
Prototype Design and Synthesis of Cluster
MPSoC Architecture for Multiple Applications

Da Li

School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, China
Email: lida1204@gmail.com

Yibin Hou, Zhangqin Huang and Chunhua Xiao

Embeded System and Software Institute, BJUT,Beijing, China
Email: {yhou,zhuang}@bjut.edu.cn, xiaochh@emails.bjut.edu.cn.

Abstract—Modern embedded devices require high
performances such as computing, throughput and power
consumption. Multiprocessor System-on-Chip (MPSoC) is a
promising solution to meet the requirements. And the
Network-on-Chip (NoC) is used as the interconnection of
MPSoC. Whereas it brings more challenge on application
programming and fast design exploration of software and
hardware implements automatically.

In this paper we propose a cluster MPSoC architecture,
which adopts hybrid interconnection of processor clusters
and NoC. And we present a design automation and synthesis
methodology to generate MPSoCs in a system-level way for
multiple application use-cases. And it merges them onto a
minimal hardware architecture of resources. The desired
MPSoC design is generated with short design time, making
it suited for fast design exploration for MPSoC development.
The proposed design flow is implemented into a tool for
Xilinx FPGAs. The experiments results illuminate that our
design methodology is a convenient approach to generate
the MPSoC design for multiple use-cases.

Index Terms—cluster MPSoC systems, multiple use-cases,
colored timed Petri net, design exploration

I. INTRODUCTION

New applications for embedded systems demand
complex multiprocessor designs to meet the constraints
such as real-time deadline, energy consumption and
resource usage ratio. The Multiprocessor System-on-Chip
(MPSoC) is proposed as a high performance architecture
for such problems [1], for the requirements of higher
computing performance, good flexibility, lower power
consumption, but there are many design challenges for
such complex multiprocessor systems. One of the key
design challenges is the automated design space
exploration (ADSE) of such MPSoC systems, to allow
fast exploration of system hardware and software
implementations with accurate performance design and
evaluation [2].

Many such potential use-cases in the embedded
devices is leading to a design shift towards developing
systems in software and programmable hardware, and a
single hardware configuration may not suit for large
number of use-cases. So in this paper we present a
solution to provide a systematic design methodology that
generates high level models for the desired multiple use-
cases, to generate a merged design for the use-cases. The
approach merges use-cases onto a hardware configuration
such that multiple use-cases can be supported in MPSoC
system with varieties of performance requirements.

We also estimate the performance of mapping design,
and use decentralized computational grads of fuzzy
system to control decision with characteristics of system
state description. This fuzzy approach can find well-
performing tradeoff policies for performance
characteristics. Results of a case-study with multiple
applications are also presented. And we compare the
results of analysis with FPGA implementation.

The rest of this paper is organized as follows. Section
II reviews the related work for system design and
synthesis methodology for multiprocessor systems.
Section III introduces the CTPN graphs. Section IV
describes our approach of mapping multiple use-cases
onto MPSoC. Section V presents the results of
experiments obtained by our design methodology.
Section VI concludes the article and gives directions for
future work.

II. RELATED WORK

How to map the application to the architecture is one
of key design problems, and it has been widely studied in
literature. Model of Computation (MoC) is essentially a
general way of describing system behavior in an abstract,
conceptual form and as such enables representation of
system requirements and constraints on a high level.
Dataflow models are often used for modeling DSP
applications and for designing concurrent stream
applications [6]. ESPAM [7] uses Kahn process networks
(KPNs) for application specification, but the KPN is
limited to a single application and completely distributed
over individual processes, which is difficult to achieve an
efficient and practical realization. MAMPS [8-9] uses

Manuscript received December15, 2011; revised April 12, 2012;
accepted April 17, 2012.

Copyright credit, project number, corresponding author, etc.

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2671

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.11.2671-2679

synchronous dataflow (SDF) for applications
specification, but it cannot capture the behaviors of
competition and constraints on resources between
applications. So the SDF is limited to independent
applications. In our approach, we use Colored Timed
Petri Net (CTPN) [10-11] to extend dataflow model in a
high abstraction for the application specification instead.
CTPN uses colored sets to present kinds of resources, and
time labels to present the timing of processes, which are
efficient to describe data stream and control between
processes. CTPN can be viewed as a combination of
process-oriented and state-oriented MoC. CTPN can get
the dynamic behaviors of data transfer and states of
resources. And further our approach creates a hierarchical
CPN design to support multiple applications.

