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Abstract—Modern embedded devices require high 
performances such as computing, throughput and power 
consumption. Multiprocessor System-on-Chip (MPSoC) is a 
promising solution to meet the requirements. And the 
Network-on-Chip (NoC) is used as the interconnection of 
MPSoC. Whereas it brings more challenge on application 
programming and fast design exploration of software and 
hardware implements automatically.  

In this paper we propose a cluster MPSoC architecture, 
which adopts hybrid interconnection of processor clusters 
and NoC. And we present a design automation and synthesis 
methodology to generate MPSoCs in a system-level way for 
multiple application use-cases. And it merges them onto a 
minimal hardware architecture of resources. The desired 
MPSoC design is generated with short design time, making 
it suited for fast design exploration for MPSoC development. 
The proposed design flow is implemented into a tool for 
Xilinx FPGAs. The experiments results illuminate that our 
design methodology is a convenient approach to generate 
the MPSoC design for multiple use-cases.  
 
Index Terms—cluster MPSoC systems, multiple use-cases, 
colored timed Petri net, design exploration  
 

I.  INTRODUCTION 

New applications for embedded systems demand 
complex multiprocessor designs to meet the constraints 
such as real-time deadline, energy consumption and 
resource usage ratio. The Multiprocessor System-on-Chip 
(MPSoC) is proposed as a high performance architecture 
for such problems [1], for the requirements of higher 
computing performance, good flexibility, lower power 
consumption, but there are many design challenges for 
such complex multiprocessor systems. One of the key 
design challenges is the automated design space 
exploration (ADSE) of such MPSoC systems, to allow 
fast exploration of system hardware and software 
implementations with accurate performance design and 
evaluation [2]. 

Many such potential use-cases in the embedded 
devices is leading to a design shift towards developing 
systems in software and programmable hardware, and a 
single hardware configuration may not suit for large 
number of use-cases. So in this paper we present a 
solution to provide a systematic design methodology that 
generates high level models for the desired multiple use-
cases, to generate a merged design for the use-cases. The 
approach merges use-cases onto a hardware configuration 
such that multiple use-cases can be supported in MPSoC 
system with varieties of performance requirements. 

We also estimate the performance of mapping design, 
and use decentralized computational grads of fuzzy 
system to control decision with characteristics of system 
state description. This fuzzy approach can find well-
performing tradeoff policies for performance 
characteristics. Results of a case-study with multiple 
applications are also presented. And we compare the 
results of analysis with FPGA implementation. 

The rest of this paper is organized as follows. Section 
II reviews the related work for system design and 
synthesis methodology for multiprocessor systems. 
Section III introduces the CTPN graphs. Section IV 
describes our approach of mapping multiple use-cases 
onto MPSoC. Section V presents the results of 
experiments obtained by our design methodology. 
Section VI concludes the article and gives directions for 
future work. 

II.  RELATED WORK 

How to map the application to the architecture is one 
of key design problems, and it has been widely studied in 
literature. Model of Computation (MoC) is essentially a 
general way of describing system behavior in an abstract, 
conceptual form and as such enables representation of 
system requirements and constraints on a high level. 
Dataflow models are often used for modeling DSP 
applications and for designing concurrent stream 
applications [6]. ESPAM [7] uses Kahn process networks 
(KPNs) for application specification, but the KPN is 
limited to a single application and completely distributed 
over individual processes, which is difficult to achieve an 
efficient and practical realization. MAMPS [8-9] uses 
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synchronous dataflow (SDF) for applications 
specification, but it cannot capture the behaviors of 
competition and constraints on resources between 
applications. So the SDF is limited to independent 
applications. In our approach, we use Colored Timed 
Petri Net (CTPN) [10-11] to extend dataflow model in a 
high abstraction for the application specification instead. 
CTPN uses colored sets to present kinds of resources, and 
time labels to present the timing of processes, which are 
efficient to describe data stream and control between 
processes. CTPN can be viewed as a combination of 
process-oriented and state-oriented MoC. CTPN can get 
the dynamic behaviors of data transfer and states of 
resources. And further our approach creates a hierarchical 
CPN design to support multiple applications.    

