
Characterization and Performance Analysis for
3D Benchmarks

Joseph Issa

Santa Clara University
Department of Computer Engineering, 500 El Camino Real, Santa Clara, CA 95053, USA

Email: jissa@scu.edu

Abstract— The change in processor architectures and 3D
benchmarks makes performance characterization important
for every processor and 3D application generation. Recent
3D applications require large amount of data to be processed
by the GPU and the CPU. This leads to the importance in
analyzing processor performance for different architectures
and benchmarks so that benchmarks and processors are
fine-tuned to achieve better performance. In this paper, we
propose a performance analytical model for the CPU and the
GPU. The analytical model takes different architecture as
input parameters to estimate performance. We used two
different 3D applications, Crysis game and 3DMarkVantage.
We characterize both benchmarks for performance
bottlenecks and propose an analytical model to estimate
performance at different configurations with error deviation
<5%.

Index Terms— performance characterization, performance
measurement, performance analysis, performance modeling

I. INTRODUCTION

For every set of new processors released, a new set of
workloads are also released that are used to rank the
processor’s performance. Most of these new benchmarks
require a considerable amount of computational power.
Processor designers usually trail the new release of
benchmarks to set ahead the expected performance for
specific processor designs on specific workloads, which
enables them to project performance for their new
architecture before doing actual performance
measurements. There are several fundamental differences
between CPU and GPU. CPUs can provide faster response
time for a single task; this is due to several architectural
changes that can improve performance. These
architectural features can improve performance but comes
at the expense of higher power budget cost. GPUs are
designed for graphics application purposes. During
rendering process, the time latency to process one pixel by
GPU may not be very critical assuming other pixels can
be rendered separately before completing one frame. This
leads us to the importance of analyzing and predicting
performance for GPU as well as CPU for 3D applications.
Predicting processor performance on a given workload is
a key to fine-tuning current designs to achieve higher
performance scores. The characterizations of the workload
and processor architecture are keys to achieving an

accurate baseline so that any performance prediction from
that baseline will have minimum error deviation from
actual measurements. There is extensive literature on CPU
performance prediction for different workloads [25][26],
but there are few papers published on performance
prediction analytical models based on measurements and
simulation-based analysis for GPU and CPU using 3D
benchmarks. This is partly because processors and 3D
benchmarks continue to change their programming
methods and architectures. Analyzing the amount of work
to process by the CPU for these 3D applications and
projecting performance for both GPU and CPU are
essential for any processor and workload developer for
fine-tuning their current design’s by understanding
performance bottlenecks, architecture sensitivity, and
enabling designers to project performance for different
processor architecture without measurements. For the
GPU, we used Amdahl’s Law analytical model to project
GPU performance from a measured baseline, while on
CPU, we used simulation baseline analysis for different
architecture variables and applied Amdahl’s Law to
project for different processor configurations (i.e., CPI
scaling). The goal of this paper is to analyze and
characterize a set of recent interactive 3D games and
benchmark at the microarchitecture level. The remainder
of the paper is organized as follows: Section II discusses
related work, Section III derives the Amdahl’s Law
method, and section IV discusses benchmark selection. In
section V, we apply the performance prediction method
for GPU architecture. In Section VI discusses traces
selection method and applies Amdahl’s Law to estimate
performance and we conclude in section VII.

II. RELATED WORK

Dunwoody [29] discussed tools developed to
characterize 3D benchmarks that include interactive trace
capturing, profiling tools for workload characterization,
and performance measurement tool used to measure
performance while replaying captured traces on graphics
systems. This paper does not propose any performance
prediction methods. It does require executing traces on
target graphics systems for performance analysis instead
of projecting without running the trace on the target
system. Our characterization and performance prediction
method provide a complete set of methods to analyze and

2702 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.11.2702-2710

project performance on different workloads and different
processor architectures for both the CPU and GPU.

Saavedra [9] used program execution for a given
benchmark to characterize both machine performance and
program execution. His scheme focuses on total execution
time for a given benchmark. The difference between the
method proposed in this paper and the method proposed in
[9] is that our method is generic and be used for any
processor and benchmark. Our method also can project
the maximum performance a benchmark can achieve for a
processor under test as well as project for different
processors of the same family architecture.

Krishnaprasad [10] describes different methods for
using Amdahl’s Law in different forms, but his paper does
not describe how to implement Amdahl’s Law in a
recursive form as described in our method.

Hoste [11] computes the set of micro-architecture
independent characteristics and weights these independent
characteristics, resulting in locating the application of
interest in benchmark space. Performance is predicted by
weighting the performance number of a benchmark in the
neighborhood of application of interest. This method
might be close to our trace weighting method and
workload characterization except that it does not present a
performance prediction method.

Roca [31] presented detailed 3D workload
characterizations for CPU and GPU based on trace
simulations and analysis. The paper does not include
performance prediction method for different processor
architectures.