Table I shows estimates of various design approaches
by various means. The first method SDF3 [12] is only
able to predict performance of single applications.
ESPAM does not support multiple applications. MAMPS
is the closest to our approach, as it uses FPGA and
supports multiple applications, but it is limited in
memory resource and it does not support the control flow.
Our flow supports multiple applications and different
resources, and also provides quick results of application
performances and realization on FPGA.

To be cost effective, SoCs are often programmable and
integrate several different applications or use-cases. But
the use-case concept is relatively new to MPSoCs. Murali
[13] focuses on the communication infrastructure of
MPSoC, in particular networks-on-chip (NoC). And the
MAMPs is to design a common point-to-point
connections for multiple use-cases. Our flow is mainly
targeted towards hierarchical connections, which use both
of NoC and processor clusters. The use-case is defined as
a combination of some applications like a use-scenario
[5], and more use-cases with new applications will
emerge in front of us. The design methodology for
multiple use-cases in embedded devices is essential to the
research in the design automation, which allows
designers to quickly generate MPSoC designs for various
use-cases and to achieve the performances requirements,
such as low costs, high computing performance. Our
design methodology provides an approach for designers
to study the performances of the use-cases and tune the
architecture to achieve a better performance. Our target
hardware platform is Xilinx FPGAs, and Xilinx provides
a tool-chain as well to generate the designs, but the tool
mostly aims at designing with architecture of one or two
processors. So it is time consuming and error prone to
generate MPSoC architecture by manual operations. In
our flow MPSoC is automatically generated together with
software for each processor.

III. CTPN AND PROBABILISTIC ANALYSIS

A. CTPN Specfication
In a typical CTPN, a transition represents a task

execution. Tasks also need some input data or control and
usually also produce some output, such data or
information is referred to as tokens. Directed arcs

represent the dependency of tasks. Different kinds of data
stream may be defined as colored tokens to distinguish
between each other. Data buffers may be modeled as
tokens on a back flow on places. In such case, the number
of tokens on the place indicates the buffer size available.
When a transition fires, the input data buffer size reduces
and the output data buffer size increases. Fig.1 shows an
overview of CTPN of multiple applications. It merges
App0 and App1 into a CTPN model, in which each
application has its own dataflow graph. The two
applications share the data places and they may be
dependent or independent, presented by colored tokens.
The data flows are in a concurrent running environment
and time tags are appended to these tokens, so the
execution time of tasks and resources usage on the
processing core are also specified. It is useful for present
the constraints of multiple applications running on the
MPSoC, and research on the contention of resources
(kinds of resources include not only shared memory, and
also computing IP cores, interface IP cores) and the
dynamic execution of applications.

Resources are always a constraint in an FPGA device
and the applications are represented by a Petri net of
several transitions and places, but as the number of use-
cases to be supported increases, the scale of the multiple
use-cases CTPN models increases as well. It is inefficient
for simulation and analysis and mapping onto FPGA
devices. So we abstract CTPN model of application into a
hierarchical CTPN block, as shown in Fig.2. Use-case is
a combination of some applications, which can be active
simultaneously. Applications are converted into
execution blocks, in which tasks of the application are
described as some elements. With the relative rules, all
applications can be presented into a top CTPN. CTPN
system use job set to present each use-case. Jobs can run
concurrently in the hierarchical CTPN, while tasks
execution and resources usage are also marked. Using
some scheduling algorithms, the model runs in

TABLE I.
COMPARISON OF VARIOUS DESIGN APPROACHES

 SDF3 ESPAM MAMPS Our Flow

Appoach Analysis FPGA FPGA FPGA

Model SDF KPN SDF CTPN

Concurrency Yes Yes Yes Yes

Communication Asynch. Asynch. Asynch. Asynch.&Synch.