Table I shows estimates of various design approaches 
by various means. The first method SDF3 [12] is only 
able to predict performance of single applications. 
ESPAM does not support multiple applications. MAMPS 
is the closest to our approach, as it uses FPGA and 
supports multiple applications, but it is limited in 
memory resource and it does not support the control flow. 
Our flow supports multiple applications and different 
resources, and also provides quick results of application 
performances and realization on FPGA.      

To be cost effective, SoCs are often programmable and 
integrate several different applications or use-cases. But 
the use-case concept is relatively new to MPSoCs. Murali 
[13] focuses on the communication infrastructure of 
MPSoC, in particular networks-on-chip (NoC). And the 
MAMPs is to design a common point-to-point 
connections for multiple use-cases. Our flow is mainly 
targeted towards hierarchical connections, which use both 
of NoC and processor clusters. The use-case is defined as 
a combination of some applications like a use-scenario 
[5], and more use-cases with new applications will 
emerge in front of us. The design methodology for 
multiple use-cases in embedded devices is essential to the 
research in the design automation, which allows 
designers to quickly generate MPSoC designs for various 
use-cases and to achieve the performances requirements, 
such as low costs, high computing performance. Our 
design methodology provides an approach for designers 
to study the performances of the use-cases and tune the 
architecture to achieve a better performance. Our target 
hardware platform is Xilinx FPGAs, and Xilinx provides 
a tool-chain as well to generate the designs, but the tool 
mostly aims at designing with architecture of one or two 
processors. So it is time consuming and error prone to 
generate MPSoC architecture by manual operations. In 
our flow MPSoC is automatically generated together with 
software for each processor. 

III. CTPN AND PROBABILISTIC ANALYSIS 

A.  CTPN Specfication 
In a typical CTPN, a transition represents a task 

execution. Tasks also need some input data or control and 
usually also produce some output, such data or 
information is referred to as tokens. Directed arcs 

represent the dependency of tasks. Different kinds of data 
stream may be defined as colored tokens to distinguish 
between each other. Data buffers may be modeled as 
tokens on a back flow on places. In such case, the number 
of tokens on the place indicates the buffer size available. 
When a transition fires, the input data buffer size reduces 
and the output data buffer size increases. Fig.1 shows an 
overview of CTPN of multiple applications. It merges 
App0 and App1 into a CTPN model, in which each 
application has its own dataflow graph. The two 
applications share the data places and they may be 
dependent or independent, presented by colored tokens. 
The data flows are in a concurrent running environment 
and time tags are appended to these tokens, so the 
execution time of tasks and resources usage on the 
processing core are also specified. It is useful for present 
the constraints of multiple applications running on the 
MPSoC, and research on the contention of resources 
(kinds of resources include not only shared memory, and 
also computing IP cores, interface IP cores) and the 
dynamic execution of applications.  

Resources are always a constraint in an FPGA device 
and the applications are represented by a Petri net of 
several transitions and places, but as the number of use-
cases to be supported increases, the scale of the multiple 
use-cases CTPN models increases as well. It is inefficient 
for simulation and analysis and mapping onto FPGA 
devices. So we abstract CTPN model of application into a 
hierarchical CTPN block, as shown in Fig.2. Use-case is 
a combination of some applications, which can be active 
simultaneously. Applications are converted into 
execution blocks, in which tasks of the application are 
described as some elements. With the relative rules, all 
applications can be presented into a top CTPN. CTPN 
system use job set to present each use-case. Jobs can run 
concurrently in the hierarchical CTPN, while tasks 
execution and resources usage are also marked. Using 
some scheduling algorithms, the model runs in 

TABLE I.   
COMPARISON OF VARIOUS DESIGN APPROACHES 

 SDF3 ESPAM MAMPS Our Flow 

Appoach Analysis FPGA FPGA FPGA 

Model SDF KPN SDF CTPN 

Concurrency Yes Yes Yes Yes 

Communication Asynch. Asynch. Asynch. Asynch.&Synch.

Scheduling Static Dynamic Static Dynamic 

Control flow No Inside 
process 

No Explicit 

Hierarchy No No No Yes 

Multiple Use-
cases 

No No Yes Yes 

Dedicated 
Resources 

Mem. Mem. Mem. Mem.& 
Peripheral 

Equipments 
Arbiter Support N.A. N.A. Yes Yes
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Figure 1.   Example of a CTPN of multiple applications. 

 
Figure 2.  Hierarchical CTPN. 

