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Abstract—The Semantic Web is an extension of the current 
World Wide Web, and aims to help computers to 
understand and process web information automatically. In 
recent years, the integration ontologies and rules has 
become a central topic in the Semantic Web. Therefore, 
many researchers have focused their study on investigating 
the combination of answer set programming with 
description logics for the semantic web. However, these can 
not deal with uncertainty and inexactness. To address this 
problem, we propose tightly coupled rough description logic 
programs (or simply rough dl-programs) under the answer 
set semantics, which can model uncertain, inexact 
information, and can deal with non monotonic reasoning at 
the same time. To our knowledge, this is the first such 
approach. First of all, we define the syntax and semantics of 
rough dl-program KB=(L,P), which is a tight integration of 
disjunctive logic program under the answer set semantics, 
rough set theory and rough description logic. Then, we 
present some reasoning problems of rough dl-program. 
Finally, we show some semantic properties of rough dl-
program under the answer set semantics.   
 
Index Terms—Description logics, Rough description logics,  
Description logic programs, Answer set semantics, Semantic 
web 

I.  INTRODUCTION 

The Semantic Web is an extension of the current 
World Wide Web, and aims to help computers to 
understand and process web information 
automatically[1,2] . The process of the Semantic Web can 
be described as follows: firstly a machine-readable 
meaning is added to web pages; secondly share terms in 
web resources can be precisely represented by 
ontologie；finally knowledge representation technologies 
are utilized for automated reasoning from Web 
resources[3,4]. 

At present, the highest layer of the semantic web, 
which has reached a sufficient maturity, is the ontology 
layer in form of the OWL Web Ontology Language [5].  

The next and ongoing step aims at sophisticated 

representation and reasoning capabilities of the Rules, 
Logic, and Proof layers of the Semantic Web [6,7]. 

As we have seen, the integration ontologies and rules 
has become a central topic in the Semantic Web. In fact, 
standard ontology language is based on Description 
Logics(DLs), and the existing proposals for a rule 
language for use in the Semantic Web originate from 
Logic Programmings. Recently, significant research 
efforts have focused on integration description logics and 
logic programmings. Eiter et al proposed description 
logic programs, which combined disjunctive logic 
programmings under answer set semantics with 
description logics in loose integration [8,9]. Subsequently, 
Lukasiewicz presented a new method for description 
logic programs under the answer set semantics, which 
was a tight integration of disjunctive logic programs 
under the answer set semantics with description 
logics[10,11]. Moreover, Lukasiewicz introduced 
vagueness into description logic program, and proposed 
description logic program that combined fuzzy 
description logics and fuzzy disjunctive logic programs 
[12,13]. Subsequently, he presented tightly coupled fuzzy 
description logic programs under the answer set semantic, 
which extended tightly disjunctive description logic 
program by fuzzy vagueness in both the description logic 
and the logic program component [14,15]. Furthermore, 
Lukasiewicz proposed the notion of probabilistic 
description logic programs, and described the syntax and 
semantics of probabilistic description logic programs 
[16,17]. Moreover, Andrea Calì present tightly coupled 
probabilistic dl-programs under the answer set semantics, 
which were a tight integration of disjunctive logic 
programs under the answer set semantics and Bayesian 
probabilities [18,19]. Furthermore, Lukasiewicz and 
Straccia presented probabilistic fuzzy description logic 
programs, which combined fuzzy description logics, 
fuzzy logic programs, and probabilistic uncertainty in a 
uniform framework for the semantic web [20].  

Moreover, there are some works to explore formalisms 
for dealing with uncertainty and inexactness. In particular, 
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rough DL, which combined DL with rough set 
theory[21,22], can represent and reason on uncertain or 
inexact information. Schlobach et al introduced lower 
approximation and upper approximation concepts for the 
first time, and then advanced a rough DL RDL. However, 
only one approximation concept cannot accurately 
express the concept [23,24]. Afterwards, Jiang et al 
defined an approximation concept that consists of lower 
and upper approximations, and then proposed rough DL 
RDLAC, moreover, they introduced approximation 
concept satisfiability and approximation concepts rough 
subsumption reasoning problems [25]. Furthermore, we 
propose a rough description logic with concrete domain 
RSHOIQ(D), which combines DL RSHOIQ with rough 
set theory and concrete domain [26]. 

