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Abstract—For sintering process, based on the actual run 
status data, a new dynamics description method based on 
moving pattern is presented by constructing pattern moving 
space and defining moving variable in it. The moving 
variable is called as pattern class variable. And the 
prediction model is constructed based on pattern class 
variable. The feature vectors for constructing pattern 
moving space are extracted from the actual run status data 
by using partial least squares regression analysis method to 
cope with multicollinearity problem. Some simulations are 
given to verify the feasibility.  
 
Index Terms—prediction model, moving pattern, pattern 
moving space, pattern class variable 
 

I.  INTRODUCTION 

The sintering process is a preprocess for blast-furnace 
materials. A diagrammatic representation of the sintering 
plant is given in Fig.1. The raw materials are mixed 
together and are charged onto a moving strand (sinter car) 
to form a sinter bed. When the sinter cars pass under the 
ignition hood, the fuel in the surface of the bed is ignited. 
As sinter cars move forward, combustion is promoted by 
air drawn through the sinter bed into a series of wind 
boxes under the sinter bed. As the combustion zone 
moves further down the sinter bed and reaches the bottom, 
the sintering process is completed. The position on the 
strand where the combustion just progresses down to the 
bottom is the so-called burn-through point (BTP). 

The sintering process is extremely complex. The 
mechanism of movement can not still be known 
completely. Where intertwines a series of physical and 
chemical changes such as heat transfer and mass transfer, 
combustion thermodynamics and chemical reaction 
kinetics, phase transition and moving boundary problems, 
hydrodynamics and pneumatics etc. It is difficult to 
describe the dynamics by equations of mathematical 
physics. Additionally, there are too many parameters for 
describing working conditions and product quality. It is 
difficult even impossible to determine degree of freedom 

of working conditions. The dynamics of distribution, non-
linearity, time variation and parameter perturbation can 
not be described accurately. Moreover, some physical 
processes such as particle granularity and its fluidity obey 
statistical laws in essence. The relationship between 
working conditions and product quality can not be 
represented by deterministic mathematical equations. 
There is only statistical correspondence relation between 
them. 

 
1-sinter car  2-bedding material  3-mix feeding  4- ignition hood  5-

bottom material  6-sintered material  7-cooling and wet zone  8-drying 
and preheating zone  9-combusion zone  10-sinter fusion and cooling 
zone  11-machine tail bend  12-wind box  13-star-shaped wheel 14-
waste gas channel 

Figure 1.   A systematic diagram of sintering plant 

Just the statistical characteristic makes this complex 
production process system different from the general 
complex system. It could be called as non-Newtonian 
mechanical system [1]. For this complex production 
process system, there is lack of effective dynamics 
description methods. We try to give a new method to 
describe the movement law obeying statistics by moving 
pattern. 

As is well known, the movement of system could be 
simply illustrated in Fig2.  
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Figure 2.   Schematic diagram of movement trajectory 
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At each point in time nn ttttt ,,,,, 1321 −L , there 
corresponds different run status nPPP ,,, 21 L . It can be 
described by time-domain variables such as state variable, 
output variable, etc. while at each point in time 

nn ttttt ,,,,, 1321 −L , the run status also corresponds to a 
pattern. As time goes on from 1t to 2t till to nt , the run 
status of system will change from pattern 1 to pattern 2 
till to pattern n under the inherent movement law of 
production process. Here pattern is a moving variable. 
Obviously, the movement law of system can also be 
described by the moving of pattern. The dynamics of 
system can be reflected by the variation of pattern class to 
which pattern belongs in different time. 

In fact, early in 60's, pattern recognition developing in 
its initial stage has been used to solve control problems 
[2]. Later G. N. Saridis [3] presented a survey to state the 
applications of pattern recognition methods to control 
systems. More recent work on using pattern recognition 
for process control includes: structure identification of 
nonlinear system or distributed parameters system, state 
estimation, adaptive control etc [4]-[13]. when the 
dynamics of the system under control is not known. 
Sometimes it is only required to determine the class of 
the dynamics rather than its exact identification for 
making control decisions. In these methods, Pattern 
recognition is mainly used to solve system model 
identification or system state estimation problems. After 
that, the design of control law is still based on the time-
domain model. In these methods pattern is not considered 
as a moving variable.  