CPNTools[16] and generate the applications specification 
for hardware architecture. For example, a tuple  <TaskID, 
ProcID, ExecTime> represents the task assigned onto the 
processor and its execution time; and also  usages of 
processor, memory, and modules ( computing core or 
interface core). The number of tokens also may illuminate 
capacity of required resources. 

When multiple applications run concurrently, they 
often compete for resources. A probabilistic computing 
model can be used to predict the contention. The response 
time of task can be denoted as: resp exec waitt t t= + .The waitt  is 
the time that task spends on waiting for available 
resources in contention. And the respt  indicates how long 
it takes to process the task after it arrives at the processor 
node. But for use-case of applications is not always 
known at design-time, it is not possible to exactly get the 
waiting time. So we use a probabilistic approach to 
estimate it. In the example CTPN of applications, 
assuming that execution dataflow of App0 is as  

0 0 0 0(80) (40) (40) 2 (40)Ta Tb Tc Td→ → → ; and for 
App1,it is 1 1 12 (40) (80) (80)Ta Tb Tc→ → . Here task 0Ta  
runs 1 time and spends 100 units time in a period. 0Ta  

and 1Ta  are mapping on a processor 0Proc . 0Ta  is active 
for 0 0( )* ( )et Ta r Ta in 0( )Per A  time units, and the 
probability of 0Proc  is used by 0Ta on average equals 

0 0 0( )* ( ) / ( )et Ta r Ta Per A . And 1Ta  can arrive at random 
time, its waiting time can be a variable from 0[0, ( )]et Ta . 

For the probability density function ( )p x  of 1Ta  
waiting for 0Ta can be defined as follows, similar as that 
in [14]: 

        
0 0

0 0 0

w 0 0

1 ( ) ( ), 0
( ) ( ) / ( ), 0 ( )

( ), ( )

e a w a

e a e a e a

a e a

P T P T x
p x P T t T x t T

P T x t T

− − =⎧
⎪= < <⎨
⎪ =⎩

    (1)                       

As shown in ( )p x it indicates the probability of 
1Ta distribution with 0Ta states. And the corresponding 

expected wait time can be computed. 
( 0)

1
0

0
0 0

( ) ( ) ( )

( )( )( ( ))
2

te Ta
wait a

e a
e a w a

t T E x xp x dx

P Tt T P T

= =

= +

∫
    (2)                       

For multiple applications mapping onto MPSoC, the 
system total wait time can be the overall tasks wait time 
on each processor sum up: 

 _ ( )
n

wait wait j
n m

t total t T=∑∑  (3)                     

With new estimated wait time, the system’s response 
time should be updated. Applying this approach in above 
example and for iterative execution of system, it will get 
stable after several loops. The corresponding period of 
applications in these loops should be 286, 290, 291, and it 
will be stay at 291. And the system worst case wait time 
should be _ ( )

n

wait exec j
n m

t worst t T=∑∑ , then WCRT is 480. 

But in actual the period will be 240 for best-case and 320 
for worst-case. WCRT is over-estimated by 50%. And if 
we use a maximum distribution probability of wait time. 
So _ max 1 max 0 0 0( ) ( ) ( )( ( ) ( ))wait a e a e a w at T E x t T P T P T= = + , it 
may be viewed as a conservative up-bound estimate. Its 
value should be 324, which is a little more than actual 
worst case. 

B.  Fuzzy-system-based Scheduling Approach 
For the design of system decision policy, we apply the 

TSK model in [15]. It is capable of describing a nonlinear 
system using a small number of rules. It is conventional 
to identify its parameters in algorithms with explicit 
function expressions. Fuzzy decision policy is founded on 
a set of rules. Each specific rule describes a system state 
in decisions made. Thus each system state is described by 
a set of features. From the different parts of overall 
system, various state features are conceivable. Following 
the fuzzy rule concepts consist of a feature condition and 
a consequence that decides on the acceptance or decline 
of a submitted task: 
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(1) (1)
1 1( , )γ δ (2) (2)

1 1( , )γ δ ( ) ( )
1 1( , )Nf Nfγ δ

1R
2R

NfR

1R 2R NfR

( )DY x

 
Figure 3.  Fuzzy-system-based scheduling approach 

IF queue is long and task highly parallel THEN   decline task

IF queue is empty and task not parallel THEN   accept task
M M M

 
A complete rule base constitutes the core of rule 

system. The current system will be checked by the rules 
while new applications are added into the system. 
Generally the TSK model consists of fN IF-THEN 
rules Ri such that: 

