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Abstract— The change in processor architectures and 3D 
benchmarks makes performance characterization important 
for every processor and 3D application generation. Recent 
3D applications require large amount of data to be processed 
by the GPU and the CPU. This leads to the importance in 
analyzing processor performance for different architectures 
and benchmarks so that benchmarks and processors are 
fine-tuned to achieve better performance. In this paper, we 
propose a performance analytical model for the CPU and the 
GPU. The analytical model takes different architecture as 
input parameters to estimate performance. We used two 
different 3D applications, Crysis game and 3DMarkVantage. 
We characterize both benchmarks for performance 
bottlenecks and propose an analytical model to estimate 
performance at different configurations with error deviation 
<5%. 
 
Index Terms— performance characterization, performance 
measurement, performance analysis, performance modeling  

 

I. INTRODUCTION 

For every set of new processors released, a new set of 
workloads are also released that are used to rank the 
processor’s performance. Most of these new benchmarks 
require a considerable amount of computational power. 
Processor designers usually trail the new release of 
benchmarks to set ahead the expected performance for 
specific processor designs on specific workloads, which 
enables them to project performance for their new 
architecture before doing actual performance 
measurements. There are several fundamental differences 
between CPU and GPU. CPUs can provide faster response 
time for a single task; this is due to several architectural 
changes that can improve performance. These 
architectural features can improve performance but comes 
at the expense of higher power budget cost.  GPUs are 
designed for graphics application purposes. During 
rendering process, the time latency to process one pixel by 
GPU may not be very critical assuming other pixels can 
be rendered separately before completing one frame. This 
leads us to the importance of analyzing and predicting 
performance for GPU as well as CPU for 3D applications. 
Predicting processor performance on a given workload is 
a key to fine-tuning current designs to achieve higher 
performance scores. The characterizations of the workload 
and processor architecture are keys to achieving an 

accurate baseline so that any performance prediction from 
that baseline will have minimum error deviation from 
actual measurements. There is extensive literature on CPU 
performance prediction for different workloads [25][26], 
but there are few papers published on performance 
prediction analytical models based on measurements and 
simulation-based analysis for GPU and CPU using 3D 
benchmarks. This is partly because processors and 3D 
benchmarks continue to change their programming 
methods and architectures. Analyzing the amount of work 
to process by the CPU for these 3D applications and 
projecting performance for both GPU and CPU are 
essential for any processor and workload developer for 
fine-tuning their current design’s by understanding 
performance bottlenecks, architecture sensitivity, and 
enabling designers to project performance for different 
processor architecture without measurements. For the 
GPU, we used Amdahl’s Law analytical model to project 
GPU performance from a measured baseline, while on 
CPU, we used simulation baseline analysis for different 
architecture variables and applied Amdahl’s Law to 
project for different processor configurations (i.e., CPI 
scaling). The goal of this paper is to analyze and 
characterize a set of recent interactive 3D games and 
benchmark at the microarchitecture level. The remainder 
of the paper is organized as follows: Section II discusses 
related work, Section III derives the Amdahl’s Law 
method, and section IV discusses benchmark selection. In 
section V, we apply the performance prediction method 
for GPU architecture. In Section VI discusses traces 
selection method and applies Amdahl’s Law to estimate 
performance and we conclude in section VII. 

II. RELATED WORK 

Dunwoody [29] discussed tools developed to 
characterize 3D benchmarks that include interactive trace 
capturing, profiling tools for workload characterization, 
and performance measurement tool used to measure 
performance while replaying captured traces on graphics 
systems. This paper does not propose any performance 
prediction methods. It does require executing traces on 
target graphics systems for performance analysis instead 
of projecting without running the trace on the target 
system. Our characterization and performance prediction 
method provide a complete set of methods to analyze and 
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project performance on different workloads and different 
processor architectures for both the CPU and GPU. 

Saavedra [9] used program execution for a given 
benchmark to characterize both machine performance and 
program execution. His scheme focuses on total execution 
time for a given benchmark. The difference between the 
method proposed in this paper and the method proposed in 
[9] is that our method is generic and be used for any 
processor and benchmark. Our method also can project 
the maximum performance a benchmark can achieve for a 
processor under test as well as project for different 
processors of the same family architecture. 