III. AMDAHL’S LAW OVERVIEW

The prediction method derived in this paper is based on
Amdahl’s Law method in which we modified the existing
law and applied it in a recursive form. In this model, we
refer to two domains: the time domain and the score
domain. The time domain is inversely proportional to the
score domain. After deriving the projected linear equation
line in the time domain, we will convert it to the score
domain so we can project performance for a given
benchmark. Our approach projects processor performance
for a graphics processor on a given benchmark by
implementing the following steps:

First, we establish a measured baseline for a given
graphics processor by taking a minimum of two measured
data points. These two measured data points can be
memory frequencies, core frequencies, or two different
GPUs of similar architecture but with different number of
core. The measurement in this case is performance data
for two different numbers of cores.
 Second, determine the scaling and non-scaling variables
to plot the score line that will be used for prediction. The
scaling and non-scaling variables in this paper are referred
to as a and b variables, respectively. These two variables
used to determine the characteristics of the linear
prediction in the time domain, as well as to determine the
maximum performance a graphics processor can achieve
for the benchmark selected in step 1 in the score domain,
by taking the inverse of non-scaling variable b.

Third and finally, using the score line derived in step 2,
we can now project for a different graphics processor of
the same architecture as that used in step 1. The method
defined in this paper is limited to projecting performance
for similar graphics processor architecture. The basic for
Amdahl’s Law [3,4] states that the performance
improvement to be gained from using some faster mode of
execution is limited by the fraction of the time the faster
mode can be used. In other words, the system’s overall
performance increase limited by the fraction of the system
that cannot take advantage of the enhanced performance.
Therefore, the performance of a system divided into two
distinct categories: the part that improves with the
performance enhancement and is said to scale (variable a),
and the part that does not improve due to the performance
enhancement and is said to not scale or to be non-scaling
(variable b).

Amdahl’s law takes the algebraic form

() 1
0 1 0 .fT T T T

f
= + − (1)

Where T1 is the measured execution time at frequency f1
and T0 is the non-scale time. Note that Amdahl’s law if a
function of frequency and time, it does not take any
architectural variable in account such as different number
of cores.
We can write T0 in terms of a second measurement T2 at f2:

2 2 1 1 .0
2 1

T f T f
T

f f

−
=

−
 (2)

When we substitute Equation (2) for T0, we obtain

Amdahl’s law in terms of two specific measurements
without reference to T0:

1() ,T a b
f

= + (3)

where

2 2 1 1

2 1

,f T f Ta
f f
−

=
−

 (4)

and

1 2
1 2

2 1

.T Tb f f
f f

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

 (5)

Variables a and b can be transformed to the score

domain using S ≡ 1/T. For two data points, we will have
(f1,S1) and (f2,S2), and for n data points, we will have
(f1,S1), …, (fn,Sn). We expect these points to satisfy an
equation of the form (except for noise):

,
fiSi a f bi

≈
⋅ +

 (6)

Because of noise, we cannot expect to find values for a

and b that produce equality for each point i. In this case,
we resort to the theory of linear least-squares estimation to

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2703

© 2012 ACADEMY PUBLISHER

obtain best estimates for a and b. In particular, given a
and b, we take the error in our estimate for Si in terms of fi
to be the difference between the measured and estimated
value for Si. The best estimates for a and b are those that
minimize the sum of the squares of these errors:

2

1

n

i
i

E e
=

= ∑ (7)

The estimates for a and b are those at which the values

of the partial derivatives ∂E/∂a and ∂E/∂b are
simultaneously zero. By computing these derivatives
explicitly, we obtain equations satisfied by the best
choices for a and b, which is the best functional fit to the
measured data.

If the data points are in the Time Domain (f1,T1), …,
(fn,Tn), we can use the relationship of score to time, and
determine the best estimate for T in terms of f .

Evaluating the equations, we can derive a and b in

terms of T and f for n points. We can also calculate a and
b values to construct the linear score line in terms of S1,
S2, f1 and f2 by substituting S ≡ 1/T in the a and b
equations.

IV. BENCHMARKS SELECTION

Benchmark selections for Crysis[2] game and
3DMarkVantage[1] are based on different criteria, such as
DX support and popularity for performance measurements
that provide different benchmark test suites that involve
CPU and GPU workloads. Crysis game is a first-person
shooting game that comes with an integrated benchmark
test suite with DX9 and DX10 support. The measured
metric for Crysis performance is frames-per-second. For
3DMarkVantage, it covers graphics tests as well as CPU
tests by providing two different benchmark CPU tests,
where CPU Test #1 features a high-intensity workload of
co-operative path-finding artificial intelligence
calculations. This workload can utilize multi-core CPUs,
while CPU Test #2 features a heavy physics workload.
The performance metrics measured for CPU Test #1 is in
plans/sec and for CPU Test #2 is in steps/sec. Since most
of the rendering is processed by the GPU, the CPU is still
doing the intelligence, physics tests, and other calculations
required for the workload. In this paper, we analyze both
aspects of the benchmark for the CPU and the GPU. For
GPU performance predictions, we use Amdahl’s Law to
project performance from a measure baseline, while for
CPU, we use simulation baseline and apply Amdahl’s
Law to project for different processor architectures.