(1) ( )
1 1 1

0 1 1

: IF  is  and  and  is  
THEN = f

Nf
Nf

Nf N

Ri x g x g
yi bi bi x bi x

=
+ + +

L

L
 

Here jx are inputs of rules states, and iy is the 

nonlinear local output of decision state. ( )fgi is the input 

fuzzy set that describes the membership for a feature f . 
Thus system state is denoted by fN features. The degree 
of membership is function value with input fuzzy set 
characterized. And the overall output of the system can 
be computed as: 

( ) ( )
( ) ,

( )
( ) ( )

f

D

Nx y h
x

x h
y x g xφ

φ
φ=

∑ = ∧∑  
Where ( )xφ  is the degree of membership of rule for 

the input x , therefore the output value of TSK model is 
computed by the weighted rule’s recommendation over 
all. Fig.3 shows the rules encoding by the membership 
functions, each feature can be modeled by a ( , )γ δ  
characteristic function. The TSK model can be simplified 
with binary decisions.  Thus the whole rule base is 
encoded by concatenation of single rules. A rule base of 
n  rules is described by a set of (2 1)l n n= +  parameters. 
Therefore the scheduling optimization is to find suitable 
parameter settings for the rules in order to get well-
performing performance of applications. 

For current system state we rely on different features 
that will constitute the conditional part of rules. In order 
to cover comprehensive system information with a single 
feature, we consider the Normalized Applications Period 
(NAP) as a feature:  

 
( )

( )
n

Per AnNAP
WCRT An

= . (4) 

it indicates the performance of each application and 
reflects the satisfaction of its execution.  

The second feature is the Normalized Resources 
Requirements (NRR): 

 
( )
( )

n
NRr AnNRR
NRa An

= . (5) 

It is the ratio of Application resources requirements  
and the maximum number of available resources.  

And also we consider the workload of processor nodes, 
the Normalized Processor Usage (NPU): 

 
1 ( , )

max( ( ))
m A m

m
NPU texc T P

Per A
= ∑ . (6) 

  it indicates the total execution time of applications on 
processor nodes.  
We use fuzzy sets to describe the priority levels of tasks, 

as shown in (7). S(x) gives the fuzzy description of 
characteristic x, and  uAi(x) is the membership of x 
belongs to expression Ai.  

 
1

1 1

( ) ( )( ) , ( ) 1
n

A An
Ai

n i

u x u xS x u x
A A =

= +…+ =∑
  

  (7) 

It is used for describing NAP, NRR, NPU and other
 

parameters that computed in TSK model. Thus the NAP 
can be classified by Ai. such as 
“shortest”, ”short”, ”medium”, ”long”, ”longest” and etc. 
and  these fuzzy memberships of task,  can be loaded into 
the fuzzy system, to compute the composite target 
function of task priority.  

In the policy of processor selection, we should 
consider the relationships between the feasible time of 
tasks, available time of resources and available time of 
processors, and select the appropriate processor in 
available processor subsets to reduce the schedule time 
length of task sets and improve processor utilization. 

IV GENERATING MPSOC SYSTEM  

A. Design of Hardware Architecture 
The NoC has been proposed as the future on chip 

interconnection. Whereas, NoCs brings more challenge 
on the parallel programming and synthesis. So we design 
a new cluster-based homogeneous MPSoC architecture. 
The processors are organized into clusters, in which 
processors are connected by fast FIFO links. These FIFO 
links remove the possible sources of contention that can 
limit performance and support multiple applications 
running concurrently better. For inter-clusters the system 
uses a simple NoC architecture composed by nodes of 
router, and implements the communication between 
nodes by passing messages.  

The primary MPSoC system is built on the XUPV5-
LX110T Development Board from Xilinx, this board has 
a Virtex-5 XC5VLX110T FPGA, and a video VGA input 
and DVI output hardware. Our experiments are simulated 
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Figure 4.  MPSoC for multiple use-cases. 

Figure 6.  Architecture of MPSoC with NoC and Clusters 

Figure 5.  Merging design of multiple use-cases. 

on the FPGA, setting the MPSoC system on FPGA 
processing the video data, and output the video multi-
display onto a PC screen. And also pictures stored in the 
flash memory are used for JPEG encoding and decoding. 