Krishnaprasad [10] describes different methods for 
using Amdahl’s Law in different forms, but his paper does 
not describe how to implement Amdahl’s Law in a 
recursive form as described in our method. 

Hoste [11] computes the set of micro-architecture 
independent characteristics and weights these independent 
characteristics, resulting in locating the application of 
interest in benchmark space. Performance is predicted by 
weighting the performance number of a benchmark in the 
neighborhood of application of interest. This method 
might be close to our trace weighting method and 
workload characterization except that it does not present a 
performance prediction method. 

Roca [31] presented detailed 3D workload 
characterizations for CPU and GPU based on trace 
simulations and analysis. The paper does not include 
performance prediction method for different processor 
architectures. 

III. AMDAHL’S LAW OVERVIEW 

The prediction method derived in this paper is based on 
Amdahl’s Law method in which we modified the existing 
law and applied it in a recursive form. In this model, we 
refer to two domains: the time domain and the score 
domain. The time domain is inversely proportional to the 
score domain. After deriving the projected linear equation 
line in the time domain, we will convert it to the score 
domain so we can project performance for a given 
benchmark. Our approach projects processor performance 
for a graphics processor on a given benchmark by 
implementing the following steps: 

First, we establish a measured baseline for a given 
graphics processor by taking a minimum of two measured 
data points. These two measured data points can be 
memory frequencies, core frequencies, or two different 
GPUs of similar architecture but with different number of 
core. The measurement in this case is performance data 
for two different numbers of cores. 
 Second, determine the scaling and non-scaling variables 
to plot the score line that will be used for prediction. The 
scaling and non-scaling variables in this paper are referred 
to as a and b variables, respectively. These two variables 
used to determine the characteristics of the linear 
prediction in the time domain, as well as to determine the 
maximum performance a graphics processor can achieve 
for the benchmark selected in step 1 in the score domain, 
by taking the inverse of non-scaling variable b. 

Third and finally, using the score line derived in step 2, 
we can now project for a different graphics processor of 
the same architecture as that used in step 1. The method 
defined in this paper is limited to projecting performance 
for similar graphics processor architecture. The basic for 
Amdahl’s Law [3,4] states that the performance 
improvement to be gained from using some faster mode of 
execution is limited by the fraction of the time the faster 
mode can be used. In other words, the system’s overall 
performance increase limited by the fraction of the system 
that cannot take advantage of the enhanced performance. 
Therefore, the performance of a system divided into two 
distinct categories: the part that improves with the 
performance enhancement and is said to scale (variable a), 
and the part that does not improve due to the performance 
enhancement and is said to not scale or to be non-scaling 
(variable b).  

Amdahl’s law takes the algebraic form  

( ) 1
0 1 0 .fT T T T

f
= + −   (1) 

 

 
Where T1 is the measured execution time at frequency f1 
and T0 is the non-scale time.  Note that Amdahl’s law if a 
function of frequency and time, it does not take any 
architectural variable in account such as different number 
of   cores.  
We can write T0 in terms of a second measurement T2 at f2: 
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When we substitute Equation (2) for T0, we obtain 

Amdahl’s law in terms of two specific measurements 
without reference to T0:  
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Variables a and b can be transformed to the score 

domain using S ≡ 1/T. For two data points, we will have 
(f1,S1) and (f2,S2), and for n data points, we will have 
(f1,S1), …, (fn,Sn).  We expect these points to satisfy an 
equation of the form (except for noise): 
 

,
fiSi a f bi

≈
⋅ +

    (6)

  
Because of noise, we cannot expect to find values for a 

and b that produce equality for each point i.  In this case, 
we resort to the theory of linear least-squares estimation to 
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obtain best estimates for a and b.  In particular, given a 
and b, we take the error in our estimate for Si in terms of fi 
to be the difference between the measured and estimated 
value for Si. The best estimates for a and b are those that 
minimize the sum of the squares of these errors: 

2

1

n

i
i

E e
=

= ∑     (7) 

 
The estimates for a and b are those at which the values 

of the partial derivatives ∂E/∂a and ∂E/∂b are 
simultaneously zero.  By computing these derivatives 
explicitly, we obtain equations satisfied by the best 
choices for a and b, which is the best functional fit to the 
measured data. 