Scheduling Static Dynamic Static Dynamic

Control flow No Inside
process

No Explicit

Hierarchy No No No Yes

Multiple Use-
cases

No No Yes Yes

Dedicated
Resources

Mem. Mem. Mem. Mem.&
Peripheral

Equipments
Arbiter Support N.A. N.A. Yes Yes

2672 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Figure 1. Example of a CTPN of multiple applications.

Figure 2. Hierarchical CTPN.

CPNTools[16] and generate the applications specification
for hardware architecture. For example, a tuple <TaskID,
ProcID, ExecTime> represents the task assigned onto the
processor and its execution time; and also usages of
processor, memory, and modules (computing core or
interface core). The number of tokens also may illuminate
capacity of required resources.

When multiple applications run concurrently, they
often compete for resources. A probabilistic computing
model can be used to predict the contention. The response
time of task can be denoted as: resp exec waitt t t= + .The waitt is
the time that task spends on waiting for available
resources in contention. And the respt indicates how long
it takes to process the task after it arrives at the processor
node. But for use-case of applications is not always
known at design-time, it is not possible to exactly get the
waiting time. So we use a probabilistic approach to
estimate it. In the example CTPN of applications,
assuming that execution dataflow of App0 is as

0 0 0 0(80) (40) (40) 2 (40)Ta Tb Tc Td→ → → ; and for
App1,it is 1 1 12 (40) (80) (80)Ta Tb Tc→ → . Here task 0Ta
runs 1 time and spends 100 units time in a period. 0Ta

and 1Ta are mapping on a processor 0Proc . 0Ta is active
for 0 0()* ()et Ta r Ta in 0()Per A time units, and the
probability of 0Proc is used by 0Ta on average equals

0 0 0()* () / ()et Ta r Ta Per A . And 1Ta can arrive at random
time, its waiting time can be a variable from 0[0, ()]et Ta .

For the probability density function ()p x of 1Ta
waiting for 0Ta can be defined as follows, similar as that
in [14]:

0 0

0 0 0

w 0 0

1 () (), 0
() () / (), 0 ()

(), ()

e a w a

e a e a e a

a e a

P T P T x
p x P T t T x t T

P T x t T

− − =⎧
⎪= < <⎨
⎪ =⎩

 (1)

As shown in ()p x it indicates the probability of
1Ta distribution with 0Ta states. And the corresponding

expected wait time can be computed.
(0)

1
0

0
0 0

() () ()

()()(())
2

te Ta
wait a

e a
e a w a

t T E x xp x dx

P Tt T P T

= =

= +

∫
 (2)

For multiple applications mapping onto MPSoC, the
system total wait time can be the overall tasks wait time
on each processor sum up:

 _ ()
n

wait wait j
n m

t total t T=∑∑ (3)

With new estimated wait time, the system’s response
time should be updated. Applying this approach in above
example and for iterative execution of system, it will get
stable after several loops. The corresponding period of
applications in these loops should be 286, 290, 291, and it
will be stay at 291. And the system worst case wait time
should be _ ()

n

wait exec j
n m

t worst t T=∑∑ , then WCRT is 480.

But in actual the period will be 240 for best-case and 320
for worst-case. WCRT is over-estimated by 50%. And if
we use a maximum distribution probability of wait time.
So _ max 1 max 0 0 0() () ()(() ())wait a e a e a w at T E x t T P T P T= = + , it
may be viewed as a conservative up-bound estimate. Its
value should be 324, which is a little more than actual
worst case.

B. Fuzzy-system-based Scheduling Approach
For the design of system decision policy, we apply the

TSK model in [15]. It is capable of describing a nonlinear
system using a small number of rules. It is conventional
to identify its parameters in algorithms with explicit
function expressions. Fuzzy decision policy is founded on
a set of rules. Each specific rule describes a system state
in decisions made. Thus each system state is described by
a set of features. From the different parts of overall
system, various state features are conceivable. Following
the fuzzy rule concepts consist of a feature condition and
a consequence that decides on the acceptance or decline
of a submitted task:

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2673

© 2012 ACADEMY PUBLISHER

(1) (1)
1 1(,)γ δ (2) (2)