For obtaining better performance of the cluster, we 
adopt hierarchy communication architecture as shown in 
Fig.5. It means that each cluster is a node, and 
communicates with others through the NI interface. The 
NI provides a set of functional registers for controlling 
the packet transferring process, including Tx/Rx State 
Register, Tx/Rx Packet Length Register, Tx/Rx Packet ID 
Register, input and output buffers can be directly 
accessed by FSL link, which is implemented by FIFO. 
The on-chip router is the key of NoC design, it should 
implement the functions of routing, flow control, 
switching, arbitration, and buffering for the network 
communication. There are five input channels and five 
output channels in one router, and they are connected by 
a interconnection. This router adopts synchronized 
handshake protocol in flow control. 

B. Merging Design for Multiple Use-cases 
From these application specified descriptions, a 

multiprocessor system is generated. Each task is mapped 
on a separate processor node and each link mapped to a 
unique FIFO channel. Processors will be shared by these 

tasks and the total number of processors corresponds to 
the maximum of tasks in an application. To avoid 
overload on some processors and deduce the inter-
communication among processors, independent 
applications are mapped into different clusters by the 
fuzzy-system-based scheduling, on comprehensive 
estimation of applications and resources performances. In 
Cluster, the dataflow between processors are mapped into 
unique FIFO links, and different applications use their 
own communication as shown in Figure 5(d). The design 
supports the flow stream of pipe-line and also reduces the 
contention of communication channels.  

With different use-cases, the hardware designs are 
usually different, so an entire new design has to be re-
synthesized for multiple use-cases. Here we describe how 
we merge the designs for the use-cases into a hardware 
configuration in Fig.6. Tasks of applications are mapping 
onto processors in group of clusters, and the hardware of 
two use-cases is integrated with minimal hardware 
requirements to support both use-cases. The combined 
design can be seen as a superset of requirements of the 
two use-cases. The algorithm is to obtain the minimal 
superset of the hardware design requirements of all use-
cases. It iterates over all use-cases to compute their 
individual resource requirements and generate the 
maximum needed for all use-cases.  

Software generation is easier as compared to hardware. 
Applications program are partitioned into tasks by some 
benchmarks and are mapping into relative processors 
software. And also the communication functions of FIFO 
(such as readFIFO or writeFIFO) will be added into the 
processor software. The FIFO id needs to be consistent to 
that in hardware descriptions.   

We design a tool DSMAMPS (Design and Synthesis of 
Multi-Application on Multi-Processor System). Hardware 
and software flows are integrated together to get quickly 
results of MPSoC design for multiple use-cases. Using 
the CTPN, we design the multiprocessor system for 
multiple use-cases. And through simulation we analyze 
performances of designs and get applications descriptions 
on MPSoC for each use-case. Then the flow merges 
requirements of all use-cases into a new hardware 
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Figure 7.  DSMAMPS flows 

Figure 8.  Period computed using iterative analysis 

architecture design. According to the specifications of 
merged design, DSMAMPS generates the hardware and 
software files of FPGA system automatically, and also 
generates final executive bit file with Xilinx EDK 
synthesis commands. 

V. EXPERIMENTS AND RESULTS 

In this section, we present some results obtained for 
the iterative analysis as compared to simulation. The 
overall application throughput predicted is compared with 
the measured. And in our experiments, we generate 7 
typical applications such as H.263 encoding and decoding, 
JPEG encoding and decoding, voice call and surf web, 
and also generate 10 use-cases. 

A. Applications Period 
In the experiments iterative analysis is used to compute 

the performance of all the applications, and the results of 
other techniques like the worst case and actual observed , 
and also the approximation exponential probability 
approach[14] are also presented. Fig.8 shows the results 
of iterative analysis with the varying iteration times for 
application D.  

Its original period is 457. When running concurrently 
in the use-case of multiple applications, its execution 
period is 1243. The exponential approximation approach 
estimates it as 1601, while the worst-case is 3405. And 
the iterative approach gets a predicted period of 1320 for 
four iterations and 1258 for six iterations. We can see the 

iterative approach get a closest estimate period and get 
stable after some iterations. And the final estimate is 
independent of the initial estimate, like original or worst-
case estimates. That gives an efficient approach to 
estimate the period of applications. 