If the data points are in the Time Domain (f1,T1), …, 
(fn,Tn),  we can use the relationship of score to time, and 
determine the best estimate for T in terms of  f . 

 
Evaluating the equations, we can derive a and b in 

terms of T and f for n points. We can also calculate a and 
b values to construct the linear score line in terms of S1, 
S2, f1 and f2 by substituting S ≡ 1/T in the a and b 
equations. 

IV. BENCHMARKS SELECTION 

Benchmark selections for Crysis[2] game and 
3DMarkVantage[1] are based on different criteria, such as 
DX support and popularity for performance measurements 
that provide different benchmark test suites that involve 
CPU and GPU workloads. Crysis game is a first-person 
shooting game that comes with an integrated benchmark 
test suite with DX9 and DX10 support. The measured 
metric for Crysis performance is frames-per-second. For 
3DMarkVantage, it covers graphics tests as well as CPU 
tests by providing two different benchmark CPU tests, 
where CPU Test #1 features a high-intensity workload of 
co-operative path-finding artificial intelligence 
calculations. This workload can utilize multi-core CPUs, 
while CPU Test #2 features a heavy physics workload. 
The performance metrics measured for CPU Test #1 is in 
plans/sec and for CPU Test #2 is in steps/sec. Since most 
of the rendering is processed by the GPU, the CPU is still 
doing the intelligence, physics tests, and other calculations 
required for the workload. In this paper, we analyze both 
aspects of the benchmark for the CPU and the GPU. For 
GPU performance predictions, we use Amdahl’s Law to 
project performance from a measure baseline, while for 
CPU, we use simulation baseline and apply Amdahl’s 
Law to project for different processor architectures. 

V. GPU PERFORMANCE ANALYSIS 

The experimental results discussed in this section are 
GPU based on applying Amdahl’s Law method. The 
process of GPU performance prediction for 3D games 
entails three steps. The first step is to determine what to 
project, for example for higher core frequency, or higher 
memory frequency, or higher number of cores on a target 
graphics card of the same architecture. The second step 

involves establishing a measured baseline to project from 
while keeping all other variables but one fixed (i.e. core 
frequency is a variable while the number of cores and 
memory frequency/bandwidth are fixed). The third step is 
to project for a target processor of the same architecture.  

A. Performance Analysis for GPU Memory Frequency 
Using Crysis 3D Game 
The prediction method requires a minimum of two 

measured points for a given benchmark to establish the 
baseline for prediction. In our first experiment, we use the 
Crysis game with resolution 1024x768 with NVidia 
GeForce 9400GT [5] graphics card. We measured two 
data points at different memory frequencies while keeping 
the core frequency fixed, so the only variable we project is 
the memory frequency. The model requires at least two 
measured data points at two different frequencies, the 
more data points we measure the better in terms of 
minimizing the prediction error. However, in this paper 
we will use two measured data points for all out measured 
baselines. The two measured points for Crysis game 
memory frequency are as follows: Measured point #1: 
Memory Frequency@400 MHz, Frames per Second (FPS) 
~ 20; measured point #2: Memory Frequency@450 MHz, 
FPS ~21. Using these two measured data points as the 
input baseline to our prediction module, the method will 
project Frames per Second (FPS) score for the remaining 
memory frequencies without any measurement. Figure 1 
shows the memory prediction curve based on the two 
measured points we have. For this experiment, the a and b 
values are the prediction line intercept and slope values 
that are calculated as 3.9101 and 0.0387, respectively, to 
form the equation y=ax+b. At x=0 and y=0.0387, it is the 
non-scaling part of the equation. 
 

 
Figure 1: Memory frequency performance curve based on NVidia 9400 

GT. 