In this paper, we continue this line of research. We 
propose tightly coupled rough description logic programs 
(or simply rough dl-program) under the answer set 
semantics, which are a tight integration of disjunctive 
logic programs under the answer set semantics, rough set 
theory and rough description logics. To our knowledge, 
this is the first such approach. Firstly, we define the 
syntax and semantics of rough dl-program KB=(L,P), 
which consists of a rough description logic knowledge 
base L and a rough disjunctive logic programs P. More 
concretely, the concepts and roles from L can be regarded 
as unary resp. binary predicate of rough rules in P. 
Furthermore, we present some reasoning problems, 
definitely satisfiable and possibly satisfiable of an 
approximate atom, brave consequence and cautious 
consequence of KB. Finally, we show some semantic 
properties of rough dl-program under the answer set 
semantics. In a word, rough dl-program can model 
uncertain, inexact information, and can deal with non 
monotonic reasoning at the same time.  

The rest of this paper is organized as follows. In 
section II, we recall rough set theory and rough 
description logics. Section Ⅲ defines rough dl-programs 
under the answer set semantics. In section Ⅳ, we present 
some semantic properties of rough dl-program. Section 
Ⅴ summarizes our main results.  

II.  PRELIMINARIES 

In this section, we first recall some work related to 
rough set theory. Then we introduce the syntax and 
semantics of rough description logic RSHOIQ(D). 

A.  Rough Set Theory 
Pawlak advanced rough set theory for the first time, 

and provided formal description of rough set theory. Let 
U be a universe which is a finite and non-empty set, and 
let ~R  be an equivalent relation over U. Then an 
approximation space is defined by ),( ~RUapr = . For any 
set UA⊆ , it may not represented in a crisp way, but it 
can be characterized by using a pair of lower and upper 
approximations 

                                          
}][|{][)( ~~

~][___
AxxxAapr RRAx

R

⊆==
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U , 
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Where }),(|{][ ~
~ Ryxyx R ∈= is the equivalent class 

containing x. The rough set is commonly denoted as a 

tuple >=<
−

_
, AAA , where 

−
A is called lower 

approximations and 
_
A  is called upper approximations 

with respect to A. 
Let A, B be any subsets of U, then the lower 

approximation and upper approximation have the 
following properties: 

1) 
___

AA ¬=
−

, 
___

_
AA ¬= .     

2) 
___________
BABA ∩=∩ ,  

___________
BABA ∩⊆∩ .   

3) 
___________
BABA ∪⊇∪ , 

___________
BABA ∪=∪       

B. Rough Description Logic 
Let A, RA, RD, IA, ID, and D be pairwise disjoint sets 

of atomic concepts, abstract role names, concrete role 
names, abstract individuals, concrete individuals and 
concrete datatypes. The set DAA RRR ∪∈∪ − }|{ RR  is 
called RSHOIQ(D) roles, where −R  is the inverse role of 
R. The set of RSHOIQ(D) concepts are defined 
inductively according to the following abstract syntax:  

1

1
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where A denotes atomic concept, C and D denotes 
concepts,  AI∈noo ,,1 K , AR∈SR, , S is a simple role, 

Ν∈n , DI∈nuu ,,1 K , DR∈T , D∈E , d is a concrete 
predicate. 