V. GPU PERFORMANCE ANALYSIS

The experimental results discussed in this section are
GPU based on applying Amdahl’s Law method. The
process of GPU performance prediction for 3D games
entails three steps. The first step is to determine what to
project, for example for higher core frequency, or higher
memory frequency, or higher number of cores on a target
graphics card of the same architecture. The second step

involves establishing a measured baseline to project from
while keeping all other variables but one fixed (i.e. core
frequency is a variable while the number of cores and
memory frequency/bandwidth are fixed). The third step is
to project for a target processor of the same architecture.

A. Performance Analysis for GPU Memory Frequency
Using Crysis 3D Game
The prediction method requires a minimum of two

measured points for a given benchmark to establish the
baseline for prediction. In our first experiment, we use the
Crysis game with resolution 1024x768 with NVidia
GeForce 9400GT [5] graphics card. We measured two
data points at different memory frequencies while keeping
the core frequency fixed, so the only variable we project is
the memory frequency. The model requires at least two
measured data points at two different frequencies, the
more data points we measure the better in terms of
minimizing the prediction error. However, in this paper
we will use two measured data points for all out measured
baselines. The two measured points for Crysis game
memory frequency are as follows: Measured point #1:
Memory Frequency@400 MHz, Frames per Second (FPS)
~ 20; measured point #2: Memory Frequency@450 MHz,
FPS ~21. Using these two measured data points as the
input baseline to our prediction module, the method will
project Frames per Second (FPS) score for the remaining
memory frequencies without any measurement. Figure 1
shows the memory prediction curve based on the two
measured points we have. For this experiment, the a and b
values are the prediction line intercept and slope values
that are calculated as 3.9101 and 0.0387, respectively, to
form the equation y=ax+b. At x=0 and y=0.0387, it is the
non-scaling part of the equation.

Figure 1: Memory frequency performance curve based on NVidia 9400

GT.

 From the derived equation y=3.9101x+0.0387 at x=0,
y=0.0387. Taking the inverse of y, 1/y=1/0.0387=25.8,
this result for 1/y concludes that the score (FPS) will
never exceed ~ 25 FPS as memory frequency increases.
To illustrate, we used the same two data points we have
measured before for the Crysis game to establish the
baseline. Then projecting frames per second at high
memory frequencies, we noticed that at high memory
frequencies, the performance curve remains flat, as shown

0

3

6

9

12

15

18

21

24

27

0 400 800 1200 1600 2000 2400

Fr
am

es
 p

er
 S

ec
on

d
(F

PS
)

Memory Frequency (MHz)

Crysis Game: Estimated & Measured Performance curves
using NVIDIA GeForce 9400GT

Maximum performance =25.82 FPS

Estimated

Measured

2704 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

in Figure 1. Hence, y is the non-scaling coefficient for this
data set. The maximum performance is bounded by an
upper limit of 1/Y. The actual NV 9800GT GPU control
utility provided by NVidia will not allow setting memory
frequencies more than it can handle. Therefore during
measurements, we could not set the memory frequency
higher than 900 MHz, which is why we need to project for
performance at higher memory frequencies so we can
project for a different graphics card of the same
architecture that can support higher memory frequencies
compared to the NV 9400GT[5] card.

B. Performance Analysis for GPU Core Frequency using
Crysis 3D Game
In the next experiment, we used the same Crysis game,

but with an ATI HD3470 [6] graphics card. Now, instead
of projecting for performance at different memory
frequencies, we project for performance at different core
frequencies. Following the same steps we used for
memory frequency prediction, we took two data points
measured as follows: Measured point #1: GPU Core
Frequency @300MHz FPS ~ 6; measured point #2: GPU
Core Frequency @400MHz, FPS ~ 8. From the two
measured data points, we use the prediction method and
plot the prediction curve for GPU frequency as shown in
Figure 2.

Figure 2: Performance estimate curve for GPU core frequency scaling

based on ATI HD3470.

 In addition to the two measured data points, we took
several measured data points up to 700MHz, as shown in
in Figure 2 (marked ‘Measured’). The prediction module
also calculates the a and b values to plot the linear score
line. We followed the method used before to calculate
maximum performance. The linear score equation for the
ATI HD3470 [6] is y=43.372x+0.0104. x=0, y=0.0104,
and 1/y = 96.15 FPS, although in reality, the graphics card
can never achieve this frequency and the utility provided
by ATI to override the core frequency will not allow core
frequency to be set to more than the processor can handle.
Again, the reason we calculate it is to be able to use this
projected data for other cards of the same architecture that
may achieve higher core frequency compared to the
HD3470. The maximum performance upper-bound
maximum limit at ~ 92 FPS as shown in Figure 3.