In this paper, different from traditional pattern-based 
control methods, the idea of moving pattern is proposed. 
That is we attempt to describe the dynamics of sintering 
process by the moving law of working condition pattern. 
The variable representing the moving of pattern is 
defined as pattern class variable. The dynamic behavior 
of the system is described by pattern class variable 
instead of state variable, output variable etc. 

This moving pattern modeling method is composed of 
three parts, namely, construct “pattern moving space”, 
define pattern class variable, construct prediction model. 
First, based on the actual running status data, pattern 
classes are obtained by a clustering algorithm and these 
classes are used as the space scale to form “pattern 
moving space”. Then a variable which we called pattern 
class variable is defined in this “pattern moving space”. 
The value of this variable at any time represents a class 
since the space scale is pattern classes, so it has statistical 
characteristic. At last, prediction model is constructed in 
this pattern moving space based on pattern class variable 
by using time series analysis. 

The outline of this paper is as follows. The next section 
presents the dynamics description method based on 
moving pattern including construct “pattern moving 
space”, define pattern class variable and construct 
prediction model. Section III gives simulations based on 
the sintering process data to illustrate the feasibility of 
this method. Finally, conclusions are drawn in section IV.  

II.  DYNAMICS DESCRIPTION METHOD BASED ON MOVING 
PATTERN 

A. Pattern Moving Space 
Based on the actual run status data collected from 

sintering process of Jinan iron and steel plant, a method 
of statistical space mapping is given to construct “pattern 
moving space”. The main idea of this method is 
clustering in quality space and classifying in feature 
space, and a statistical mapping relation between these 
two spaces is built by using regress analysis method. The 
results of clustering in quality space are being mapped to 
feature space for forming pattern moving space.  

Constructing feature space 
Feature space of sintering process is constructed by 

image feature and measurement data. The image feature 
is extracted from the infrared image of sintering machine 
tail section including geometric characteristic of the 
image such as mean, variance, position distribution, etc. 
The measurement data include temperature and pressure 
of wind boxes. And the image feature together with the 
measurement data composes run status data set of 
sintering process. Feature vectors are extracted from the 
run status data set by using partial least squares 
regression analysis method to cope with multicollinearity 
problem. All these feature vectors span the feature space 
of sintering process.  

Clustering in quality space 
Quality space is constructed by the vectors of sinter 

quality indices, such as ferrous oxide (FeO), tumbler 
index (TI) and so on. To meet the need of 
distinguishability for product quality, the ISODATA 
clustering algorithm is chosen and improved. ISODATA 
algorithm is one of the most popular and well known 
clustering algorithms [16]. It can be viewed as a special 
case of the generalized hard clustering algorithmic 
scheme when point representatives are used and the 
squared Euclidean distance is adopted to measure the 
dissimilarity between vectors and cluster representatives. 
The splitting of pattern class in the algorithm is kept and 
the merging is canceled in keeping with the requirements 
of the service. After clustering in quality space, the 
pattern classes and classification rules are obtained. 

Statistical space mapping 
In order to establish the statistical mapping relation 

between feature space and quality space, the regress 
analysis method is used. FeO and TI are selected as 
dependent variables. And the feature vectors extracted 
from the actual run status data set of sintering process are 
as independent variables. The statistical mapping relation 
between these two spaces is established as follows: 

     
)()()()(

)()()()(

,222,211,20,22

,122,111,10,11

txbtxbtxbbty
txbtxbtxbbty

ii

ii

+++=

+++=

L

L
     (1) 

Where )(1 ty and )(2 ty are quality indices in quality 
space, )(txi is feature vectors in feature space.  

After obtaining the statistical mapping relation 
between these two spaces, the clustering results in quality 
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space can be mapped to feature space. And those classes 
in feature space are as the space scale to form “pattern 
moving space”.  

If the data is collected in a long enough period of time, 
the “pattern moving space” constructed based on these 
actual run status data can be considered as the run 
subspace of the system. Dynamics description and control 
problems can be discussed in this space. When the actual 
run status sample is out of the” pattern moving space”, 
the “pattern moving space” can be expanded by using the 
following method. 