B. Applications Throughput 
The throughputs results of such combinations are 

summarized in Table II. The results are compared with 
simulation. We observe that in general, the applications 
throughput measured on FPGAs is lower than simulation 
by about 6.7% (Average throughput variance of 
applications A0, A1and A2).This is because our 
simulation models do not take into account the system 
communication consumption of Clusters. That will make 
applications execution take somewhat longer than 
expected, hence it delays the start time of responded tasks 
and also reduces the throughput of system. However, we 
are dealing with the multiple use-cases, the contention of 
resources might cause some applications to wait for 
tokens, throughput of some applications is significantly 
lower. We can observe that in use-case U3 throughput of 
application A2 is lower than simulation 20.22%, and in 
another use-case U5 throughput of application A2 is 
lower than simulation 21.27%. In FPGA implement the 
communication overhead may affect the execution 

TABLE II.   
COMPARISON OF THROUGHPUT FOR DIFFERENT APPLICATIONS 

OBTAINED ON FPGA WITH SIMULATION 

 App1 App2 

Use-case Sim FPGA Var % Sim FPGA Var %

U0 2.35 2.15 -8.51 6.72 6.7 -0.29
U1 2.10 1.93 -8.09 8.25 8.17 -0.96
U2 2.02 1.99 -1.48 9.02 8.87 -1.66
U3 5.42 5.37 -0.92 0.89 0.71 -20.22
U4 0.78 0.64 -17.94 3.32 3.23 -2.71
U5 5.95 5.77 -3.02 0.94 0.74 -21.27
U6 1.53 1.39 -9.15 4.06 3.92 -3.44
U7 1.49 1.29 -13.42 4.24 4.04 -4.71
U8 4.19 4.02 -4.05 4.56 4.39 -3.72
U9 3.29 3.26 -0.91 4.12 4.09 -0.72
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Figure 9.  Comparison of throughput for applications 

Figure 10.  Performance of fuzzy-based approach 

Figure 11.  Results of video converting and picture processing

performance of tasks, thereby delay the start of 
successive tasks. Most of the applications get a less 
variance throughput from simulation, this illuminates that 
concurrent execution of multiple use-cases is more 
complex.    

C. Mapping Multiple Applications 
The real multiple applications pose some characters 

effecting performance prediction, such varying execution 
times of tasks and running times in a period. And further 
the number of tasks mapped onto processor nodes may 
vary significantly. Thus it is essential to optimal the 
scheduling of these tasks for a well-performing tradeoff 
of performance. Here we use the fuzzy-system-based 
scheduling approach in Section 4 to allocate the tasks. 
Fig.9 shows the comparison between the simulation and 
implement on FPGA. A couple of observations can be 
made from the graph. The throughput of applications 
increases in different proportions when executing 
concurrently while the throughput of JPEG encoding 
decreases 17% and that of voice call decreases 95%. This 
is affected by the number of tasks in application, and the 
resources contention of execution. Such as VLD of JPEG 
decoding is executed once per period and IQ of H.263 
decoding is executed 594 times per period. This causes 
significant degradation in the performance. And the 
iterative analysis gets accurate estimates. And for optimal 
scheduling, our fuzzy-system-based approach gets a 
better workload and improvement of some applications in 
Fig. 10. 

And the Fig.11 shows an example of our MPSoC 
design, which works on some real-time video converting 
such as scaling control and color filter, and also the 
picture processing of  JPEG encoding and decoding. The 
input video is divided into two, one is for the right 
monitor to show, and another is transmitted into the  
XC5VLX110T FPGA board. We use the MPSoC on 
FPGA chip to complete the multiple applications, and 
output the videos and pictures onto the 4 screen windows 
of  the left monitor. 

D. Resources Requirements  
Since the embedded device has limited resources, it is 

important to doing a design space exploration and 
computing the optimal resources requirements. We 
explore the tradeoff between buffer memory required and 
throughput obtained for multiple applications. Table III 
shows how the throughput of applications varies with 
numbers of tokens. 

