we need to 
provide the fault-tolerant ability for FPGA to ensure that 
all real-time tasks’ deadlines can be met even internal 
partial circuit failed. 

The fault-tolerant solutions for FPGA are usually 
divided into two categories which are based on hardware 
and software respectively. The first one is still thinking 
along the hardware redundancy which set the spare 
resources in the FPGA chip to achieve fault tolerance. If 
the resources are damaged somewhere, it will be replaced 
by the spare resources [1]. Doumar et al [2] proposed a 
solution which can move the configuration data between 

the row, the column and the modules of I/O by the 
special designing of the SRAM. When a failure occurs, 
the configuration data of failure resource will be 
transferred to the adjacent free resources according to 
specific rules to make the system back to normal. The 
second approach is based on hardware/software 
coordination which firstly tests the FPGA chips and 
stores the damaged data in the database by software, and 
then the test results are read from the database to ensure 
that the damaged parts are not used and finally re-layout 
to resume normal operation of FPGA [3]. Above 
solutions require the system to stop working when 
detecting the FPGA chip which will reduce performance 
and flexibility of the system. So some researchers 
proposed schemes of online detection and dynamic 
reconfiguration while the system is still working [4, 5]. 
These solutions are mainly made for non-real-time 
systems offline or online fault detection while real-time 
tasks can not be guaranteed. 

Real-time fault-tolerant scheduling is a technology 
which can achieve the ability of system fault tolerance 
through software and improve the reliability of the 
system with limited hardware spending. The proposed 
fault-tolerant scheduling algorithms [6-15] were mainly 
developed based on the technology of primary/backup 
version, and when multiple processors fail at the same 
time in the system, the multiple backups version is 
needed for each real-time task which will result in the 
processor utilization decrease rapidly. 

To resolve the rapid decrease of processor utilization 
and the problem of the real-time hardware task’s fault-
tolerance, this paper proposes a fault-tolerant scheduling 
algorithm FT-SSHTNB (Fault Tolerant SSHTNB) for 
real-time hardware/software hybrid tasks, the FT-
SSHTNB algorithm is based on SSHTNB algorithm [17]. 

II.  TASK AND SYSTEM MODELS 
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In the system, hybrid tasks are presented by a set 
T={T1,T2, … ,Tn} and each task Ti∈T is represented by a 
directed acyclic graph (DAG): Ti=(STi, Ei, Ci, Di, Pi), 
where STi={sti1, sti2, …, stiq} represents  the hardware and 
software subtasks of Ti, Ei∈STi×STi represents the 
relationship of constraints between subtasks, Ci, Di and Pi 
represent the execution time, relative deadline and period 
of the task Ti respectively, where Di=Pi. 

IPred(stik)={stij|(stij,stik)∈Ei} represents the immediate 
predecessor subtasks of the subtask stik, and if 
|IPred(stik)|=0, then the stik is defined as entry subtask . 

ISucc(stij)={stik|(stij,stik)∈Ei} represents the immediate 
successor subtasks of the subtask stij, and if |ISucc(stij)|=0, 
then the stij is defined as exit subtask . 

sti3

sti4

sti2Entryi

sti1

sti5

sti6

Exiti

Hardware Subtask Software Subtask  
Figure 1.  Real-time task architecture. 

Not lose the general case, assume that each task Ti only 
has an entry subtask Entryi and an exit subtask Exiti. 
Figure 1 shows a task’s instance which contains 8 
subtasks, where rectangle presents hardware subtask and 
circle presents software subtask. 

Let Ci
CP presents the sum execution time of subtasks in 

task Ti’s critical path; Let Ci
soft presents all software 

subtasks’ execution time of task Ti; Let Cij
top presents the 

longest path from the entry subtask to the subtask stij; Let 
Cij

bot presents the longest path from subtask stij to the exit 
subtask. 