1 1(,)γ δ () ()
1 1(,)Nf Nfγ δ

1R
2R

NfR

1R 2R NfR

()DY x

Figure 3. Fuzzy-system-based scheduling approach

IF queue is long and task highly parallel THEN decline task

IF queue is empty and task not parallel THEN accept task
M M M

A complete rule base constitutes the core of rule

system. The current system will be checked by the rules
while new applications are added into the system.
Generally the TSK model consists of fN IF-THEN
rules Ri such that:

(1) ()
1 1 1

0 1 1

: IF is and and is
THEN = f

Nf
Nf

Nf N

Ri x g x g
yi bi bi x bi x

=
+ + +

L

L

Here jx are inputs of rules states, and iy is the

nonlinear local output of decision state. ()fgi is the input

fuzzy set that describes the membership for a feature f .
Thus system state is denoted by fN features. The degree
of membership is function value with input fuzzy set
characterized. And the overall output of the system can
be computed as:

() ()
() ,

()
() ()

f

D

Nx y h
x

x h
y x g xφ

φ
φ=

∑ = ∧∑
Where ()xφ is the degree of membership of rule for

the input x , therefore the output value of TSK model is
computed by the weighted rule’s recommendation over
all. Fig.3 shows the rules encoding by the membership
functions, each feature can be modeled by a (,)γ δ
characteristic function. The TSK model can be simplified
with binary decisions. Thus the whole rule base is
encoded by concatenation of single rules. A rule base of
n rules is described by a set of (2 1)l n n= + parameters.
Therefore the scheduling optimization is to find suitable
parameter settings for the rules in order to get well-
performing performance of applications.

For current system state we rely on different features
that will constitute the conditional part of rules. In order
to cover comprehensive system information with a single
feature, we consider the Normalized Applications Period
(NAP) as a feature:

()

()
n

Per AnNAP
WCRT An

= . (4)

it indicates the performance of each application and
reflects the satisfaction of its execution.

The second feature is the Normalized Resources
Requirements (NRR):

()
()

n
NRr AnNRR
NRa An

= . (5)

It is the ratio of Application resources requirements
and the maximum number of available resources.

And also we consider the workload of processor nodes,
the Normalized Processor Usage (NPU):

1 (,)

max(())
m A m

m
NPU texc T P

Per A
= ∑ . (6)

 it indicates the total execution time of applications on
processor nodes.
We use fuzzy sets to describe the priority levels of tasks,

as shown in (7). S(x) gives the fuzzy description of
characteristic x, and uAi(x) is the membership of x
belongs to expression Ai.

1

1 1

() ()() , () 1
n

A An
Ai

n i

u x u xS x u x
A A =

= +…+ =∑

 (7)

It is used for describing NAP, NRR, NPU and other

parameters that computed in TSK model. Thus the NAP
can be classified by Ai. such as
“shortest”, ”short”, ”medium”, ”long”, ”longest” and etc.
and these fuzzy memberships of task, can be loaded into
the fuzzy system, to compute the composite target
function of task priority.

In the policy of processor selection, we should
consider the relationships between the feasible time of
tasks, available time of resources and available time of
processors, and select the appropriate processor in
available processor subsets to reduce the schedule time
length of task sets and improve processor utilization.

IV GENERATING MPSOC SYSTEM

A. Design of Hardware Architecture
The NoC has been proposed as the future on chip

interconnection. Whereas, NoCs brings more challenge
on the parallel programming and synthesis. So we design
a new cluster-based homogeneous MPSoC architecture.
The processors are organized into clusters, in which
processors are connected by fast FIFO links. These FIFO
links remove the possible sources of contention that can
limit performance and support multiple applications
running concurrently better. For inter-clusters the system
uses a simple NoC architecture composed by nodes of
router, and implements the communication between
nodes by passing messages.

The primary MPSoC system is built on the XUPV5-
LX110T Development Board from Xilinx, this board has
a Virtex-5 XC5VLX110T FPGA, and a video VGA input
and DVI output hardware. Our experiments are simulated

2674 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Figure 4. MPSoC for multiple use-cases.

Figure 6. Architecture of MPSoC with NoC and Clusters

Figure 5. Merging design of multiple use-cases.

on the FPGA, setting the MPSoC system on FPGA
processing the video data, and output the video multi-
display onto a PC screen. And also pictures stored in the
flash memory are used for JPEG encoding and decoding.