For any RSHOIQ(D) concept C, the approximate 

concept of C is defined by the pair ><
−

_
,CC , where 

−
C is 

called lower approximations of C , and 
_
C  is called upper 

approximations of C. Furthermore, If concept C is a crisp 

concept, then 
_
CCC ==

−
. In addition, the approximation 

concept of C can be denoted by <C,C>. 
Therefore, a rough interpretation is defined by a 5-

tuple ),,,,( ~ DIDI RI ••ΔΔ= , where the abstract domain 
IΔ denotes a nonempty set of objects, the datatype 

domain DΔ denotes the interpretation domain of all 
datatypes (disjoint from IΔ ) with data values, ~R  is an 
equivalence relation over IΔ , and two interpretation 
functions I• and D•  that assign each atomic concept 
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A∈A  to a subset IIA Δ⊆ , each abstract role name 
AR∈R to a relation IIIR Δ×Δ⊆ , each concrete role 

name DR∈T to a relation DIIT Δ×Δ⊆ , each concrete 
datatype D∈E  to a subset DDE Δ⊆ , each abstract 
individual AI∈o to an element IIo Δ∈ , each concrete 
individual DI∈u to an element DIu Δ∈ . The mapping 

I•  and D• can be extended to all roles and concepts as 
follows: 

∅=⊥I ; 
II Δ=Τ ; 

III CC \)( Δ=¬ ; 
( )I I IC D C D= ∩ó ; 
( )I I IC D C D= ∪ò ; 

},,{},,{ 11
I
n

II
n oooo KK = ; 

},,|{).( IIIII CyRyxyxCR ∈∧>∈<Δ∈∃Δ∈=∃ ; 
},,|{).( IIIII CyRyxyxCR ∈→>∈<Δ∈∀Δ∈=∀ ; 

( . ) { | #{ | , } }I I In S C x y x y S and y C n? < > 挝 � ;
( . ) { | #{ | , } }I I In S C x y x y S and y C n? < > 挝 � ; 

},,{},,{ 11
D
n

DI
n uuuu KK = ; 

},,|{).( DIDII EtTtxtxET ∈∧>∈<Δ∈∃Δ∈=∃ ; 
},,|{).( DIDII EtTtxtxET ∈→>∈<Δ∈∀Δ∈=∀ ; 

( . ) { | #{ | , } }I In T x t x t T and t n? < > 挝 �Dd d ; 
( . ) { | #{ | , } }I In T x t x t T and t n? < > 挝 �Dd d ; 

},,|{)( ~ IIII CyRyxyxC ∈→>∈<Δ∈∀Δ∈=
−

; 

},,|{)( ~
_

IIII CyRyxyxC ∈∧>∈<Δ∈∃Δ∈= . 

>=<><
−−

III CCCC )(,)(),(
__

. 

A rough TBox of RSHOIQ(D) is a finite set of rough 
concept axioms. Let C and D be RSHOIQ(D) concepts, 

>=<
−

_
,CCAC  and >=<

−

_
, DDAD be approximation 

concepts of C and D respectively. Rough concept axioms 
consist of rough concept inclusion axioms of the form 

AC ADô  or  
_ _

, ,C C D D
−−

< > < >ô  and rough 

equivalence axioms of the form AC AD≡  or 
_ _

, ,C C D D
−−

< >≡< > . A rough interpretation I satisfies 

rough concept inclusion axioms AC ADô  iff  

II DC )()(
−−

⊆ and II DC )()(
__

⊆ . A rough interpretation I 

satisfies rough equivalence axioms AC AD≡  iff  
II DC )()(

−−
= and II DC )()(

__
= . Finally, a rough 

interpretation I is called a model of RSHOIQ(D) TBox Γ  
if it satisfies all rough concept axioms in Γ . 

A rough RBox is a finite set of rough role axioms. Let 
AR∈SR, and DR∈UT , , then the rough role axioms 

consist of rough transitive role axioms of the form 
)Trans(R , and rough role inclusion axioms of the form 

R Sô or T Uô . A rough interpretation I satisfies rough 
transitive role axioms )Trans(R  if Izyx Δ∈∀ ,, , 

II RzxRzyyx >∈→<∈><>< ,},,,{ . A rough 
interpretation I satisfies R Sô  if II SR ⊆ , it satisfies 

T Uô  if II UT ⊆ . Finally, a rough interpretation I is 
called a model of RSHOIQ(D) RBox ℜ  if it satisfies all 
rough role axioms in ℜ . 