Subtask stij is presented by a set stij={Cij, wij, hij, typeij}, 
where Cij presents execution time of subtask stij, wij 
presents the width of subtasks, hij presents the height of 
subtasks, and typeij ={H, S} presents subtask’s type  
where H presents that stij is a hardware subtask and S 
presents that stij is a software subtask and if stij is a 
software subtask, then wij= hij=0. 

Switch
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FPGA

FPGA

…
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Figure 2.  Reconfigurable system architecture. (a) System architecture 
(b) The architecture in FPGA 

Shown in Figure 2, reconfigurable system consists of 
multiple processors and multiple FPGAs. Processors and 
FPGAs are linked together through high speed serial bus. 
Some free resources (Slots) are reserved for hardware 
tasks in FPGA, where hardware subtasks can be 
configured to the slots dynamically when the system is 
still running. The hardware subtasks can communicate 
with the software subtasks through the serial bus interface 
and hardware task interfaces (HTI). 

III.  FT-SSHTNB SCHEDULING ALGORITHM  

FT-SSHTNB algorithm has some restrictions on the 
fault model and fault number. We make the following 
assumptions for failure model: 

1) At most f computing units fail at a time, when the 
f+1th failure occurs, there is at least one of the former f 
faults has been repaired and put into operation. 

2) Suppose that the interval between two failures is 
longer than the period of real-time tasks, namely, there is 
at most one failure occurs when a real-time task executes. 

Definition 1: For a task Ti, if it can tolerate k failures, 
that is, when the failures are not more than k, task Ti can 
be fault-tolerant scheduled by a algorithm; when the k+1 
failure occurs, the algorithm will go into the exception 
process, then the algorithm is called k-fault-tolerant for 
the task Ti

[17]. 
Definition 2: For a task set T = {T1, T2,…, Tn}, if a 

scheduling algorithm is ki-fault-tolerant for task Ti, then 
the algorithm is (k1, k2, …, kn) - fault-tolerant for the task 
set T. 

We can see from the fault model that FT-SSHTNB 
algorithm is f-fault-tolerant for each task Ti. 

According to the place where SEU occurs, the system 
failure can be divided into two categories: software failure 
and hardware failure. If the SEU occurs in the main 
memory, the program’s data flow and (or) instruction flow 
are prone to error and if the SEU occurs in the 
configuration RAM, the hardware error will occurs. FT-
SSHTNB algorithm schedules the software subtask on 
two processors at one time and compares subtask 
execution state in check point. By this way, processor 
error and software task error can be found. And hardware 
subtask error is detected and tolerated through the TMR 
structure. 
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A. Fault-tolerance for Software Subtasks 
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Figure 3.  Fault checking principle (a) Software subtask executing 
model (b) Check point comparison and threads synchronization. 

As figure 3(a) shows, each software subtask stij is 
correspond to two threads threadij

1and threadij
2 which 

were scheduled to two processors and executes 
simultaneously. By checking the consistency of 
checkpoint and the synchronization of the two threads, 
processor error and software task error can be detected. If 
a failure is detected, the threads are rolled back to the 
appropriate checkpoint. 

From the point view of threadij
1, fault detection 

process is shown in Figure 3 (b), where CPi presents the 
ith checkpoint, up and down arrows indicate the current 
position of the thread. When  threadij

1 is at the 
checkpoint CPi, if the thread threadij

2 is at position , ①
then thread threadij

1 and  threadij
2 roll back to the 

checkpoint CPi-2; if the threadij
2 is at position , then the ②

thread threadij
1 compares the states of checkpoint CPi-1, 

and if the states  are not identical, then the thread threadij
1 

and threadij
2 roll back to the checkpoint CPi-2 at the same 

time, otherwise the thread threadij
1 saves the state of 

checkpoint CPi and continues executing; if the thread 
threadij

2 is at position , then the thread ③ threadij
1 saves 

the state of checkpoint CPi and continues executing. 
Definition 3: When threadij

1 reaches the checkpoint 
CPk, threadij

2 will take at least sdk time to reach 
checkpoint CPk, we call sdk as synchronization distance 
at checkpoint CPk . 