When a new pattern sample is classified to its class, the 
distance between the pattern sample and this class center 
is calculated. If this distance is more than the class radius, 
then the new class generates. The new class center is just 
the pattern sample and the new class radius is the distance 
minus the class radius. 

The above algorithm of constructing pattern moving 
space is summarized as follows: 

Step 1: Constructing feature space and quality space. 
Based on the actual run status data, the feature space is 

constructed by using the partial least squares algorithm to 
extract feature vectors.   

According to the needs of the actual production 
process, FeO and TI are chosen for forming the quality 
space. 

Step 2: Establishing the statistical mapping relation 
between feature space and quality space by using regress 
analysis method as shown in equation (1). 

Step 3: Clustering in quality space by using the 
improved ISODATA clustering algorithm. The class 
center )( yj JZ , the class radius yjD ,max,  and the 
classification rule ))(,( yjk JZyD can be obtained. 

Where ky  is the pattern sample in quality space, c is 
the number of class, jω is the jth  class, 

.,,2,1},,,2,1)),(,(max{,max, cjnkJZyDD yjkyj j
LL === ω

},,2,1)),(,(min{))(,( cjJZyDJZyD yjkyjk L==  
Step 4: Statistical space mapping. 
Using the statistical mapping relation equation (1), the 

clustering results in quality space are mapped to feature 
space for forming pattern moving space scale. In the 
feature space, the class center )( xj JZ , the class 
radius

xjD ,max,
 and the classification rules         

))(,( xjk JZxD can also be obtained. 

Where kx  is the pattern sample in feature space. 
.2,1},,,2,1)),(,(max{,max, cjnkJZxDD xjkxj j

LL === ω

{ }cjJZxDJZxD xjkxjk ,,2,1)),(,(min))(,( L==  
Step 5: Expanding pattern moving space. 
For every new pattern sample nkxk ,2,1, L= , the 

distance ))(,( xjk JZxD  between the new pattern sample 
and its class center can be calculated. 
If xjxjk DJZxD ,max,))(,( > , then the subspace is 

expanded by creating a new class 1+= cc . The new 

class center is the new pattern sample and the new class 
radius is xjxjkxj DJZxDD ,max,,1max, ))(,( −=+ . 

Detail algorithm can be seen in reference Z.G.Xu [14-
15].  

B.  Pattern Class Variable 
In order to describe the movement of system in pattern 

moving space, a variable called pattern class variable is 
defined.  

Assuming that { })(ksx and { })(kmx denotes 
measurement sample series and pattern sample series, 
respectively. A variable )(kdx  that satisfy the following 
transform is defined as pattern class variable. 

                              ))(()( ksxTkmx =                           (2) 

                               ))(()( kmxFkdx =                          (3) 

Where )(⋅T  and )(⋅F are feature extraction and 
classification, respectively.  

Obviously, pattern class variable has two main 
characteristics:  

(i) It is a variable over time. 
(ii) It has the class attribute. 
Since pattern class variable denotes a pattern class, it 

has statistical characteristic. So the dynamics description 
method based on pattern class variable can well reflect 
the statistical characteristics of the plant. It is different 
from the existing statistical modeling methods. But 
pattern has not calculation property, that is to say 
pattern1+pattern2 ≠ pattern 3. In order to calculate, the 
first principal component of the corresponding pattern 
class is taken as pattern class variable’s measurement 
value after classification. Pattern class variable is used to 
describe the dynamics of the system by the change of 
pattern class over time in “pattern moving space”. 

C.  Prediction Model based on Pattern Class Variable 
Prediction Model 
The system prediction model can be built as 

  
)))()2(),1(((

))(~̂()(ˆ
pkdxkdxkdxfF

kxdFkxd
−−−=

=
L

  (4) 

Where )(kdx is pattern class variable, )(⋅F denotes 

classification, )(~̂ kxd is the initial prediction output of 

pattern class variable and )()(~̂ ⋅= ftxd  is the initial 

prediction model. )(ˆ kxd denotes the final prediction 
output of pattern class variable in “pattern moving space”. 