A couple of observations can be made from the table. 
When the number of tokens increased, the throughput 
also increases until reach an upper limit. When the 
application A2 is the only running application (setting 
initial tokens of other applications to 0), we can observe 
that its throughput increases almost linearly until 8 tokens, 
and it will get less increase after that. Further when 
multiple applications running concurrently, different 
initial tokens of A0 and A1 will worsens the performance 
of A2, but only until a certain point. It explains that the 
increasing initial tokens (assigned hardware resources 
size such as buffer or computing IP cores) will affect the 

TABLE III.   
COMPARISON OF THROUGHPUT WITH VARIES INITIAL TOKENS 

Initial tokens Throughput 

A0 A1 A2 A0 A1 A2 
0 
0 
0 
1 
1 
1 
3 
5 

0 
0 
0 
1 
3 
5 
3 
5 

1 
8 
10 
1 
1 
1 
5 
5 

- 
- 
- 

1.62 
1.40 
1.24 
4.30 
3.27 

- 
- 
- 

1.94 
5.04 
5.24 
4.95 
4.19 

0.83 
4.52 
4.73 
0.68 
0.58 
0.52 
4.13 
4.02 
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performance of multiple applications, but it will cause no 
change beyond a certain value.  Increasing initial tokens 
for A0, A1 and A2 cause no change beyond 3, 5 and 8 
separately. So it shows the required number of initial 
tokens for each application, with which we can assign 
appropriate resources for these applications. This analysis 
allows the designers to choose a desired performance 
tradeoff for the multiple applications execution.    

 

E. DSE of MPSoC System 
The time spent on exploration is an important aspect 

when estimating the performance of big designs. The 
MPSoC for multiple use-cases are designed both by-hand 
and by our tool. The results are shown in Table IV. For 
hardware and software generation, Xilinx toolset just 
supports single or two processors. Designers have to add 
the multiple processors and other IP components by-hand, 
and also connect them one by one. It is very time-
consuming and error prone. Even for single application 
design it will take 12 minutes and 20 minutes separately, 
no matter the more complex design for multiple use-cases. 
In contrast, our design flow the total time of hardware 
and software generation for 5 use-cases is just 250 
milliseconds.   

Since with Xilinx tools the hardware synthesis step 
takes about 68 minutes and software synthesis step takes 
about 1.5 minutes, the entire DSE total time is about 103 
minutes. For the multiple use-cases, it will take designers 
1~2 days at least and more attention on the error 
correction of design. In our auto-design and synthesis 
flow, it takes about 68 minutes and 3 minutes for 
hardware and software synthesis, so the entire DSE for 5 
use-cases is carried out in about 71 minutes. Contrast to 
Xilinx toolset, our auto-design methodology results in a 
speedup of 7.3 when generating a new merged hardware 
for each use-case. As often we can use a hardware design 
to support multiple use-cases, the hardware just needs to 
be synthesized once; with the number of use-cases 
increases, the cost of generating the hardware becomes 
more less for each use-case. This study is illustrating our 
design flow is useful and convenient for DSE of MPSoC 
system.  

VI CONCLUSIONS  

In this article we propose an auto-design flow to 
generate the Cluster MPSoC designs for multiple use-
cases. Our approach takes the system-level description of 

multiple use-cases in CTPN, and produces the 
corresponding MPSoC mapping specifications for use-
cases. Our design flow allows simulation and analysis of 
throughput and resources requirements and other 
performances. It is convenient to study the tradeoff 
between performances and get a desired MPSoC 
architecture. And we present the approach to merge and 
partition use-cases into a minimal hardware design. And 
our design flow integrates auto-design and synthesis, 
which allows designers to generate the complex MPSoC 
design quickly, without much time consuming, and error 
prone.  

The experiment with multiple application use-cases 
shows the prediction is close to the actual execution. 
Further, it takes four to six iterations for prediction 
converging and its final estimate is still accurate with 
varying initial points. The accuracy of prediction is 
validated with multiple applications implement on FPGA 
MPSoC system. And to find a mapping design of well-
performing workload and performance of system, we 
present a fuzzy-system-based approach to decide the 
distribution of applications’ tasks by system state features. 
It allocates applications for good performance 
characteristics such as applications response time and 
resource utilization. 

Further we would like to expend design objects, and 
develop more ways for kinds of SoC architectures, such 
as heterogeneous processors, irregular network 
interconnection. And we would also try parallel partition 
of applications to high speed requirement and try 
evolutionary learning process to the fuzzy system to 
optimize the rules base. And we would also try parallel 
partition of applications to high speed requirement and 
try arbiters to improve load-balancing between multiple 
applications.  
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