Figure 3: Core frequency estimated curve based on ATI HD3470.

We verified the prediction model for different NVidia
graphics cards with respect to GPU core and memory
frequency scaling as shown in Figure 4 and Figure 5. We
show projected versus measured data in which the error
deviation is < 5% in all cases.

Figure 4 : Performance model verification for Crysis game with respect

to Memory Frequency.

Figure 5: Performance model verification for Crysis game with respect

to GPU core Frequency.

We also calculated the a and b parameters to determine
the slope and intercepts of the linear performance line

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0 1000 2000 3000 4000

Fr
am

es
 p

er
 S

ec
on

d
(F

PS
)

GPU Frequency (MHz)

Crysis Game: Estimated & Measured Performance curves
using ATI HD 3470

Estimated

Measured

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 10000 20000 30000 40000 50000 60000

Fr
am

es
 p

er
 S

ec
on

d
(F

PS
)

GPU core Frequency (MHz)

Crysis Game: Estimated & Measured Performance curves for
ATI HD 3470 at High core frequencies

Estimated

Measured

0

10

20

30

40

50

60

70

80

0 500 1000 1500

Fr
am

es
 -

pe
r-

se
co

nd

Memory Frequency (MHz)

Performance verification for Crysis Game at different
Memory Frequencies

NV GeForce 8800
GTX 128US
Measured

NV GeForce 8800
GTX 128US
Projected

GeForce 9500GT
(32US) Measured

NV GeForce
9500GT (32US)
Projected

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500

Fr
am

es
 -

pe
r-

se
co

nd

GPU Core Frequency (MHz)

Performance verification for Crysis Game at different GPU
core Frequencies

GeForce 9500GT
(32US) Measured

NV GeForce
9500GT (32US)
Projected

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2705

© 2012 ACADEMY PUBLISHER

equation. The theoretical maximum performance score as
frequency increases to much higher values are shown in
错误！未找到引用源。.

TABLE I.
CRYSIS MAXIMUM PERFORMANCE FOR MEMORY AND GPU

CORE FREQUENCIES FOR DIFFERENT NV CARDS.

Configuration Intercept slope Frequency
scaling

Maximum
performance

NV GeForce 8800
GTX 128 CUDA
Cores

0.01298 0.73 Memory 77 FPS

NV GeForce
8600GTS 32
CUDA Cores

0.02033 4.43 GPU 49.188 FPS

NV GeForce
9500GT 32
CUDA Cores

0.01847 4.985 Memory 54.14 FPS

The Crysis game performance scales better with respect

to GPU frequency as compared to Memory frequency.
There is scaling with respect to memory frequency
increase, but not at the ratio compared to GPU core
frequency increase. This is shown in Figure 6 were we
show measurements for different NVidia card at different
memory frequencies, the performance changes at lower
rate as memory frequency increases and for some graphics
cards there is no change in performance.

Figure 6: Crysis game memory frequency scaling measurements for

different NVidia graphics cards.

C. Performance Prediction for A Higher Number of
Cores Using 3DMarkVantage Benchmark

 For the 3DMarkVantage benchmark, we implemented
the same prediction method we used for the Crysis game.
However, in this experiment, we have three different ATI
discrete cards of the same architecture but with a different
number of cores and memory bandwidth. The goal is to be
able to project the 3DMarkVantage score for ATI
HD4890 [7], and we compared the projected data to
measured data for ATI HD4890. We adjusted memory
frequency for HD4670 [8] and HD4830 [7] so they can
both have the same memory bandwidth while keeping
core frequencies the same. This will eliminate the memory
bandwidth and core frequency variables in our prediction.

First, we establish the measured baseline using ATI
HD4670 [8] and ATI HD4830 [7] graphics cards to
project for ATI HD4890 graphics card. The number of
cores for HD4670 is equal to 320, and for HD4830 is
equal to 640. The goal is to project for HD4890 at 800
cores. Note that all three cards have the same architecture.

 Before taking any measurements, we adjusted the core
frequency and memory bandwidth to be the same for
HD4670 and HD4830. For our experiment, we used core
frequency =750 MHz and memory bandwidth ~57 GB/s,
by adjusting the memory frequency.

Figure 7: 3DMarkVantage scores for projected versus measured for

different ATI graphics cards.