A rough ABox is a finite set of rough assertions. Let C 
be RSHOIQ(D) concepts, AR∈R , DR∈T , AI∈ba, , 

DI∈u ,  D∈E , then rough assertions of the form Ca :  
are called rough concept assertions,  rough assertions of 
the form Rba :),(  or  Tua :),( are called rough role 
assertions, and rough assertions of the form ba ≈/ (or 

ba ≈ ) are called rough inequality(or equality) assertions. 
For a rough interpretation I, I satisfies Ca :  iff II Ca ∈ ; 
I satisfies Rba :),(  iff III Rba ∈),( ; I satisfies Tua :),(  
iff IDI Tua ∈),( ; I satisfies ba ≈/ iff  II ba ≠ ; I satisfies 

ba ≈ iff  II ba = . Finally, a rough interpretation I is 
called a model of RSHOIQ(D) ABox Λ if it satisfies all 
rough role axioms in Λ . 

A RSHOIQ(D) knowledge base is ∑  a triple 
>ΛℜΓ< ,, , where Γ denotes rough TBox, ℜ denotes 

rough RBox and Λ denotes rough ABox. A rough 
interpretation I is called a model of ∑ if it satisfies all 
rough axioms in ∑. 

Ⅲ. ROUGH DESCRIPTION LOGIC PROGRAMS UNDER THE 
ANSWER SET SEMANTICS 

In this section, we propose rough description logic 
programs. Firstly, we define the syntax and semantics of 
rough description logic programs. Finally, we present 
some reasoning problems for rough description logic 
programs. 

A.  Sntax 
Let Φ  be a function-free first-order vocabulary with 

nonempty finite sets of constant symbols CF and 
predicate symbols PF , and the sets CA, RA, RD, IA, ID, 
and D is defined as sectionⅡ . Suppose cF 腿 A DI I , 
thus every ground atom made from CA, RA, RD, and 

CF can be interpreted in the description logic component.  
Let Χ be a set of variables. A term is either a variable 

from Χ or a constant symbol from CF . Let Q denotes 
unary predicate symbol, Con(Q) denotes concept set 
expressed by Q and ~R denotes equivalence relation on 
Con(Q). We define approximate predicate symbols in the 
following. 

 
Definition 3.1 (approximate predicate symbols). For 
unary predicate symbol Q, approximate predicate symbol 
is of the form ),( QQQ = , where Q is lower approximate 

predicate symbol and Q is upper approximate predicate 
symbol. Moreover,  

 

)}(Con)(|)(Con{)(Con ~ QxRQxQ ⊆∈= ,  

})(Con)(|)(Con{)(Con ~ ∅≠∩∈= QxRQxQ . 

Obviously, we can obtain the following properties.  
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 )(Con)(Con)(Con QQQ ⊆⊆ ;  

 )(Con Qx∈∀ , 1)( =xQ , otherwise 0)( =xQ ; 

 )(Con Qx∈∀ , 1)( =xQ , otherwise 0)( =xQ ; 

 
Definition 3.2. For any approximate predicate symbol 

),( QQQ =  and x, unary predicate )(xQ  is definitely true 

iff lower approximate predicate 1)( =xQ ; unary 

predicate )(xQ  is possibly true iff upper approximate 

predicate 1)( =xQ . 
 
Definition 3.3. An approximate atom is of the 
form ),( ααα = , where  α  is of the form )(tQ  and  α  

is of the form )(tQ , ),( QQQ =  is an approximate 
predicate symbol from Φ , t is term. 

 
An atom is either an approximate atom or of the form 
1( , , )nh t tK , where h is a predicate symbol of arity 
0≥n form PF , and ntt ,,1 K  are terms. We use M to 

denote a set of atoms. A literal l is an atomα or a negated 
atom not α . If an atomα  is not an approximate atom, 
then αα =  and αα = .  

 
Definition 3.4. A disjunctive rough rule (or simply rough 
rule) r is of the form 

 1 1 1k l l n
not notα α β β β β

+
∨ ∨ ← ∧ ∧ ∧ ∧ ∧L L L  (3.1) 

1 1 1k l l nnot notα α β β β β+∨ ∨ ← ∧ ∧ ∧ ∧ ∧L L L (3.2) 

where 
1≥k , 0≥≥ ln , 1 1 1{ , , , , , , , , }k l l n Ma a b b b b+ ÍL L L . 