This is a prediction process including two steps. The 
first step is to obtain the initial prediction output )(~̂ kxd  

based on the initial prediction model )()(~̂ ⋅= fkxd . In 
this paper, autoregressive (AR) model is built as the 
initial prediction model: 
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          (5) 

The second step is to obtain the final output of pattern 
class variable )(ˆ kxd by classifying the initial prediction 

output )(~̂ kxd , that is ))(~̂()(ˆ kxdFkxd = .  
Prediction Algorithm 
Because the pattern class variable )(kdx  is obtained by 

classifying the pattern sample series or initial prediction 
output )(~̂ kxd , the effect of the random error or random 
disturbance has been overcome effectively in the pattern 
classification process. Based on the prediction model (4) 
and the initial prediction model (5), the multi-step ahead 
prediction algorithm in pattern moving space is given as 
follows:   
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Where )(⋅F denotes classification.  
Estimating the parameters of prediction model   
The pattern class variable )(kdx  can be obtained by 

classifying the pattern sample series, it also can be 
obtained by classifying the initial prediction 
output )(~̂ kxd , so the parameters pϕϕϕ L21, of prediction 
model can be estimated according to the follow equation 
by using least squares method: 

    
)()(

)2()1()( 21

kpkdx
kdxkdxkdx

p αϕ
ϕϕ

+−+
+−+−= L

          (10) 

       DYDXDXDX TT 1)(ˆ −=ϕ                               (11) 
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Determining the order of prediction model  
As the effect of the random error or random 

disturbance has been overcome effectively in the pattern 
classification process, the model residuals only depend on 
the choice of model order. So we can estimate the order 
of prediction model by judging )(kα equals to zero or 
not.  

                              )(ˆ)()( kxdkdxk −=α                (14) 

Where )(kdx  is the actual running status output 
obtained by classifying the pattern sample, )(ˆ kxd is the 
final prediction output by classifying the initial prediction 
output )(~̂ kxd . 

If the final prediction output )(ˆ kxd  equals to the actual 
pattern class variable )(kdx , then )(kα equals to zero. 
Otherwise it is not true. So the estimation steps of model 
order can be given as follows: 

Step1 Calculate the estimation of pattern class variable 
)(ˆ txd according to (6-9). 

Step2 Obtain the pattern class variable )(kdx by 
classifying the pattern sample.  

Step3 Calculate the residuals )(kα according to (14). 
Step4 If the residuals 0)( ≠kα , increase the 

order 1+= pp , returning to step1.  
If 0)( =kα , then the order P is regarded as the final 

order of the model. 
Notes: in actual calculation process, )(kα may not 

equals to zero, for a given small enough constant ε , 
when εα <)(k , the order P is regarded as the final order 
of the model. 

III.  SIMULATION 

Based on the run status data collected from 90 
sintering machine of Jinan iron and steel plant, 43 groups 
of pattern sample series reflecting actual sintering process 
have been gained after data preprocessing and feature 
extraction. According to the algorithm in reference [15], 
43 groups of pattern samples are classified to its class and 
the first principal component of the corresponding pattern 

2698 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER



class is taken as its value. It is shown in table 1. The 
before 40 pattern samples are used to estimate the 
parameters of prediction model (5) and the last 3 pattern 
samples are used to verify the effectiveness. Given the 
order of model 7,6,5,4,3=p  respectively, the 
parameters of each prediction model are estimated and 
shown in table 2. The results of initial prediction are 
shown in table 3-7. After classifying the initial prediction 
output, the final prediction output can be obtained. It is 
shown in figure 3-7. Where dotted red line denotes 43 
sets of actual pattern class variable time series, solid blue 
line denotes the final prediction output series.  

From all the results of prediction we can see that the 
model is capable of representing the process dynamics. 
But the relative error still exits. The computer calculation 
error and lacking of sample data may be the cause.  