 In Figure 7, the measured score for ATI HD4670 is
2237, for ATI HD4830 is 4044. Using these two data
points, we implement the prediction method to project for
ATI HD4890 at 800 cores; the estimated graphics score is
equal to 4823. Next, we measure the actual ATI HD4890
graphics card to compare measured versus projected data
under the same settings we used for the prediction. The
graphics score measured for ATI HD 4890 card is equal to
4640. The delta error difference between measured (4640)
and projected (4823) for ATI HD4890 is ~4%, which
meets our objective of < 10% error difference between
measured and projected data. Note that the
implementation for this experiment is different from the
Crysis game [2] experiment implementation because we
are utilizing two different graphics cards to be able to
project for the third card of the same architecture, but the
prediction method is the same for both experiments.

D. Additional Workload to Verify Predition Model
We selected additional 3D game Company of Heroes

(COH) to verify Amdahl’s law method. COH is a 3D
DX10 games, we used ATI HD5670 [32] as baseline for
our measurements. This experiment is to verify the
method additional to Crysis and 3DMarkVantage
workloads. We will not do in-depth analysis for COH like
Crysis and 3DmarkVantage. We used Amdahl’s law
method derived in this paper; the average error between
projected and measured is 1.24% as shown in Figure 8.

0

10

20

30

40

50

60

70

80

0 500 1000 1500

C
ry

si
s

FP
S

Memory Frequency (MHz)

Crysis performance measurments at different Memory
Frequencies

NV GeForce
8800GTX
NV GeForce
9400GT
NV GeForce
9500GT
NV GeForce
8600 GTS
ATI HD 3450

ATI HD 3470

ATI 2900XT

2237

4044

4640 4823

0

1000

2000

3000

4000

5000

6000

ATI HD4670-320
cores (Measured)

ATI HD4830-640
cores (Measured)

ATI HD4890-800
cores (Measured)

ATI HD4890-800
cores (Estimated)

To
ta

l S
co

re

3D MarkVantage - Estimated vs. Measured for ATI HD4890

2706 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Figure 8: COH game performance Analysis.

VI. CPU PERFORMANCE ANALYSIS

Most of the rendering for a 3D application processed
by the GPU, but some of the computations are processed
by the CPU such as physics and other coordinates
calculation. In this section, we will present a CPU tracing
analysis and performance estimation based on CPI scaling
for Crysis and 3DMarkVantage. For the Crysis game, we
traced ~30 CPU-based traces; the platform configuration
used for tracing is with CPU at 1400 MHz, 100 MHz
Front Side Bus (FSB), NV8800 graphics cards, and 2 GB
of RAM. Each trace consists of about 25 million
instructions, so we simulate several million instructions
instead of simulating the entire workload, which is very
time consuming. A trace weight tool is used to determine
the weights for each trace. This is done based on six
different vectors associated with each trace. Each of these
set of traces is simulated with respect to a specific
processor configuration such as number of cores, memory
size, and memory type and core frequency. For each trace,
we used a profiling tool to calculate certain architecture
metrics that affect performance for each trace such as CPI,
branches miss-prediction, and last level cache miss. The
profiling data is than mined for each trace point offset and
length to determine each trace point’s vector. The vectors
are normalized in each dimension using standardization.
Weight for each trace point (in terms of instructions
represented or Ireps) calculated by summing the
instructions of the associated sample set. The overall
performance (time in cycles) of a set of k trace points is:

1

(sec)

()* ()*
,

k

i

Total executiontime

I i CPI i Weights

Frequency
=

=

∑

(8)

sec *Instructions per ond Weighted IPC Frequency= ,

(9)

and

1

() / ,
k

i

Weighted IPC I Weights i Cycles
=

= ×∑

(10)

CPI(i) is the results from simulation of the trace and

Irep is the instruction representation for a given trace as

shown in Figure 9. The objective is to set up at least two
simulation data points (instead of measured) so we can
use them as a baseline and apply the Amdahl’s Law
method derived earlier to project for different processor
architectures and configuration. We use the weights for
the traces when simulating those traces for given
processor configuration. Thus, we can map the traces back
to the entire workload.

Figure 9: CPI values for all Crysis CPU based samples

The % instruction weight in referred to as the fraction
of Irep for a given trace by total Irep is the % weight of
each trace relative to the entire Crysis workload. Some
traces have more weights compared to other as shown in
Figure 10.

Figure 10: Sample weights for Crysis.

The summation of all weights for all traces is equal to
100%. The total number of cycles contributing to the CPI
consists of several architecture-dependent cycles that the
simulator generates with respect to specific processor
configuration. In general, the total cycle is a summation of
cycles contributed from conditional branch miss-
prediction, conditional branch retired, L2 hits/miss, and
other parameters.