Definition 4: Given a constant ζ, if the sdk <ζ, 
threadij1 and threadij2 are synchronized at checkpoint 
CPk, otherwise threadij

1 and threadij
2 are not 

synchronized.  
In Figure 3, the checkpoint number is generated 

dynamically during the execution of thread, each 
checkpoint number increases 1 when the thread 
encounters a checkpoint. The checkpoint’s state is stored 
as an information block and expressed as a 4-tuple ckp = 
{id1, data1, id2, data2}, where id1 and id2 are the current 
checkpoint number of thread threadij

1 and threadij
2, data1 

and data2 are data saved in the checkpoint. Comparison 
and synchronization algorithm CmpSync is described as 
follows: 

Step1: Determining which thread will execute the 
algorithm 

If the thread is threadij
1, then thisid = id1, otherid = id2; 

If the thread is threadij
2, then thisid = id2, otherid = id1; 

Step2: Comparing checkpoint number 
(1) If thisid > otherid, then the restore task Tre is 

started to recover the status of checkpoint CPi-2. 
(2) If thisid = otherid, the status of checkpoint CPi-1 

are compared. If the statuses are identical, then the save 
task Tsa is started to save the checkpoint CPi and thisid 
increases 1, otherwise the task Tre is started to recover the 
state of checkpoint CPi-2. 

(3) If thisid < otherid, the task Tsa is started to save the 
state of checkpoint CPi and thisid increases 1. 

In algorithm CmpSync, thisid and otherid are the 
checkpoint number of current thread and another thread 
respectively, If thisid > otherid, then the interval of the 
two threads is greater than a detection length and we can 
determine that the other processor fails and recovers 
checkpoint’s state. If thisid = otherid, then the thread is 
ahead of the thread on the other processor and the 
checkpoint is not compared, so the checkpoint will be 
compared and it is determined to save the new checkpoint 
or roll back to the previous checkpoint according to the 
consistency of checkpoint. If thisid < otherid, the thread 
is behind the thread on the other processor and the 
caparison of checkpoint has complete, so it is only 
needed to save the checkpoint’s state. 

Both threadij
1 and threadij

2 should execute algorithm 
CmpSync when they reach checkpoint, so the number of 
execution is same, but the execution load of the algorithm 
CmpSync is not same, because sometimes checkpoint’s 
state need to be compared and sometimes not. The 
following theorem will prove that the load asymmetry 
does not lead threads threadij

1 and threadij
2 to lose 

synchronization. 
Theorem 1: Threads threadij

1 and threadij
2 will not 

lose synchronization as executing CmpSync algorithm. 
Proof: According to Figure 3, when the thread 

threadij
1 encounters a checkpoint CPi under normal 

circumstances, the thread threadij
2 may be at the position 

 or .When the thread ② ③ threadij
2 is at position , the ②

thread threadij
1 compares state of checkpoint CPi-1; When 

the thread threadij
2 is at position , the thread ③ threadij

2 
compares state of checkpoint CPi-1, the thread threadij

1 
just saves the state of checkpoint CPi. 

From the above analysis, we can see that the 
comparison operation of the checkpoint is always 
implemented by thread at ahead, so the threads threadij

1 
and threadij

2 will not lose synchronization due to the 
implementation of algorithm CmpSync. □ 

③
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①
1
ijThread

1
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1
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Figure 4.  Rollback length when fault occurs in different parts. 
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As shown in Figure 4, when the thread threadij
1 

encounters a checkpoint, the maximum rollback length of 
task is different according to the location of the thread 
threadij

2. 
Suppose that the detection interval length of subtasks 

stij is Cin
ij, when the thread threadij

2 is at position , the ①
task’s rollback length is 2Cin

ij + Csa + Cre; when the 
thread threadij

2 is at position , the task’s rollback ②
length is Cin

ij + Csa + Cre; when the thread threadij
2 is at 

position , the task’s rollback length is longer than ③ Cin
ij + 

Csa + Cre but less than 2Cin
ij + Csa + Cre. Therefore, when 

the thread threadij
2 is in position , the rollback length is ①

the longest, and denoted as: 
  Cij

R = 2Cin
ij + Csa + Cre                              (1) 