 From the derived equation y=3.9101x+0.0387 at x=0, 
y=0.0387. Taking the inverse of y, 1/y=1/0.0387=25.8, 
this result for 1/y concludes that the score (FPS) will 
never exceed ~ 25 FPS as memory frequency increases. 
To illustrate, we used the same two data points we have 
measured before for the Crysis game to establish the 
baseline. Then projecting frames per second at high 
memory frequencies, we noticed that at high memory 
frequencies, the performance curve remains flat, as shown 
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in Figure 1. Hence, y is the non-scaling coefficient for this 
data set. The maximum performance is bounded by an 
upper limit of 1/Y. The actual NV 9800GT GPU control 
utility provided by NVidia will not allow setting memory 
frequencies more than it can handle. Therefore during 
measurements, we could not set the memory frequency 
higher than 900 MHz, which is why we need to project for 
performance at higher memory frequencies so we can 
project for a different graphics card of the same 
architecture that can support higher memory frequencies 
compared to the NV 9400GT[5] card. 

B. Performance Analysis for GPU Core Frequency using 
Crysis 3D Game 
In the next experiment, we used the same Crysis game, 

but with an ATI HD3470 [6] graphics card. Now, instead 
of projecting for performance at different memory 
frequencies, we project for performance at different core 
frequencies. Following the same steps we used for 
memory frequency prediction, we took two data points 
measured as follows: Measured point #1: GPU Core 
Frequency @300MHz FPS ~ 6; measured point #2: GPU 
Core Frequency @400MHz, FPS ~ 8. From the two 
measured data points, we use the prediction method and 
plot the prediction curve for GPU frequency as shown in 
Figure 2. 

 

 
Figure 2: Performance estimate curve for GPU core frequency scaling 

based on ATI HD3470. 

 In addition to the two measured data points, we took 
several measured data points up to 700MHz, as shown in 
in Figure 2 (marked ‘Measured’).  The prediction module 
also calculates the a and b values to plot the linear score 
line. We followed the method used before to calculate 
maximum performance. The linear score equation for the 
ATI HD3470 [6] is y=43.372x+0.0104. x=0, y=0.0104, 
and 1/y = 96.15 FPS, although in reality, the graphics card 
can never achieve this frequency and the utility provided 
by ATI to override the core frequency will not allow core 
frequency to be set to more than the processor can handle. 
Again, the reason we calculate it is to be able to use this 
projected data for other cards of the same architecture that 
may achieve higher core frequency compared to the 
HD3470. The maximum performance upper-bound 
maximum limit at ~ 92 FPS as shown in Figure 3. 

 

 
Figure 3: Core frequency estimated curve based on ATI HD3470. 

We verified the prediction model for different NVidia 
graphics cards with respect to GPU core and memory 
frequency scaling as shown in Figure 4 and Figure 5. We 
show projected versus measured data in which the error 
deviation is < 5% in all cases.  
 

 
Figure 4 : Performance model verification for Crysis game with respect 

to Memory Frequency. 

 
Figure 5: Performance model verification for Crysis game with respect 

to GPU core Frequency. 

We also calculated the a and b parameters to determine 
the slope and intercepts of the linear performance line 
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equation. The theoretical maximum performance score as 
frequency increases to much higher values are shown in 
错误！未找到引用源。. 
 

TABLE I. 
CRYSIS MAXIMUM PERFORMANCE FOR MEMORY AND GPU 

CORE FREQUENCIES FOR DIFFERENT NV CARDS. 
 

Configuration Intercept slope Frequency 
scaling 

Maximum 
performance 

NV GeForce 8800 
GTX 128 CUDA 
Cores 

0.01298 0.73 Memory 77 FPS 

NV GeForce 
8600GTS 32 
CUDA Cores 

0.02033 4.43 GPU 49.188 FPS 

NV GeForce 
9500GT 32 
CUDA Cores 

0.01847 4.985 Memory 54.14 FPS 

 
The Crysis game performance scales better with respect 

to GPU frequency as compared to Memory frequency. 
There is scaling with respect to memory frequency 
increase, but not at the ratio compared to GPU core 
frequency increase. This is shown in Figure 6 were we 
show measurements for different NVidia card at different 
memory frequencies, the performance changes at lower 
rate as memory frequency increases and for some graphics 
cards there is no change in performance. 

 

 
Figure 6: Crysis game memory frequency scaling measurements for 

different NVidia graphics cards. 