A. Sensitivy Analysis Relative to CPI
We use the simulator to run the same set of traces

against different processor configurations. The processor
configurations selected based on core frequency, number
of cores, memory frequency, and cache size. The
simulator runs every trace against the processor

0
5

10
15
20
25
30
35
40
45
50

0 500 1000 1500 2000 2500

C
O

H
-F

PS

Memory Frequency (MHz)

COH- Projected vs. Measured for # of cores =24 , Average
Error=1.242% between measured and prediction model

Model

Measured

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

C
PI

Sample #

Crysis CPU - CPI

CPI

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23

Tr
ac

e
W

ei
gh

t

Sample #

Crysis CPU - %instructions

% instruction

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2707

© 2012 ACADEMY PUBLISHER

configuration and generates an output file with details of
processor architecture dependencies such as instructions
retires, cycles, branch misses, L2 hit/Miss, Last level
cache miss, and other architecture variables. For our
analysis in this paper, we look at CPI (Cycles-Per-
Instruction) which is an important performance parameter.

As discussed before, 3DMarkVantage offers CPU
Test#1 and Test#2 are part of the benchmark test suite.
CPU Test#1 is a high-intensity workload of co-operative
path-finding artificial intelligence calculations, while CPU
Test#2 features a heavy physics workload.

We show that CPU Test#2 is not sensitive to core or
memory frequency since the CPI almost is the same,
while CPU Test#1 is sensitive to core frequency but not
sensitive to memory frequency. The CPI for CPUTest #1
is lower (the lower, the better) for all traces with CPU
Frequency at 3300 MHz, Memory Frequency at 1333
MHz, compared to CPU Frequency at 3000 MHz,
Memory Frequency at 1600 MHz, while keeping the
number of cores and cache size fixed for all
configurations.

For the Crysis workload, we selected two processor
configurations with the exact same number of cores,
frequency, and memory type/frequency and cache sizes.
However, these two different processors have different
architectures such as buffer sizes and larger queues. The
objective for this analysis is to understand performance
impact for micro-architectural change on a given
processor. The CPI scaling shows significant
improvement in performance (lower CPI) for processor
architecture #1 for all Crysis traces as shown in Figure 11.

Figure 11: Crysis game CPI variation.

B. Performance Analysis for CPU
After analyzing the benchmark behavior and sensitivity

with respect to different processor architectures and
configurations, Amdahl’s Law method derived in the
previous section is used to project for processor
performance. However, in this section, the baseline
derived from simulations, not the measured baseline. As
discussed before, Amdahl’s Law requires at least two
simulated (or measured) data points to project to different
processor configurations. The weight associated with each
trace is applied by multiplying the weight with CPI for a
given trace; the summation will give us the total CPI for

all traces combined, which is expected to have good
representation of the entire benchmark. To transfer these
results to time (in seconds), the result is divided by the
frequency of the processor for each trace. Figure 12 shows
the total execution time for all traces combined for
different processor configuration.

Figure 12: Crysis total execution time based on sample analysis.

We used Amdahl’s Law by taking two different
simulated execution time data points at CPU frequency of
3200 MHz and 3600 MHz. The total execution time (in
seconds) projected for all simulated traces at higher core
frequency. The total CPU execution time starts leveling
off as frequency increases, which is about 22 seconds of
total execution time. To confirm this observation, we
derive a and b variables using Amdahl’s Law method.
The linear prediction line equation derived is y=-
75.246x+0.0466 at x=0, y=0.0466, taking the inverse of y,
1/y=21.45. This is the lower bound of the total execution
time for all the Crysis traces, meaning that no matter how
much frequency is increased, the total execution time will
never fall below 21.45 seconds as shown in Figure 13.

Figure 13: Crysis execution time prediction curve using simulated time

for CPU frequencies 3200 MHz and 3600 MHz as a baseline.

For 3DMarkVantage predictions, we used the same
method, but for this benchmark, we project for CPI (the
lower, the better the performance) instead of total
execution time as we did for Crysis. Since we have CPU
Tes#1 and CPU Test#2 workloads in 3DMarkVantage, we
project CPI for both. Note that CPU Test#2 CPI does not

0

0.5

1

1.5

2

2.5

0 10 20 30 40

C
PI

Sample #

Crysis Game: CPU CPI Analysis

#cores=4, Cache
Size=8M, Core
Freq=3200MHz,
DDR3_1600
(Arch#1)

#cores=4, Cache
Size=8M, Core
Freq=3200 MHz,
DDR3_1600
(Arch#2)

0

5

10

15

20

25

30

35

40

45

50

Processor Configurations
Ti

m
e(

se
c)

Crysis Game: Total Execution Time

#cores=4, Cache Size=8M,
Core Freq=3200 MHz,
DDR3-1600 (Arch #1)
#cores=4, Cache Size=8M,
Core Freq=3200 MHz,
DDR3_1600 (Arch #2)
#cores=4, Cache Size=8M,
Core Freq=3200MHz,
DDR3_1600 (Arch#1)
#cores=4, Cache Size=8M,
Core Freq=3600 MHz,
DDR3_1600 (Arch#1)
#cores=4, Cache Size=8M,
Core Freq=3200 MHz,
DDR3_1600 (Arch#2)
#cores=4, Cache Size=8M,
Core Freq=3600 MHz,
DDR3_1600 (Arch#2)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0 2000 4000 6000