For obtaining better performance of the cluster, we
adopt hierarchy communication architecture as shown in
Fig.5. It means that each cluster is a node, and
communicates with others through the NI interface. The
NI provides a set of functional registers for controlling
the packet transferring process, including Tx/Rx State
Register, Tx/Rx Packet Length Register, Tx/Rx Packet ID
Register, input and output buffers can be directly
accessed by FSL link, which is implemented by FIFO.
The on-chip router is the key of NoC design, it should
implement the functions of routing, flow control,
switching, arbitration, and buffering for the network
communication. There are five input channels and five
output channels in one router, and they are connected by
a interconnection. This router adopts synchronized
handshake protocol in flow control.

B. Merging Design for Multiple Use-cases
From these application specified descriptions, a

multiprocessor system is generated. Each task is mapped
on a separate processor node and each link mapped to a
unique FIFO channel. Processors will be shared by these

tasks and the total number of processors corresponds to
the maximum of tasks in an application. To avoid
overload on some processors and deduce the inter-
communication among processors, independent
applications are mapped into different clusters by the
fuzzy-system-based scheduling, on comprehensive
estimation of applications and resources performances. In
Cluster, the dataflow between processors are mapped into
unique FIFO links, and different applications use their
own communication as shown in Figure 5(d). The design
supports the flow stream of pipe-line and also reduces the
contention of communication channels.

With different use-cases, the hardware designs are
usually different, so an entire new design has to be re-
synthesized for multiple use-cases. Here we describe how
we merge the designs for the use-cases into a hardware
configuration in Fig.6. Tasks of applications are mapping
onto processors in group of clusters, and the hardware of
two use-cases is integrated with minimal hardware
requirements to support both use-cases. The combined
design can be seen as a superset of requirements of the
two use-cases. The algorithm is to obtain the minimal
superset of the hardware design requirements of all use-
cases. It iterates over all use-cases to compute their
individual resource requirements and generate the
maximum needed for all use-cases.

Software generation is easier as compared to hardware.
Applications program are partitioned into tasks by some
benchmarks and are mapping into relative processors
software. And also the communication functions of FIFO
(such as readFIFO or writeFIFO) will be added into the
processor software. The FIFO id needs to be consistent to
that in hardware descriptions.

We design a tool DSMAMPS (Design and Synthesis of
Multi-Application on Multi-Processor System). Hardware
and software flows are integrated together to get quickly
results of MPSoC design for multiple use-cases. Using
the CTPN, we design the multiprocessor system for
multiple use-cases. And through simulation we analyze
performances of designs and get applications descriptions
on MPSoC for each use-case. Then the flow merges
requirements of all use-cases into a new hardware

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2675

© 2012 ACADEMY PUBLISHER

Figure 7. DSMAMPS flows

Figure 8. Period computed using iterative analysis

architecture design. According to the specifications of
merged design, DSMAMPS generates the hardware and
software files of FPGA system automatically, and also
generates final executive bit file with Xilinx EDK
synthesis commands.

V. EXPERIMENTS AND RESULTS

In this section, we present some results obtained for
the iterative analysis as compared to simulation. The
overall application throughput predicted is compared with
the measured. And in our experiments, we generate 7
typical applications such as H.263 encoding and decoding,
JPEG encoding and decoding, voice call and surf web,
and also generate 10 use-cases.

A. Applications Period
In the experiments iterative analysis is used to compute

the performance of all the applications, and the results of
other techniques like the worst case and actual observed ,
and also the approximation exponential probability
approach[14] are also presented. Fig.8 shows the results
of iterative analysis with the varying iteration times for
application D.

Its original period is 457. When running concurrently
in the use-case of multiple applications, its execution
period is 1243. The exponential approximation approach
estimates it as 1601, while the worst-case is 3405. And
the iterative approach gets a predicted period of 1320 for
four iterations and 1258 for six iterations. We can see the

iterative approach get a closest estimate period and get
stable after some iterations. And the final estimate is
independent of the initial estimate, like original or worst-
case estimates. That gives an efficient approach to
estimate the period of applications.