 
Let r be a disjunctive rough rule, then the set 
1{ , , }kα αK  is called the head of r, i.e. 

},,{)( 1 krH αα K= , and the set 1 1{ , , , , , }l l nβ β β β+K K is 
called the body of r, i.e., ( ) ( ) ( )B r B r B r+ −= ∪ , 

1( ) { , , }lB r β β+ = K , 1( ) { , , }l nB r β β−
+= K .  

 
Definition 3.5. A rough disjunctive program (or simply 
rough program) P is a finite set of disjunctive rough rules 
of the form (3.1) and (3.2). Moreover, P is normal rough 
program if and only if 1=k for all rough rules in P; P is a 
positive rough program if and only if ln = for all rough 
rules in P. 
 
Definition 3.6. A rough description logic program (for 
short, rough dl-program) KB=(L,P) includes a rough 
description logic knowledge base L and a rough program 
P. KB is a normal rough dl-program if and only if P is 
normal rough program. KB is a positive rough dl-
program if and only if P is positive rough program.  

B.  Semantics 
Now, we define the answer set semantics of rough dl-

program based on Herbrand interpretation. More formally, 
a term is ground iff it includes only constant symbols 
from CF . An atom α is ground iff all terms of α  are 
ground.  
 

Definition 3.7. A ground instance of a rough rule r the 
form (3.1) and (3.2) is defined as follows: 

1 1 1k l l n
not notα α β β β β

+
′ ′ ′ ′ ′ ′∨ ∨ ← ∧ ∧ ∧ ∧ ∧L L L  ,   

1 1 1k l l nnot notα α β β β β+′ ′ ′ ′ ′ ′∨ ∨ ← ∧ ∧ ∧ ∧ ∧L L L , 

where, 1 1 1
, , , , , , , ,k l l n

α α β β β β
+

′ ′ ′ ′ ′ ′L L L  , 

1 1 1, , , , , , , ,k l l nα α β β β β+′ ′ ′ ′ ′ ′L L L are obtained by 
substituting constant symbol from CF  for every variable 
appearing in 1 1 1

, , , , , , , ,k l l n
α α β β β β

+
L L L  , 

1 1 1, , , , , , , ,k l l nα α β β β β+∨L L L respectively. A ground 
program of a rough program P is a set of all ground 
instances of rough rules in P. Let Ground(P) to denote all 
ground programs of a rough program P. 

 
Let Φ  be a function-free first-order vocabulary with 

nonempty finite sets of constant symbols CF and 
predicate symbols PF . Then the Herbrand base relative 
to Φ , written as HBF , denotes the set of all ground 
atoms that can be made from the predicate symbols 
from PF , and the constant symbols from CF  
 
Definition 3.8. Let KB=(L,P) be a rough dl-program,  Φ  
be a function-free first-order vocabulary, HBF be a 
Herbrand base relative to Φ . Then a rough interpretation 
I relative to KB is a subset of HBF . 

 
Definition 3.9. Let KB=(L,P) be a rough dl-program, I be 
a rough interpretation relative to KB. Then a rough 
interpretation I is a model of a ground atomα , denoted 

|I a= , if and only if Iα ∈ . A rough interpretation I is a 
model of a ground rough rule r of the form (3.1) and (3.2), 
denoted rI =| , if and only if 
(1) |I α=  for some ( )H ra Î , if |

i
I β= , ( )i B rβ +∈ , 

1, 2,...,i l= , and |
j

I β=/ , ( )j B rβ −∈ , 1, 2,...,j l l n= + + ; 

(2) |I α=  for some ( )H ra Î , if | iI β= , ( )i B rβ +∈ , 

1, 2,...,i l= , and | jI β=/ , ( )j B rβ −∈ , 1, 2,...,j l l n= + + ; 
 
Definition 3.10. Let KB=(L,P) be a rough dl-program, I 
be a rough interpretation relative to KB. Then a rough 
interpretation I is a model of a rough program P, denoted 
by |I P=  , if and only if  rI =|  for all Ground( )r P∈ . 
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Definition 3.11. Let KB=(L,P) be a rough dl-program, I 
be a rough interpretation relative to  KB. Then a rough 
interpretation I is a model of a rough description logic 
knowledge base L, denoted LI =| , if and only if 

{ | }L I HB Iα α Φ∪ ∪ ¬ ∈ −  is satisfiable. 
 