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

GPU Frequency (MHz)

Crysis Game: Estimation for total CPU execution time

Projected

2708 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

scale as well with processor frequency as CPU Test#1
does. For CPU Test#1 workload, the linear performance
equation derived is y = -1166.9x + 0.9984. At x=0,
y=0.9984, the inverse of y is 1/y=1.001. This means the
CPI for CPU Test#1 will never falls below 1.001 because
CPU frequency increases to much higher values >10 GHz.
For CPU Test#2 workload, the linear performance derived
equation is y = -66.584x + 0.7314. At x=0, 1/y=1.36, so as
CPU frequency increases, CPI will never fall below 1.36
for CPU Test#2 workload as shown in Figure 14.

Figure 14: CPI estimate curves for 3DMarkVantage CPU Test#1 and

CPU Test#2 workloads.

 After analyzing CPI scaling and prediction for
3DMarkVantage CPU Test#1 and CPU Test#2 workloads,
we will use a similar method to that we used for Crysis to
calculate and project total processor execution time. We
use Eq. (9) to calculate total execution time, and applying
it to two different processor configurations at 3000 MHz
and 3300 MHz processor to get two simulation-based
points required for Amdahl’s Law method. The weighted
IPC for CPU Test#1 and CPU Test#2 combined is 1.07.
The 3DMarkVantage CPU Test#1 and CPU Test#2 final
scores calculated as:

3
ec * ,

FinalScore for DMarkVantage
InstructionsPerS ond CoreFrequency

Instructions perOperation

=

(11)

and

,
I

IPC
Total Cycles

= ∑

(12)

 The processor configuration used for this experiment is
3000 MHz core frequency, 6M cache size, and DDR3-
1333MHz. Using this baseline, at core frequency 3000
MHz, the combined score for CPU Test#1 and CPU
Test#2 is 3171, and for core frequency 3300 MHz the
score is 3488. We than use analytical model discussed
earlier in this paper to project performance at higher CPU
core frequencies as shown in Figure 15.

Figure 15: 3DMarkVantage CPU workload performance curve.

The reason we used trace-based analysis and prediction
is in that we can simulate traces for a given workload
using different processor configuration in which we
cannot measure. Once we have two or more data points
(performance scores) at two or more different frequencies,
we can than apply Amdahl’s law to project performance
for higher core frequency. Same method can be used in
case we need to project for higher number of cores or
memory / cache sizes. Trace based simulations enable us
to establish baselines for processor architecture, which we
cannot measure, as compared to just applying Amdahl’s
law to a measure baseline as discussed in GPU
performance prediction section.

VII. CONCLUSION

The work presented in this paper mainly related to a
performance prediction using Analytical model for GPU
and CPU processors. We used two different 3D
benchmarks for characterization, tracing, performance
analysis, and performance estimation. We also analyzed
and predicted performance on both GPU and CPU since
most 3D workloads includes a certain amount of
computation processed by the while most of the rendering
is done by the GPU. The estimated performance error for
all tested cases is less than 5% compared to measured
performance data. Using the same analytical method, we
also determined the maximum performance a processor
can achieve on a given benchmark. More importantly, the
method is flexible, it can be used by establishing a
measured or traced-based baselines and projecting
performance from that baseline to a processor of different
architectures at higher number of core and/or memory
frequencies. We characterized both workloads with
respect to different scaling factors such as memory and
processor core frequency.

REFERENCES

[1] Future Mark Corporation, 3DMarkVantage [Internet].
Available from:
http://www.futuremark.com/benchmarks/3dmarkvantage.

[2] Crysis game benchmark reviews [Internet]. Available from
http://
www.overclockersclub.com/reviews/xfx_9800gtx_/6.htm.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5000 10000 15000

C
PI

CPU Frequency (MHz)

3DMark Vantage - CPI Estimates for CPU Test#1 and Test#2
workloads

CPI Estimate for
CPU Test #1

CPI Estimate for
CPU Test#2

0

2000

4000

6000

8000

10000

12000

0 5000 10000 15000

Sc
or

e

CPU Frequency (MHz)

3DMark Vantage - Final Score Estimate for CPU workloads

CPU Score estimate
curve

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2709

© 2012 ACADEMY PUBLISHER

[3] Hennessy JL, Patterson DA. Computer architecture: a
quantitative approach. 4th ed. Morgan Kaufmann, 2007.

[4] Hennessy JL, Patterson DA. Computer organization and
design: the hardware/software interface. 4th ed. Morgan
Kaufmann, 2009.