 

C. Performance Prediction for A Higher Number of 
Cores Using 3DMarkVantage Benchmark 

 For the 3DMarkVantage benchmark, we implemented 
the same prediction method we used for the Crysis game. 
However, in this experiment, we have three different ATI 
discrete cards of the same architecture but with a different 
number of cores and memory bandwidth. The goal is to be 
able to project the 3DMarkVantage score for ATI 
HD4890 [7], and we compared the projected data to 
measured data for ATI HD4890. We adjusted memory 
frequency for HD4670 [8] and HD4830 [7] so they can 
both have the same memory bandwidth while keeping 
core frequencies the same. This will eliminate the memory 
bandwidth and core frequency variables in our prediction. 

First, we establish the measured baseline using ATI 
HD4670 [8] and ATI HD4830 [7] graphics cards to 
project for ATI HD4890 graphics card. The number of 
cores for HD4670 is equal to 320, and for HD4830 is 
equal to 640. The goal is to project for HD4890 at 800 
cores. Note that all three cards have the same architecture.  
 
 Before taking any measurements, we adjusted the core 
frequency and memory bandwidth to be the same for 
HD4670 and HD4830. For our experiment, we used core 
frequency =750 MHz and memory bandwidth ~57 GB/s, 
by adjusting the memory frequency. 
 

 
Figure 7: 3DMarkVantage scores for projected versus measured for 

different ATI graphics cards. 

 In Figure 7, the measured score for ATI HD4670 is 
2237, for ATI HD4830 is 4044. Using these two data 
points, we implement the prediction method to project for 
ATI HD4890 at 800 cores; the estimated graphics score is 
equal to 4823. Next, we measure the actual ATI HD4890 
graphics card to compare measured versus projected data 
under the same settings we used for the prediction. The 
graphics score measured for ATI HD 4890 card is equal to 
4640. The delta error difference between measured (4640) 
and projected (4823) for ATI HD4890 is ~4%, which 
meets our objective of < 10% error difference between 
measured and projected data. Note that the 
implementation for this experiment is different from the 
Crysis game [2] experiment implementation because we 
are utilizing two different graphics cards to be able to 
project for the third card of the same architecture, but the 
prediction method is the same for both experiments. 

D. Additional Workload to Verify Predition Model 
We selected additional 3D game Company of Heroes 

(COH) to verify Amdahl’s law method. COH is a 3D 
DX10 games, we used ATI HD5670 [32] as baseline for 
our measurements. This experiment is to verify the 
method additional to Crysis and 3DMarkVantage 
workloads. We will not do in-depth analysis for COH like 
Crysis and 3DmarkVantage. We used Amdahl’s law 
method derived in this paper; the average error between 
projected and measured is 1.24% as shown in Figure 8. 
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Figure 8: COH game performance Analysis. 

VI. CPU PERFORMANCE ANALYSIS 

Most of the rendering for a 3D application processed 
by the GPU, but some of the computations are processed 
by the CPU such as physics and other coordinates 
calculation. In this section, we will present a CPU tracing 
analysis and performance estimation based on CPI scaling 
for Crysis and 3DMarkVantage. For the Crysis game, we 
traced ~30 CPU-based traces; the platform configuration 
used for tracing is with CPU at 1400 MHz, 100 MHz 
Front Side Bus (FSB), NV8800 graphics cards, and 2 GB 
of RAM. Each trace consists of about 25 million 
instructions, so we simulate several million instructions 
instead of simulating the entire workload, which is very 
time consuming. A trace weight tool is used to determine 
the weights for each trace. This is done based on six 
different vectors associated with each trace. Each of these 
set of traces is simulated with respect to a specific 
processor configuration such as number of cores, memory 
size, and memory type and core frequency. For each trace, 
we used a profiling tool to calculate certain architecture 
metrics that affect performance for each trace such as CPI, 
branches miss-prediction, and last level cache miss. The 
profiling data is than mined for each trace point offset and 
length to determine each trace point’s vector. The vectors 
are normalized in each dimension using standardization. 
Weight for each trace point (in terms of instructions 
represented or Ireps) calculated by summing the 
instructions of the associated sample set. The overall 
performance (time in cycles) of a set of k trace points is: 
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1
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k

i
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=

= ×∑
 
              

(10)

  
CPI(i) is the results from simulation of the trace and 

Irep is the instruction representation for a given trace as 

shown in Figure 9. The objective is to set up at least two 
simulation data points (instead of measured) so we can 
use them as a baseline and apply the Amdahl’s Law 
method derived earlier to project for different processor 
architectures and configuration. We use the weights for 
the traces when simulating those traces for given 
processor configuration. Thus, we can map the traces back 
to the entire workload.  