Definition 3.12. Let KB=(L,P) be a rough dl-program, I 
be a rough interpretation relative to KB. Then a rough 
interpretation I is a model of KB, denoted |I KB= , if and 
only if LI =|  and |I P= .  KB is satisfiable iff it has a 
model. 

 
Definition 3.13. Let KB=(L,P) be a rough dl-program, M 
be a set of atoms. Then a rough reduction for P is defined 
as follows: 

1 1

1 1

1 1

1

1 1

1

{ ,

|

,

,

( ) }

M
k l

k l

k l

l n

k l

l n

P

not not P

not not P

B r M

α α β β

α α β β
α α β β

β β

α α β β

β β

+

+

−

= ∨ ∨ ← ∧ ∧

∨ ∨ ← ∧ ∧
∨ ∨ ← ∧ ∧ ∧

∧ ∧ ∈

∨ ∨ ← ∧ ∧ ∧

∧ ∧ ∈

∩ = ∅

L L

L L

L L

L

L L

L

. 

Moreover, a rough reduction for KB is ( , )M MKB L P= . 
    
Definition 3.14. Let KB=(L,P)  be a rough dl-program, I 
be a rough interpretation relative to  KB. Then I is an 
answer set of KB if and only if I is a minimal model of 

( , )I IKB L P= . KB is consistent iff KB has an answer set. 

C.  Reasoning Problems  
We define some reasoning problems for rough dl-

programs. 
 
Definition 3.15. Let KB=(L,P)  be a rough dl-program, 
and ( , )α α α=  be an approximate atom. Then α  with 
respect to KB is definitely satisfiable if and only if there 
exists a model I of KB, such that Iα ∈ , otherwise α is 
called definitely unsatisfiable.  
 
Definition 3.16.  Let KB=(L,P)  be a rough dl-program, 
and ( , )α α α=  be an approximate atom. Then α  with 
respect to KB is possibly satisfiable if and only if there 
exists a model I of KB, such that Iα ∈ , otherwise α is 
called possibly unsatisfiable. 
 
Definition 3.17.  Let KB=(L,P)  be a rough dl-program, 

Φ∈ HBα  be a ground atom. Then α is a called brave 
consequence of KB, denoted by | bKB α= , if and only if, 
there exists a answer set I of KB such that |I a= . 
 
Definition 3.18.  Let KB=(L,P)  be a rough dl-program, 

Φ∈ HBα  be a ground atom. Then α is a called cautious 

consequence of KB, denoted by | cKB α= , if and only if, 
for every answer set I of KB such that |I a= . 

Ⅳ.  SEMANTIC PROPERTIES 

In this section, we present some semantic properties of 
rough dl-program under anwer set semantics. Firstly, we 
show the relation between answer set and minimal model 
of a rough dl-program.  
 
Theorem 4.1. Let KB=(L,P) be a rough dl-program, I be 
any answer set of KB. Then I is a minimal model of KB. 
Proof. According to Definition 3.14, I is a minimal model 
of ( , )I IKB L P= . So, LI =|  and | II P= . Thus, LI =|  
and rI =|  for all Ground( )Ir P∈ . This is equivalent to 

rI =|  for all Ground( )r P∈ . So, LI =|  and |I P= . 
Therefore, I is a  model of KB.  

Now, we show that I is also a minimal model of KB. 
Suppose that there exists a model J of KB such that 
J I⊂ . Then |J L=  and |J r=  for all Ground( )r P∈ . 
This is equivalent to  |J r=  for all Ground( )Ir P∈ . 
Thus, J is also a model of IKB . However, this is a 
contradiction that I is a minimal model of IKB . As a 
result, I is a minimal model of KB. 