TABLE I.   
PATTERN CLASS VARIABLE TIME SERIES 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
-1.434700 -0.848450 -2.416400 0.164120 0.809250
Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
-0.848450 -0.315550 2.228500 -0.848450 -0.315550
Sample 11 Sample 12 Sample 13 Sample 14 Sample 15
0.164120 0.809250 -0.116400 1.418867 -0.315550
Sample 16 Sample 17 Sample 18 Sample 19 Sample 20
0.164120 0.495100 -0.315550 1.418867 1.418867
Sample 21 Sample 22 Sample 23 Sample 24 Sample 25
0.495100 0.164120 -1.434700 0.809250 0.164120
Sample 26 Sample 27 Sample 28 Sample 29 Sample 30
-0.198633 0.598900 0.598900 0.809250 0.080000
Sample 31 Sample 32 Sample 33 Sample 34 Sample 35
0.198633 -0.198633 -0.848450 -0.803600 -0.803600
Sample 36 Sample 37 Sample 38 Sample 39 Sample 40
2.300000 -1.434700 -0.848450 -0.198633 0.164120
Sample 41 Sample 42 Sample 43   
0.495100 -0.315550 -0.315550   

TABLE II.   
THE INITIAL PREDICTION OUTPUT WHEN P=3 

P=3:  0.502273  0.315560  -0.217645 
P=4:  0.512082  0.295367  -0.240466  0.080151 
P=5:  0.487030  0.294332  -0.234532  0.110626  0.045262 
P=6: 0.499696  0.291062  -0.212582  0.079602  -0.020281  

0.086650 
P=7:  0.493458  0.329751  -0.209236  0.062385  -0.002438  
          0.078096  -0.068291 

TABLE III.   
THE INITIAL PREDICTION OUTPUT WHEN P=3 

  Sample 3 Sample 4 Sample 5
  -0.113974 0.167519 0.526932

Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
0.302080 -0.282832 0.165516 -0.168487 -0.097273
Sample 11 Sample 12 Sample 13 Sample 14 Sample 15
0.456083 0.327907 0.161182 0.087951 0.055830
Sample 16 Sample 17 Sample 18 Sample 19 Sample 20
-0.147489 0.369143 0.526978 0.860269 0.984267
Sample 21 Sample 22 Sample 23 Sample 24 Sample 25
0.387604 -0.070142 0.192709 0.526978 0.230044
Sample 26 Sample 27 Sample 28 Sample 29 Sample 30
-0.224107 0.202411 0.533032 0.465106 0.165201
Sample 31 Sample 32 Sample 33 Sample 34 Sample 35
-0.250652 -0.179860 -0.445603 -0.628132 -0.472550
Sample 36 Sample 37 Sample 38 Sample 39 Sample 40
-0.731639 -0.955939 -0.595949 -0.055250 0.204413
Sample 41 Sample 42 Sample 43   
0.343696 -0.037978 -0.365823   

TABLE IV.   
THE INITIAL PREDICTION OUTPUT WHEN P=4 

   Sample 4 Sample 5
   0.079871 0.470753

Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
0.258311 -0.294555 0.238879 -0.168547 -0.113225
Sample 11 Sample 12 Sample 13 Sample 14 Sample 15
0.512964 0.250859 0.187956 0.090862 0.108160
Sample 16 Sample 17 Sample 18 Sample 19 Sample 20
-0.162505 0.425888 0.495881 0.859700 0.990747
Sample 21 Sample 22 Sample 23 Sample 24 Sample 25
0.396290 0.002812 0.296675 0.560855 0.217168
Sample 26 Sample 27 Sample 28 Sample 29 Sample 30
-0.208155 0.273413 0.544500 0.431361 0.183979
Sample 31 Sample 32 Sample 33 Sample 34 Sample 35
-0.224682 -0.114761 -0.438969 -0.630269 -0.460762
Sample 36 Sample 37 Sample 38 Sample 39 Sample 40
-0.777828 -0.989830 -0.610041 -0.111519 0.114405
Sample 41 Sample 42 Sample 43   
0.281768 -0.070737 -0.360691   

 