 

 
Figure 9: CPI values for all Crysis CPU based samples 

The % instruction weight in referred to as the fraction 
of Irep for a given trace by total Irep is the % weight of 
each trace relative to the entire Crysis workload. Some 
traces have more weights compared to other as shown in 
Figure 10. 

 

 
Figure 10: Sample weights for Crysis. 

The summation of all weights for all traces is equal to 
100%. The total number of cycles contributing to the CPI 
consists of several architecture-dependent cycles that the 
simulator generates with respect to specific processor 
configuration. In general, the total cycle is a summation of 
cycles contributed from conditional branch miss-
prediction, conditional branch retired, L2 hits/miss, and 
other parameters.  

A. Sensitivy Analysis Relative to CPI 
We use the simulator to run the same set of traces 

against different processor configurations. The processor 
configurations selected based on core frequency, number 
of cores, memory frequency, and cache size. The 
simulator runs every trace against the processor 
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configuration and generates an output file with details of 
processor architecture dependencies such as instructions 
retires, cycles, branch misses, L2 hit/Miss, Last level 
cache miss, and other architecture variables. For our 
analysis in this paper, we look at CPI (Cycles-Per-
Instruction) which is an important performance parameter.  

As discussed before, 3DMarkVantage offers CPU 
Test#1 and Test#2 are part of the benchmark test suite. 
CPU Test#1 is a high-intensity workload of co-operative 
path-finding artificial intelligence calculations, while CPU 
Test#2 features a heavy physics workload.  

We show that CPU Test#2 is not sensitive to core or 
memory frequency since the CPI almost is the same, 
while CPU Test#1 is sensitive to core frequency but not 
sensitive to memory frequency. The CPI for CPUTest #1 
is lower (the lower, the better) for all traces with CPU 
Frequency at 3300 MHz, Memory Frequency at 1333 
MHz, compared to CPU Frequency at 3000 MHz, 
Memory Frequency at 1600 MHz, while keeping the 
number of cores and cache size fixed for all 
configurations. 

For the Crysis workload, we selected two processor 
configurations with the exact same number of cores, 
frequency, and memory type/frequency and cache sizes. 
However, these two different processors have different 
architectures such as buffer sizes and larger queues. The 
objective for this analysis is to understand performance 
impact for micro-architectural change on a given 
processor. The CPI scaling shows significant 
improvement in performance (lower CPI) for processor 
architecture #1 for all Crysis traces as shown in Figure 11. 

 

 
Figure 11: Crysis game CPI variation. 

B. Performance Analysis for CPU   
After analyzing the benchmark behavior and sensitivity 

with respect to different processor architectures and 
configurations, Amdahl’s Law method derived in the 
previous section is used to project for processor 
performance. However, in this section, the baseline 
derived from simulations, not the measured baseline. As 
discussed before, Amdahl’s Law requires at least two 
simulated (or measured) data points to project to different 
processor configurations. The weight associated with each 
trace is applied by multiplying the weight with CPI for a 
given trace; the summation will give us the total CPI for 

all traces combined, which is expected to have good 
representation of the entire benchmark. To transfer these 
results to time (in seconds), the result is divided by the 
frequency of the processor for each trace. Figure 12 shows 
the total execution time for all traces combined for 
different processor configuration. 

 

 
Figure 12: Crysis total execution time based on sample analysis. 

We used Amdahl’s Law by taking two different 
simulated execution time data points at CPU frequency of 
3200 MHz and 3600 MHz. The total execution time (in 
seconds) projected for all simulated traces at higher core 
frequency. The total CPU execution time starts leveling 
off as frequency increases, which is about 22 seconds of 
total execution time. To confirm this observation, we 
derive a and b variables using Amdahl’s Law method. 
The linear prediction line equation derived is y=-
75.246x+0.0466 at x=0, y=0.0466, taking the inverse of y, 
1/y=21.45. This is the lower bound of the total execution 
time for all the Crysis traces, meaning that no matter how 
much frequency is increased, the total execution time will 
never fall below 21.45 seconds as shown in Figure 13. 