 
Theorem 4.2. Let KB=(L,P) be a positive rough dl-
program. I is a answer set of KB if and only if I is a 
minimal model of KB. 
Proof. According to Theorem 4.1, if I is a answer set of 
KB, then I is a minimal model of KB. Now we need to 
prove that if I is a minimal model of KB, then I is a 
answer set of KB. 

Let I be a minimal model of KB. Then LI =| , and 
rI =|  for all Ground( )r P∈ . This is equivalent to rI =|  

for all Ground( )Ir P∈ .  So, I is a model of 
( , )I IKB L P= . We now show that I is also a minimal 

model of IKB . Suppose that there exists a model J of 
IKB  such that J I⊂ . Then |J L= , and |J r=  for all 
Ground( )Ir P∈ . This is equivalent to |J L=  and |J r=  

for all Ground( )r P∈ . Thus, J is also a model of KB. 
However, this is a contradiction that I is a minimal model 
of KB. So, I is also a minimal model of IKB .  Therefore, 
I is a answer set of KB.  

In summary, I is a answer set of KB iff I is a minimal 
model of KB. 

 
Now, we show that the answer set semantics of a 

rough dl-program ( , )KB P= ∅  is in accord with the 
answer set semantics of P. 

 
Theorem 4.3. Let KB=(L,P) be a rough dl-program, and 
L = ∅ . Then I is an answer set of KB if and only if I is 
an answer set of P. 
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Proof. It is known that I is an answer set of KB iff I is a 
minimal model of ( , )I IKB L P= . So, I is a model of 

IKB , iff LI =|  and rI =|  for all Ground( )Ir P∈ . 
Because L = ∅ , then I is a model of IKB , iff  rI =|  for 
all Ground( )Ir P∈  iff I is a model of IP . Thus, I is a 
minimal model of IKB  iff I is a minimal model of IP . 
Therefore, I is an answer set of KB iff I is an answer set 
of P. 
 
Theorem 4.4. Let KB=(L,P) be a positive rough dl-
program, and a  be a ground atom of HBF . Then a is 
definitely satisfied by all answer sets of KB if and only if 
α is true in all first-order models of Ground( )L P∪ . 
Proof. Because KB is a positive rough dl-program, then 
the set of all answer set of KB is equivalent to the set of 
all minimal model of KB. Moreover, a is definitely 
satisfied by all minimal model of KB if and only if a is 
definitely satisfied by all model of KB.  So, a is 
definitely satisfied by all answer set of KB iff a is 
definitely satisfied by all model of KB. Now, we need to 
prove that a is definitely satisfied by all model of KB iff 
α is true in all first-order models of Ground( )L P∪ . 
( )⇒  Suppose that for a  is definitely satisfied by all 
model of KB. Let J  be any first-order models of 

Ground( )L P∪ . Now, we define a rough interpretation 
HBI Φ⊆  such that Iα ∈  iff |J α= . Let 

{ | }L L I HB Iα α Φ′ = ∪ ∪ ¬ ∈ − , then I is a model of L. 
Because J  is a first-order models of Ground( )P , then 

|J r=  for Ground( )r P∈ . Thus, |I r=  for 
Ground( )r P∈ . So, I is also a model of P. Therefore, I is 

a model of KB. According to the known condition, a  is 
definitely satisfied by all model of KB, so Iα ∈ . Thus, 
α is true in J. Therefore, α is true in all first-order 
models of Ground( )L P∪ . 
( )⇐ Suppose that α is true in all first-order models of 

Ground( )L P∪ . Let HBI Φ⊆  be any model of KB. So, 
LI =| .  Then { | }L L I HB Iα α Φ′ = ∪ ∪ ¬ ∈ −  is 

satisfiable. Let J be a first-order model of L′ . Then J is 
also a first-order models of L. Moreover, Because |I r=  
for Ground( )r P∈ ,  then J is also a model of Ground(P). 
Thus, J  is a first-order model of Ground( )L P∪ . 
According to known condition, α is true in J. Thus, a is 
definitely satisfied by I. Therefore, a is definitely 
satisfied by all models of KB 
    In summary, a is definitely satisfied by all answer sets 
of KB if and only if α is true in all first-order models of 

Ground( )L P∪ . 
 