B. Applications Throughput
The throughputs results of such combinations are

summarized in Table II. The results are compared with
simulation. We observe that in general, the applications
throughput measured on FPGAs is lower than simulation
by about 6.7% (Average throughput variance of
applications A0, A1and A2).This is because our
simulation models do not take into account the system
communication consumption of Clusters. That will make
applications execution take somewhat longer than
expected, hence it delays the start time of responded tasks
and also reduces the throughput of system. However, we
are dealing with the multiple use-cases, the contention of
resources might cause some applications to wait for
tokens, throughput of some applications is significantly
lower. We can observe that in use-case U3 throughput of
application A2 is lower than simulation 20.22%, and in
another use-case U5 throughput of application A2 is
lower than simulation 21.27%. In FPGA implement the
communication overhead may affect the execution

TABLE II.
COMPARISON OF THROUGHPUT FOR DIFFERENT APPLICATIONS

OBTAINED ON FPGA WITH SIMULATION

 App1 App2

Use-case Sim FPGA Var % Sim FPGA Var %

U0 2.35 2.15 -8.51 6.72 6.7 -0.29
U1 2.10 1.93 -8.09 8.25 8.17 -0.96
U2 2.02 1.99 -1.48 9.02 8.87 -1.66
U3 5.42 5.37 -0.92 0.89 0.71 -20.22
U4 0.78 0.64 -17.94 3.32 3.23 -2.71
U5 5.95 5.77 -3.02 0.94 0.74 -21.27
U6 1.53 1.39 -9.15 4.06 3.92 -3.44
U7 1.49 1.29 -13.42 4.24 4.04 -4.71
U8 4.19 4.02 -4.05 4.56 4.39 -3.72
U9 3.29 3.26 -0.91 4.12 4.09 -0.72

2676 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Figure 9. Comparison of throughput for applications

Figure 10. Performance of fuzzy-based approach

Figure 11. Results of video converting and picture processing

performance of tasks, thereby delay the start of
successive tasks. Most of the applications get a less
variance throughput from simulation, this illuminates that
concurrent execution of multiple use-cases is more
complex.

C. Mapping Multiple Applications
The real multiple applications pose some characters

effecting performance prediction, such varying execution
times of tasks and running times in a period. And further
the number of tasks mapped onto processor nodes may
vary significantly. Thus it is essential to optimal the
scheduling of these tasks for a well-performing tradeoff
of performance. Here we use the fuzzy-system-based
scheduling approach in Section 4 to allocate the tasks.
Fig.9 shows the comparison between the simulation and
implement on FPGA. A couple of observations can be
made from the graph. The throughput of applications
increases in different proportions when executing
concurrently while the throughput of JPEG encoding
decreases 17% and that of voice call decreases 95%. This
is affected by the number of tasks in application, and the
resources contention of execution. Such as VLD of JPEG
decoding is executed once per period and IQ of H.263
decoding is executed 594 times per period. This causes
significant degradation in the performance. And the
iterative analysis gets accurate estimates. And for optimal
scheduling, our fuzzy-system-based approach gets a
better workload and improvement of some applications in
Fig. 10.

And the Fig.11 shows an example of our MPSoC
design, which works on some real-time video converting
such as scaling control and color filter, and also the
picture processing of JPEG encoding and decoding. The
input video is divided into two, one is for the right
monitor to show, and another is transmitted into the
XC5VLX110T FPGA board. We use the MPSoC on
FPGA chip to complete the multiple applications, and
output the videos and pictures onto the 4 screen windows
of the left monitor.

D. Resources Requirements
Since the embedded device has limited resources, it is

important to doing a design space exploration and
computing the optimal resources requirements. We
explore the tradeoff between buffer memory required and
throughput obtained for multiple applications. Table III
shows how the throughput of applications varies with
numbers of tokens.