Assuming that the subtask stij sets mij checkpoints and 

the detection intervals are equal, that is ij
inC =

1−ij

ij

m

C
, 

when no fault occurs during the execution of the subtask 
stij, the execution time of stij is: 

Cij
N  = Cij + mijCsa                           (2) 

When one fault occurs during the execution of the 
subtask stij, the maximum execution time of stij is: 
                                R

ij
N
ij

T
ij CCC +=                            (3) 

  When r faults occur, the maximum execution time of 
task Ti’s software subtask is: 

  

StypestSTst

CCC

ijiij

r

R
ij

N
ij

rsoft
i

=∧∈∀
⎭
⎬
⎫

⎩
⎨
⎧

+= ∑∑−

.

max ，
          (4) 

Checkpoints can effectively reduce the task execution 
time, but if the cost of checkpoint is large or too many 
checkpoints are set, the total execution time may be 
longer than the execution time with no checkpoint [16]. 
According to equation (3), when the task’s execution 
time Cij, checkpoint recovery time Cre and saving time 
Csa are certain, the task’s maximum execution time 
depends on checkpoint’s number mij. 

Theorem 2: Suppose Csa < Cij, when mij = 

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+1

2

sa

ij

C

C
or 

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+1

2

sa

ij

C

C
, the execution time of 

subtask stij reaches the minimum. 
Proof:  Take the equation (1) and (2) into equation (3), 

we can get: 

R
ij

N
ij

T
ij CCC += = mijCsa +2

1−ij

ij

m

C
+ Cij+Csa+Cre. 

The first order differential equation and second order 
differential equation of T

ijC  for mij are: 

ij

T
ij

dm

dC
= Csa - ( )21

2
−ij

ij

m

C
, 2

2

ij

T
ij

dm

Cd
= ( )31

4
−ij

ij

m

C
.  

Because mij ≥ 2 (we set a checkpoint at the entry and the 
exit of subtask stij respectively), so the second order 

differential equation 2

2

ij

T
ij

dm

Cd
 > 0. When the first order 

differential equation 
ij

T
ij

dm

dC
= 0, that is 1

2
+=

sa

ij
ij C

C
m ,  

T
ijC  will obtain the minimum value. As mij is a positive 

integer, so when mij = 
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+1

2

sa

ij

C

C
or 

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+1

2

sa

ij

C

C
, 

T
ijC  will obtain the minimum value. □ 

B. Fault-tolerance for Hardware Subtasks 

Based on the existing technology, saving and 
recovering circuit’s state still can not be implemented or 
the cost is too large, so when the hardware subtask fails, 
strategy of rollback/recovery should not be taken. In this 
paper, we use TMR technology to detect and tolerate 
hardware subtask’s failure. 

In order to increase the utilization of reconfigurable 
resource, hardware subtasks with precedence constrains 
are partitioned into the same group and all subtasks in a 
group are configured into one slot. The partition 
algorithm is described as fellows: 
Partition (Ti) 
{ 

// each while circle partition a group of subtasks 
while(Ti has unmarked hardware subtask) 
{ 