Theorem 4.5. Let KB=(L,P) be a positive rough dl-
program, and a  be a ground atom of HBF . Then a is 

possibly satisfied by all answer sets of KB if and only if 
α is true in all first-order models of Ground( )L P∪ . 
Proof. Because KB is a positive rough dl-program, then 
the set of all answer set of KB is equivalent to the set of 
all minimal model of KB. Moreover, a is possibly 
satisfied by all minimal model of KB if and only if a is 
possibly satisfied by all model of KB.  So, a is possibly 
satisfied by all answer set of KB iff a  is possibly 
satisfied by all model of KB. Now, we need to prove that 
a is possibly y satisfied by all model of KB iff α is true 
in all first-order models of Ground( )L P∪ . 
( )⇒  Suppose that for a  is possibly satisfied by all 
model of KB. Let J  be any first-order models of 

Ground( )L P∪ . Now, we define a rough interpretation 
HBI Φ⊆  such that Iα ∈  iff |J α= . Let 

{ | }L L I HB Iα α Φ′ = ∪ ∪ ¬ ∈ − , then I is a model of L. 
Because J  is a first-order models of Ground( )P , then 

|J r=  for Ground( )r P∈ . Thus, |I r=  for 
Ground( )r P∈ . So, I is also a model of P. Therefore, I is 

a model of KB. According to the known condition, a  is 
possibly satisfied by all model of KB, so Iα ∈ . Thus, 
α is true in J. Therefore, α is true in all first-order 
models of Ground( )L P∪ . 

( )⇐ Suppose that α is true in all first-order models of 
Ground( )L P∪ . Let HBI Φ⊆  be any model of KB. So, 
LI =| .  Then { | }L L I HB Iα α Φ′ = ∪ ∪ ¬ ∈ −  is 

satisfiable. Let J be a first-order model of L′ . Then J is 
also a first-order models of L. Moreover, Because |I r=  
for Ground( )r P∈ ,  then J is also a model of Ground(P). 
Thus, J  is a first-order model of Ground( )L P∪ . 

According to known condition, α  is true in J. Thus, a is 
possibly satisfied by I. Therefore, a is possibly satisfied 
by all models of KB 
    In summary, a is possibly satisfied by all answer sets 
of KB if and only if α is true in all first-order models of 

Ground( )L P∪ . 
 
Theorem 4.6. Let KB=(L,P) be a positive rough dl-
program, and a  be a ground atom of HBF , and P = ∅ . 
Then a is definitely satisfied by all answer sets of KB if 
and only if α is true in all first-order models of L. 
Proof. It is easy to prove according to Theorem 4.4. 
 
Theorem 4.7. Let KB=(L,P) be a positive rough dl-
program, and a  be a ground atom of HBF , and P = ∅ . 
Then a is possibly satisfied by all answer sets of KB if 
and only if α  is true in all first-order models of L. 
Proof. It is easy to prove according to Theorem 4.5. 

The above theorems show that the answer set 
semantics of a rough dl-program is also a faithful 
extension of the semantics of a rough description logic 
knowledge base. 
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Ⅴ.  CONCLUSION 

We have proposed tightly coupled rough description 
logic programs (rough dl-programs) under the answer set 
semantics, which generalize the tightly coupled 
description logic programs by rough set theory in both the 
logic program and the description logic component. In 
this paper, we first provide the syntax and semantics of 
rough dl-program, then we present some reasoning 
problems of rough dl-program, finally we show that the 
answer set of rough dl-program has a close relation with 
the minimal model, and the rough dl-program faithfully 
extends both rough disjunctive logic program and rough 
description logic. In a word, rough dl-program can well 
represent and reason a great deal of real-word problems. 

An interesting topic of future research is to implement 
of the presented approach. Another interesting issue is to 
extend rough dl-programs by a new semantics. 
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