A couple of observations can be made from the table.
When the number of tokens increased, the throughput
also increases until reach an upper limit. When the
application A2 is the only running application (setting
initial tokens of other applications to 0), we can observe
that its throughput increases almost linearly until 8 tokens,
and it will get less increase after that. Further when
multiple applications running concurrently, different
initial tokens of A0 and A1 will worsens the performance
of A2, but only until a certain point. It explains that the
increasing initial tokens (assigned hardware resources
size such as buffer or computing IP cores) will affect the

TABLE III.
COMPARISON OF THROUGHPUT WITH VARIES INITIAL TOKENS

Initial tokens Throughput

A0 A1 A2 A0 A1 A2
0
0
0
1
1
1
3
5

0
0
0
1
3
5
3
5

1
8
10
1
1
1
5
5

-
-
-

1.62
1.40
1.24
4.30
3.27

-
-
-

1.94
5.04
5.24
4.95
4.19

0.83
4.52
4.73
0.68
0.58
0.52
4.13
4.02

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2677

© 2012 ACADEMY PUBLISHER

performance of multiple applications, but it will cause no
change beyond a certain value. Increasing initial tokens
for A0, A1 and A2 cause no change beyond 3, 5 and 8
separately. So it shows the required number of initial
tokens for each application, with which we can assign
appropriate resources for these applications. This analysis
allows the designers to choose a desired performance
tradeoff for the multiple applications execution.

E. DSE of MPSoC System
The time spent on exploration is an important aspect

when estimating the performance of big designs. The
MPSoC for multiple use-cases are designed both by-hand
and by our tool. The results are shown in Table IV. For
hardware and software generation, Xilinx toolset just
supports single or two processors. Designers have to add
the multiple processors and other IP components by-hand,
and also connect them one by one. It is very time-
consuming and error prone. Even for single application
design it will take 12 minutes and 20 minutes separately,
no matter the more complex design for multiple use-cases.
In contrast, our design flow the total time of hardware
and software generation for 5 use-cases is just 250
milliseconds.

Since with Xilinx tools the hardware synthesis step
takes about 68 minutes and software synthesis step takes
about 1.5 minutes, the entire DSE total time is about 103
minutes. For the multiple use-cases, it will take designers
1~2 days at least and more attention on the error
correction of design. In our auto-design and synthesis
flow, it takes about 68 minutes and 3 minutes for
hardware and software synthesis, so the entire DSE for 5
use-cases is carried out in about 71 minutes. Contrast to
Xilinx toolset, our auto-design methodology results in a
speedup of 7.3 when generating a new merged hardware
for each use-case. As often we can use a hardware design
to support multiple use-cases, the hardware just needs to
be synthesized once; with the number of use-cases
increases, the cost of generating the hardware becomes
more less for each use-case. This study is illustrating our
design flow is useful and convenient for DSE of MPSoC
system.

VI CONCLUSIONS

In this article we propose an auto-design flow to
generate the Cluster MPSoC designs for multiple use-
cases. Our approach takes the system-level description of

multiple use-cases in CTPN, and produces the
corresponding MPSoC mapping specifications for use-
cases. Our design flow allows simulation and analysis of
throughput and resources requirements and other
performances. It is convenient to study the tradeoff
between performances and get a desired MPSoC
architecture. And we present the approach to merge and
partition use-cases into a minimal hardware design. And
our design flow integrates auto-design and synthesis,
which allows designers to generate the complex MPSoC
design quickly, without much time consuming, and error
prone.

The experiment with multiple application use-cases
shows the prediction is close to the actual execution.
Further, it takes four to six iterations for prediction
converging and its final estimate is still accurate with
varying initial points. The accuracy of prediction is
validated with multiple applications implement on FPGA
MPSoC system. And to find a mapping design of well-
performing workload and performance of system, we
present a fuzzy-system-based approach to decide the
distribution of applications’ tasks by system state features.
It allocates applications for good performance
characteristics such as applications response time and
resource utilization.

Further we would like to expend design objects, and
develop more ways for kinds of SoC architectures, such
as heterogeneous processors, irregular network
interconnection. And we would also try parallel partition
of applications to high speed requirement and try
evolutionary learning process to the fuzzy system to
optimize the rules base. And we would also try parallel
partition of applications to high speed requirement and
try arbiters to improve load-balancing between multiple
applications.

ACKNOWLEDGMENT

This work was supported by the National Natural
Science Foundation of China under Grant 60773186, and
the Project of High-level Personnel Training of BJUT.