Group = Φ； 
MaxTask =the unmarked widest subtask of task Ti； 
Mark the MaxTask； 
Group= Group { MaxTask }∪ ； 
// mark MaxTask's predecessor subtasks 
CurTask= MaxTask； 
while(CurTask has predecessor subtask) 
{ 

if CurTask has unmarked predecessor subtask，
then Pred = CurTask's unmarked widest 
predecessor subtask，otherwise Pred = CurTask's 
first predecessor subtask； 
if Pred is unmarked，then Group=Group {Pred} ∪

and mark Pred； 
CurTask=Pred； 

} 
// mark MaxTask's successor subtasks 
CurTask= MaxTask； 
while(CurTask has successor subtask)  
{ 

if CurTask has unmarked successor subtask，then 
Succ = CurTask's unmarked widest successor 
subtask，otherwise Succ = CurTask's first 
successor subtask； 
if Succ is unmarked，then Group=Group {Succ} ∪

and mark Succ； 

2776 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER



CurTask=Succ；； 
}   

}  
}  

After the subtasks are grouped by Partition algorithm, 
subtasks belonging to the same group are configured to 
three slots at the same time. The hardware subtask stij are 
presented as stij

1, stij
2 and stij

3 in three slots. By 
comparing the execution results of stij

1, stij
2 and stij

3, 
hardware subtask stij’s error can be masked off. 

C. Tasks’ Schedulability Test 

According to the theorem 4-1 in paper [17], if a set of 
periodic tasks T = {T1, T2, …, Tn} satisfies the 

inequality ⎡ ⎤ CP
kk

k

i

soft
iik CmmDCPD )1(/

1
−−≤∑ =

, 

then T can be scheduled by SSHTNB algorithm on m 
processors without fault-tolerant requirements. During 
the execution of task Tk, the critical path will be changed 
if some processors fail. So the critical path must be found 
when different processors fail. 

Theorem 3: For a set of periodic tasks T = {T1, 
T2,…,Tn}, if each task Ti∈T satisfies the inequation(5), 
then tasks set T can be f-fault-tolerant scheduled by FT-
SSHTNB algorithm on m processors. 
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−
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     (5) 

Proof: Just need to prove that when f processors fail, 
the task set T can be scheduled by FT-SSHTNB 
algorithm on m-f processors. 

The second term of left side in inequation 5 represents 
the sum of k-1 high-priority tasks’ f-r longest rollback 
length. During the execution of task Tk, if the Tk’s 
processor fails r times, then the other processors in the 
system at most fail f-r times. So the demands of k-1 high-

priority tasks at most increase 
⎭
⎬
⎫

⎩
⎨
⎧
∑
−rf

R
ijCmax  and the 

demand of task Tk is rsoft
kC −  in one period of task Tk. 

Because the increase of each path of task Tk is less than 

or equal to
⎭
⎬
⎫

⎩
⎨
⎧∑

r

R
kjCmax , the length of task Tk’s critical 

path is at most 
⎭
⎬
⎫

⎩
⎨
⎧

+ ∑
r

R
kj

CP
k CC max when processors 

fail r times during the execution of task Tk. 
According to theorem 4-1 [17], if the inequation (5) 

holds, the tasks set T can be scheduled by FT-SSHTNB 
algorithm on m-f processors. □ 

D. FT-SSHTNB Algorithm Description 

The SSHTNB algorithm [17] can schedule 
software/hardware hybrid real-time tasks without fault-
tolerant requirement. Based on this, rollback/recovery 
mechanism is introduced to FT-SSHTNB algorithm to 
schedule tasks with multiple software and hardware faults. 
The following part only describes the content related to 
fault tolerance in FT-SSHTNB and the other content is 
similar to SSHTNB in paper [17]. 

FT-SSHTNB algorithm includes two parts: static 
algorithm and dynamic algorithm. In static algorithm, 
each real-time task Ti’s fault-tolerant number ki is 
determined and schedulability of tasks is tested according 
theorem 3. Dynamic algorithm includes following parts: 

Scheduling hardware subtasks: 
  (1) A thread threadij

k is created for each subtask stij
k(k 

= 1,2,3) , and the thread is responsible for passing 
parameters from processor to the hardware subtask stij

k 
and reading the execution results from  subtask stij

k to 
processor. 

(2) If two subtasks in stij
k (k = 1, 2, 3) are completed, 

then the execution results should be compared. If the 
execution results are consistent, the results as the final 
results are accepted and the 3rd subtask is canceled; 
otherwise three execution results are compared. 