TABLE V.   
THE INITIAL PREDICTION OUTPUT WHEN P=5 

    Sample 5
    0.357644

Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
0.206318 -0.291298 0.257267 -0.108155 -0.125984
Sample 11 Sample 12 Sample 13 Sample 14 Sample 15
0.507167 0.235220 0.170858 0.112890 0.146845
Sample 16 Sample 17 Sample 18 Sample 19 Sample 20
-0.129655 0.424426 0.493560 0.816975 0.981052
Sample 21 Sample 22 Sample 23 Sample 24 Sample 25
0.437909 0.086477 0.394501 0.620352 0.242567
Sample 26 Sample 27 Sample 28 Sample 29 Sample 30
-0.176030 0.306660 0.569327 0.415397 0.193952
Sample 31 Sample 32 Sample 33 Sample 34 Sample 35
-0.169627 -0.057335 -0.379620 -0.612870 -0.459878
Sample 36 Sample 37 Sample 38 Sample 39 Sample 40
-0.784045 -1.020204 -0.655878 -0.190169 0.002901
Sample 41 Sample 42 Sample 43   
0.177222 -0.106826 -0.353510   

 

TABLE VI.   
THE INITIAL PREDICTION OUTPUT WHEN P=6 

     
     

Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
0.150436 -0.335996 0.206281 -0.171697 -0.033324
Sample 11 Sample 12 Sample 13 Sample 14 Sample 15
0.504987 0.217806 0.259265 0.020756 0.154366
Sample 16 Sample 17 Sample 18 Sample 19 Sample 20
-0.148607 0.482405 0.466244 0.910654 0.958689
Sample 21 Sample 22 Sample 23 Sample 24 Sample 25
0.427350 0.063922 0.344209 0.647174 0.338271
Sample 26 Sample 27 Sample 28 Sample 29 Sample 30
-0.144536 0.275162 0.555363 0.502363 0.214126 
Sample 31 Sample 32 Sample 33 Sample 34 Sample 35
-0.229688 -0.069911 -0.397706 -0.553594 -0.459939
Sample 36 Sample 37 Sample 38 Sample 39 Sample 40
-0.793393 -0.988436 -0.686386 -0.198033 0.047090
Sample 41 Sample 42 Sample 43   
0.186309 -0.171384 -0.411199   
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TABLE VII.   
THE INITIAL PREDICTION OUTPUT WHEN P=7 

     
     
 Sample 7 Sample 8 Sample 9 Sample 10
 -0.228191 0.240522 -0.112531 -0.077651

Sample 11 Sample 12 Sample 13 Sample 14 Sample 15
0.451685 0.237897 0.282825 -0.010556 0.220930
Sample 16 Sample 17 Sample 18 Sample 19 Sample 20
-0.185695 0.454091 0.442751 0.929139 0.963645
Sample 21 Sample 22 Sample 23 Sample 24 Sample 25
0.498951 0.061369 0.309282 0.611222 0.267188
Sample 26 Sample 27 Sample 28 Sample 29 Sample 30
-0.240966 0.223977 0.570304 0.488105 0.176416
Sample 31 Sample 32 Sample 33 Sample 34 Sample 35
-0.231779 -0.070894 -0.433723 -0.625047 -0.544930
Sample 36 Sample 37 Sample 38 Sample 39 Sample 40
-0.811764 -1.018511 -0.720631 -0.161561 0.098800
Sample 41 Sample 42 Sample 43   
0.243913 -0.060379 -0.320917   
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Figure 3.  The final prediction output when P=3 
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Figure 4.  The final prediction output when P=4 
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Figure 5.  The final prediction output when P=5 
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Figure 6.  The final prediction output when P=6 

0 10 20 30 40 50
-1.5

-1

-0.5

0

0.5

1

1.5

 

Figure 7.  The final prediction output when P=7 

IV.  CONCLUSION 

In this paper, dynamics description for sintering 
process based on moving pattern has been proposed.  The 
main advantage of this method can reflect the statistical 
characteristic of this system. But it is different from the 
autoregressive model (AR) though they have the same 
structure in the initial prediction model. There are two 
reasons to explain their differences. The first is that the 
prediction model is a two-step prediction model, it has a 
classification process. The second reason is that the 
variable has statistical characteristic. Pattern moving 
space is constructed by statistical space mapping method 
to meet the need of distinguishability for quality indices. 
A variable called pattern class variable is defined in this 
space and the prediction model based on pattern class 
variable has been built. At last, an example of the 
sintering production process is given to verify the 
research. The results have shown that the proposed 
method is feasible. Further research is focus on controller 
design based on moving pattern, and the relationship 
between the pattern moving space granularity and system 
regulation performance can also be studied. 
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