REFERENCES
[1] W. Wolf, “The future of multiprocessor systems-on-chips,”

Proc. of 41st Annual Conf. on Design Automation, pp. 681-
684, 2004

[2] T. Agerwala and S. Chatterijee, “Computer architecture:
Challenges and opportunities for the next decade,” IEEE
Micro, vol. 25, no. 3, pp. 58-69, 2005

[3] S. Dutta, R. Jensen and A. Rieckmann, “Viper: A
multiprocessor SOC for advanced set-top box and digital
TV systems,” IEEE Design and Test of Computers, vol.18,
no.5, pp.21-31, 2001.

[4] S. Pasricha, N. Dutt and F. J. Kurdahi, “Dynamically
reconfigurable on-chip communication architectures for
multi use-case chip multiprocessor applications,” Proc. of
the Design Automation Conference, pp.25-30,2009

[5] J. M. Paul, D. E.Thomas and A. Bobrek, “A Scenario-
Oriented design for single-chip heterogeneous
multiprocessors. ” IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, vol 14, no.8,pp.868–880, 2006

TABLE IV.
COMPARISON OF DSE TIME

 Xilinx tool for
Single design

DSMAMPS for 5
use-cases

Hardware Generation 12:30 50ms
Software Generation 20:40 200ms
Hardware Synthesis 1:08:20 1:08:20
Software Synthesis 1:35 2:50

Total Time 1:43:05 1:11:10
Average Time 1:43:05 14:13

2678 JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

[6] S.Sriram and S.Bhattacharyya, Embedded Multiprocessors:
Scheduling and Synchronization. Marcel Dekker, USA，
2000.

[7] H. Nikolov, T.Stefanov and E. Deprettere, “Multi-
Processor system design with ESPAM, ” Proc of the 4th
Int’l Workshop on Hardware/Software Codesign,pp.211–
216,2006.

[8] A. Kumar, A. Hansson, J. Huisken and H.Corporaal, “An
FPGA design flow for reconfigurable network-based multi-
processor systems on chip”. Proc. of the Design
Automation and Testin Europe,pp.117–122,2007.

[9] K. Akash, F. Shakith, H. Yajun, M. Bart and C.Henk,
“Multiprocessor systems synthesis for multiple use-cases
of multiple applications on FPGA, ” ACM Trans.on Design
Automation of Electronic Systems, vol. 13, no. 3,, 2008

[10] V. R. L. Shen, “A PN-based approach to the high-level
synthesis of digital systems, ” Integration, the VLSI
Journal, vol. 39, no. 3, pp.182-204,2006

[11] W. Naiqi, B. Liping and C. Chengbin, “Modeling and
conflict detection of crude oil operations for refinery
process based on controlled colored timed Petri net,” IEEE
Transon Systems, Man and Cybernetics Part C:
Applications and Reviews, vol. 37, no. 4, pp. 461-472,
2007

[12] S. Stuijk, M. Geilen and T. Basten, “SDF3:SDF for free ,”
Proc. of the 6th Int’l Conf. on Application of Concurrency
to System Design . pp,276–278,2006

[13] S. Murali, M. Coenen, A. Radulescu, K. Goossens and G.
Micheli, “A methodology for mapping multiple use-cases
onto networks on chips, ”. Proc. of Design Automation and
Test in Europe,pp.118–123,2006

[14] A. Kumar, B. Mesman, H. Corporaal, B. Theelen and Y.
Ha, “A probabilistic approach to model resource
contention for performance estimation of multi-featured
media devices,” Proc. of Design Autom. Conf. ,pp.726–731,
2007

[15] T.Takagi and M.Sugeno, “Fuzzy Identification of Systems
and its Applications to Modeling and Control,” IEEE
Trans.Systems, Man, and Cybernetics, vol.15,no.1,pp.116-
132,1985.

[16] K. Jensen, L.M. Kristensen and L. Wells. “Coloured Petri
Nets and CPN Tools for Modelling and Validation of
Concurrent Systems”. International Journal on Software
Tools for Technology Transfer (STTT) 9(3-4), pp. 213-254,
2007.

JOURNAL OF COMPUTERS, VOL. 7, NO. 11, NOVEMBER 2012 2679

© 2012 ACADEMY PUBLISHER