Scheduling software subtasks: 
(1) If a processor start executing the threadij

1, then the 
other processor is notified to start executing threadij

2. 
(2) Suppose that threadij

1 and threadij
2 are executing 

on processor Pro1 and Pro2 respectively and threadim
1 

and threadim
2 are executing on processor Pro3 and Pro4 

respectively. If the states of threadij
1 and threadij

2 are not 
consistent or threadij

1 and threadij
2 lose synchronization at 

checkpoint, threadij
1 and threadij

2 will be rolled back to 
the pervious checkpoint and threadij

1 and threadim
1 are 

scheduled to Pro3 and Pro1. The states will be compared 
again at checkpoint, if the states of threadij

1 and threadij
2 

are not consistent or threadij
1 and threadij

2 lose 
synchronization, then the processor Pro2 fails, if the 
states of threadim

1 and threadim
2 are not consistent or 

threadim
1 and threadim

2 lose synchronization, then the 
processor Pro1 fails, otherwise the subtask stij fails. 

E. The Analysis of Real-time Capability 

Because of the reliability of computing units, all real-
time systems can not guarantee each real-time task's 
deadline when some computing units fail. So we give the 
definition of real-time capability for a task as follows: 

Definition 5: the real-time capability of a task Ti is the 
probability P(Ti) that task Ti can be finished within its 
deadline.  

SEU is a random event with the characters: (1) in time 
interval [t, t+ Δt ], the probability of SEU happening k 
(k≥0) times only depends on interval length Δt  and has 
no relation with interval endpoints t, t+ Δt ; (2) One SEU 
happens independently to the others in time intervals 
without overlaps; (3) the probability of SEU happening 
two or more times can be thought as zero when the time 
interval is small enough. So SEU flow can be regarded as 
Poisson flow. Let Xi represents the times of SEU 
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occurring to a computing unit within task Tk’s period Pk, 
and suppose the intensity of SEU flow as λ, and then the 
probability of the computing unit failing during task Ti 
executing is: 

P(Xi≥1)=1- P(Xi=0)=1- kPe λ−                  (6) 
Let nF represents the number of computing units that 

fail. Because the computing unit fails independently, the 
probability of q computing units failing in the same time 

within a system containing M computing units during 
task Tk executing is: 

P(nF=q)= ( ) ( ) qM
P

q
Pq

M
kk eeC

−−−− λλ1                (7) 

When q≤f, the task Tk can be finished within its 
deadline according to FT-SSHTNB algorithm, so the 
real-time capability of task Tk is: 

P(Tk)= P(nF=0)+P(nF=1)+…+P(nF=f)           (8) 

TABLE I.   
REAL-TIME CAPABILITY OF TASK TK UNDER DIFFERENT CONDITIONS 

Faults number f 
P(Tk) 

Pk=100 Pk =200 Pk =300 Pk =400 Pk =500 

0 0.951229 0.904837 0.860709 0.818730 0.778800 

1 0.998814 0.995411 0.990009 0.982804 0.973987 

2 0.999981 0.999854 0.999527 0.998915 0.997957 

3 0.999999 0.999996 0.999985 0.999948 0.999880 

 
Suppose the real-time system contain 50 computing 

units and the SEU flow intensity λ = 10-5, the real-time 
capability of task Tk is shown in table I according to 
formula 8. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In these experiments, we have simulated processor 
utilization under different conditions and compared with 
the related algorithms, and the results are shown in table 
II, table III and table IV as below. 

 

TABLE II.   