[5] NVidia Corporation, GeForce 9400GT [Internet]. Available
from:
http://www.nvidia.com/object/product_geforce_9400gt_us.
html

[6] ATI Radeon HD 3400 Series [Internet]. Available from:
http://ati.amd.com/products/radeonhd3400/.

[7] ATI Radeon HD 4800 Series [Internet]. Available from:
http://ati.amd.com/products/Radeonhd4800/index.html.

[8] ATI Radeon HD 4600 Series [Internet]. Available from:
http://ati.amd.com/products/Radeonhd4600/index.html.

[9] Saavedra RH, Smith AJ. Analysis of benchmark
characteristics and benchmark performance prediction,
ACM Transactions on Computer Systems , 1996.

[10] Krishnaprasad S. Uses and abuses of Amdahl’s Law.
Journal of Computing Sciences in Colleges, 2001.

[11] Hoste K, Eeckhout L, Blockeel H. Analyzing commercial
processor performance numbers for predicting performance
of application on interest, SIGMETRICS, International
conference on Measurments and Modeling of computer
systems, 2007.

[12] Tikir M, Carrington L, Strohmaier E, Snavely A. A genetic
algorithms approach to modeling the performance of
memory-bound computations. Proceedings of the
International Conference for High Performance Computing,
Networking, and Storage, 2007.

[13] Annaratone M , Amdahl's law, and comparing computers.
Frontiers of massively parallel computation. Fourth
symposium of Frontiers of Massively Parallel
Computations, 1992.

[14] Hill MD, Marty MR. Amdahl's Law in the multicore era
computer, IEEE Computer Society, 2008.

[15] Gustafson JL, Todi R. Conventional benchmarks as a
sample of the performance spectrum. The Journal of
Supercomputing, 1999.

[16] Sharkawi S, DeSota D, Panda R, Indikuru R, Stevens S,
Taylor V, Wu X. Performance prediction of HPC
application using SPEC CFP2006 benchmarks, 2006.

[17] Hardware secrets: AMD ATI Chips Comparisons Table
[Internet]. Available from:
http://www.hardwaresecrets.com/article/131.

[18] Diamond HD4890 XOC, 3DMarkVantage [Internet].
Available from:
http://techarkade.com/component/content/article/222-
diamond-hd4890-xoc.html?start=4.

[19] Crysis game benchmark reviews [Internet]. Available from:
http://www.overclockersclub.com/reviews/xfx_9800gtx_/6.
htm.

[20] Jain R. Chapters 14 and 15. The art of computer
performance analysis. New York: John Wiley & Sons, Inc,
1991.

[21] RivaTuner download [Internet]. Available from:
http://downloads.guru3d.com/RivaTuner-v2.09-download-
163.html.

[22] Nvidia nTune utility [Internet]. Available from:
http://www.nvidia.com/object/ntune_2.00.23.html.

[23] ATI Catalyst Controller [Internet]. Available from:
http://ati.amd.com/products/catalystcontrolcenter/index.htm
l.

[24] SPEC benchmarks[Internet]. Available from:
http://www.spec.org/cpu2000/.

[25] TPC benchmarks[Internet]. Available from:
http://www.tpc.org/tpcc/detail.asp.

[26] MediaBench benchmarks[Internet]. Available from:
http://euler.slu.edu/~fritts/mediabench/.

[27] Mitra T, Chiueh T. Dynamic 3D graphics workload
characterization and the architectural implications. 32nd
ACM/IEEE International Symposium On Microarchitecture,
1999.

[28] Chiueh T-c, Lin W-j. Characterization of static 3D graphics
workloads, Proceedings of the 1997
SIGGRAPH/Eurographics workshop on Graphics hardware,
Los Angeles, California, United States, 1997.

[29] Dunwoody JC, Linton M. Tracing interactive 3D graphics
programs. Computer graphics (Proc. Symp. Interactive 3D
Graphics, 1990.

[30] Wasson S. DOOM3 high-end graphics comparo–
performance and image quality examined [Internet].
Available at: http://techreport.com/etc/2004q3/doom3/.

[31] Roca J. Workload characterization for 3D Games. IEEE
International Symposium on Workload Characterization,
IISWC, 2006.

[32] ATI Radeon 5670 [Internet]. Available from:
http://www.amd.com/us/products/desktop/graphics/ati-
radeon-hd-5000/ati-radeon-hd-5670-overview/Pages/ati-
radeon-hd-5670-overview.aspx

Joseph Issa received his B.E in computer
engineering from Georgia Institute of
Technology in 1996. He obtained his
master’s degree in Computer Engineering at
San Jose State University in 2000. Currently
he is a PhD candidate in Computer
Engineering at Santa Clara University. His
research interests are performance and

power modeling, analysis and characterization.

2710 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