 

 
Figure 13: Crysis execution time prediction curve using simulated time 

for CPU frequencies 3200 MHz and 3600 MHz as a baseline. 

For 3DMarkVantage predictions, we used the same 
method, but for this benchmark, we project for CPI (the 
lower, the better the performance) instead of total 
execution time as we did for Crysis. Since we have CPU 
Tes#1 and CPU Test#2 workloads in 3DMarkVantage, we 
project CPI for both. Note that CPU Test#2 CPI does not 
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scale as well with processor frequency as CPU Test#1 
does. For CPU Test#1 workload, the linear performance 
equation derived is y = -1166.9x + 0.9984. At x=0, 
y=0.9984, the inverse of y is 1/y=1.001. This means the 
CPI for CPU Test#1 will never falls below 1.001 because 
CPU frequency increases to much higher values >10 GHz. 
For CPU Test#2 workload, the linear performance derived 
equation is y = -66.584x + 0.7314. At x=0, 1/y=1.36, so as 
CPU frequency increases, CPI will never fall below 1.36 
for CPU Test#2 workload as shown in Figure 14. 

 
Figure 14: CPI estimate curves for 3DMarkVantage CPU Test#1 and 

CPU Test#2 workloads. 

 After analyzing CPI scaling and prediction for 
3DMarkVantage CPU Test#1 and CPU Test#2 workloads, 
we will use a similar method to that we used for Crysis to 
calculate and project total processor execution time. We 
use Eq. (9) to calculate total execution time, and applying 
it to two different processor configurations at 3000 MHz 
and 3300 MHz processor to get two simulation-based 
points required for Amdahl’s Law method. The weighted 
IPC for CPU Test#1 and CPU Test#2 combined is 1.07. 
The 3DMarkVantage CPU Test#1 and CPU Test#2 final 
scores calculated as: 
 
 

3
ec * ,

FinalScore for DMarkVantage
InstructionsPerS ond CoreFrequency

Instructions perOperation

=

 

(11)
 

and 

,
I

IPC
Total Cycles

= ∑
               

(12) 

 
 The processor configuration used for this experiment is 
3000 MHz core frequency, 6M cache size, and DDR3-
1333MHz. Using this baseline, at core frequency 3000 
MHz, the combined score for CPU Test#1 and CPU 
Test#2  is 3171, and for core frequency 3300 MHz the 
score  is 3488. We than use analytical model discussed 
earlier in this paper to project performance at higher CPU 
core frequencies as shown in Figure 15. 
 

 
Figure 15: 3DMarkVantage CPU workload performance curve. 

The reason we used trace-based analysis and prediction 
is in that we can simulate traces for a given workload 
using different processor configuration in which we 
cannot measure. Once we have two or more data points 
(performance scores) at two or more different frequencies, 
we can than apply Amdahl’s law to project performance 
for higher core frequency. Same method can be used in 
case we need to project for higher number of cores or 
memory / cache sizes. Trace based simulations enable us 
to establish baselines for processor architecture, which we 
cannot measure, as compared to just applying Amdahl’s 
law to a measure baseline as discussed in GPU 
performance prediction section.  

VII. CONCLUSION 

The work presented in this paper mainly related to a 
performance prediction using Analytical model for GPU 
and CPU processors. We used two different 3D 
benchmarks for characterization, tracing, performance 
analysis, and performance estimation. We also analyzed 
and predicted performance on both GPU and CPU since 
most 3D workloads includes a certain amount of 
computation processed by the while most of the rendering 
is done by the GPU. The estimated performance error for 
all tested cases is less than 5% compared to measured 
performance data. Using the same analytical method, we 
also determined the maximum performance a processor 
can achieve on a given benchmark. More importantly, the 
method is flexible, it can be used by establishing a 
measured or traced-based baselines and projecting 
performance from that baseline to a processor of different 
architectures at higher number of core and/or memory 
frequencies. We characterized both workloads with 
respect to different scaling factors such as memory and 
processor core frequency.  
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