CAPABILITY COMPARISON OF FT-SSHTNB WITH RELATED ALGORITHMS 

Algorithms 
Items FT-RMFF HTFS Liu DABCBF FT-SSHTNB 

Independent tasks √ √ √ √ √ 

Precedence Constraint tasks × × × × √ 

S/H hybrid tasks × × × × √ 

One processor fault √ √ √ √ √ 

Multi processor faults × × × × √ 

 
FT-RMFF [6] algorithm is a classic fault-tolerant 

scheduling algorithm for periodic tasks base on RM 
scheduling algorithm; HTFS algorithm [12] uses FT-RMFF 
algorithm to test the schedulability of periodic tasks and 
aperiodic tasks also can be fault-tolerant scheduled; 
DABCBF algorithm [13] improved the FT-RMFF 
algorithm by deferring the execution of task’s active slave 

copy to increase the processor utilization; Liu [8] presents 
a new algorithm to test the schedulability of periodic tasks 
with fault-tolerant requirement. As can be seen from 
Table II, the above mentioned algorithms can only 
schedule independent software tasks and tolerate one 
processor failure. Compared with these algorithms, FT-
SSHTNB algorithm’s capability is much stronger. 
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TABLE III.   

PERFORMANCE COMPARISON OF FT-SSHTNB WITH RELATED ALGORITHMS 

Algorith
ms 

Fault numbers 
FT-RMFF HTFS Liu DABCBF FT-SSHTNB 

1 61.582990 59.347181 48.993356 71.990353 32.932836 

2 41.051221 39.564787 32.662204 47.993568 31.870486 

3 30.788416 29.673590 24.496653 35.995176 30.808136 

4 24.630732 23.738872 19.597322 28.796141 29.745787 

5 20.525610 19.782393 16.331102 23.996784 28.683437 

 
Because FT-RMFF, HTFS, Liu and DABCBF 

algorithms adopted primary/slave copy technology, if 
each real-time task has multiple slave copies, these 
algorithms also can tolerate multiple processor failures. In 
this experiment, task’s execution time accords to the 
uniform distribution in (0, 0.5Pi] and independent 
software periodic tasks are fault-tolerant scheduled on 32 

processors, and the scheduling results are shown in Table 
III. From Table III we can see that FT-SSHTNB 
algorithm has low processor utilization when fault-
tolerant number is few, however the processor utilization 
of FT-SSHTNB algorithm is higher than that of other 
algorithms with the fault-tolerant number increases.

TABLE IV.   

AVERAGE PROCESSOR UTILIZATION UNDER DIFFERENT CONDITIONS (%) 

Fault numbers 
Processor numbers m 

8 16 32 64 

0 39.820220 38.293705 36.966333 35.613902 

1 36.184924 35.493393 36.533091 35.420144 

2 30.142350 33.961544 34.924395 34.499440 

3 26.073210 30.281818 33.183477 34.133673 

4 20.432851 28.085570 32.150187 33.606462 

5 15.167190 26.550720 30.587747 32.861652 

 
Table IV shows the scheduling results of 

software/hardware hybrid tasks with parameters same to 
SSHTNB algorithm. As can be seen from Table IV, the 
average utilization ratio of processor decreases with the 
fault-tolerant number increase, however the decrease 
becomes unobvious with the processor number increase. 
For example, when there are 8 processors in the system, 
the processor’s utilization ratio decreases by 24.7%, 
however when there are 64 processors, the ratio only 
decreases 2.8%. The reason is that if the fault-tolerant 
number is f, the task set T must be scheduled on m-f 
processors according theorem 3. When m is few, the 
task’s load will too large to be scheduled on m-f 
processors, so the processor utilization ratio is lower. 

V.  CONCLUSIONS 

In this paper, a method of processor and software task 
fault detection and tolerance is given firstly. When there 
are multiple processor failures, this method can effectively 
improve the processor utilization. Secondly, the hardware 
subtask fault detection and tolerance issues are researched, 
and each hardware subtask is configured to 3 slots in 
FPGA and fault tolerance is realized by TMR technology. 
Finally, a real-time fault-tolerant algorithm (FT-SSHTNB) 
is proposed to schedule software/hardware hybrid tasks. 
The experimental results show that FT-SSHTNB algorithm 
can tolerate multiple hardware failures and guarantee all 
real-time task deadlines to be met with low hardware cost.  
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