
Logistics Service Provider Segmentation Based 
on Improved FCM Clustering for Mixed Data 

 
Taoying Li, Yan Chen, Jinsong Zhang 

Transportation Management College, Dalian Maritime University, Dalian 116026, P.R. China 
ytaoli@126.com 

 
 
 

Abstract—More and more logistics service providers turn up 
and make it is difficult to choose correct, economy and 
efficient ones for us. In order to achieve customer 
segmentation properly, we proposed an improved FCM 
algorithm by modifying distance function of categorical data 
and that of mixed data in this paper, and proved its 
theoretical correctness. We use clustering to reduce the 
range of logistics service providers and simplify the 
complexity of practice. Finally, we apply the proposed 
algorithm into logistics service provider segmentation, and 
its results show that the improved FCM algorithm is 
efficient and correct. 
Index Terms—clustering algorithm; fuzzy k-means 
clustering; logistics service provider segmentation. 
 

I.  INTRODUCTION 

With the development and perfection of the Logistics 
domain, logistics turns up everywhere. More and more 
logistics service providers turn up in order to satisfy 
people’s demands, whose characteristics and mode of 
operation are different from each other. How to choose 
strong and proper ones among all logistics service 
providers is critical for producers and customers, which 
could decide the cost and efficiency of transportation. 
Thus, we classify logistics service providers with similar 
characteristics into one cluster and minimize the 
difference among logistics service providers in the same 
cluster, and maximize the differences of logistics service 
providers in different clusters. Then we can adopt 
different strategies for different logistics service 
providers. 

Some existing papers provide a number of methods for 
customer segmentation. For example, Lijuan Huang 
employed SOFM neural network to classify customers [1]. 
Wei Gao adopted fuzzy clustering ensemble for customer 
segmentation in view of the uncertain factors [2]. Kai 
Peng used K-means clustering algorithm to classify 
telecommunications SMS business customers [3]. Yu-Jie 
Wang introduced fuzzy equivalence relation for customer 
segmentation [4]. Inspired from experience of customer 
segmentation in other domains, we use clustering 
algorithms to classify logistics service providers in this 
paper. 

Clustering is to classify data points into clusters and 
makes the similarity of data points in the same cluster 
maximized and the similarity of data points from 
different data points minimized [5]. Clustering plays an 

important role in data mining, and could be widely 
applied into pattern recognition, computer visualization, 
fuzzy control, etc [6]. 

Due to the uncertain factors and mixed numerical and 
categorical data of logistics service providers, the 
improved FCM algorithm was introduced into logistic 
service provider segmentation. We modify the distance 
measuring method for categorical data due to the problem 
that existing methods couldn’t get effective distance for 
categorical data. The logistics service provider 
segmentation based on improved FCM clustering was 
applied in practice and results shown that it is effective 
and suitable. 

II.  DEGREE OF CORRELATION AND DISTANCE MEASURING 
METHODS FOR CATEGORICAL DATA 

Zhexue Huang presented a cost function for measuring 
the efficiency of clustering for mixed data [7], and it can 
be shown in (1). 
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Here, mr stands for the number of numerical attributes. 
At same time, we suppose that numerical attribute i could 
start from 1 to mr and categorical attributes i’ could start 
from mr+1. Parameter  represents correlation coefficient, 
and its range is (0, 1]. The majority of people think that 

0),( qp  while p=q and 1),( qp  while qp  . 
The clustering algorithm proved by Zhexue Huang 

considered both numerical and categorical data, however 
it has two shortcomings, one of which is that sum of all 
weights of numerical attributes is 1, another is that the 
definition of distance for categorical attributes couldn’t 
reflect practice. For example, the distance between big 
and small is equal to that between big and middle, and 
equal to distance between middle and small, which does 
not conform to reality. 

Clustering algorithm in [8] could be used to classify 
mixed numerical and categorical data, but the 
optimization process of its cost function is too complex 
that it is not suitable for large dataset. 
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We think that the distance couldn’t be expressed 
clearly by 1),( qp  while qp  . We introduce the 
relationship degree n into the distance. 

Relationship degree (RD) was definite in this paper ass 
follow: Supposing xj and xt are two arbitrary data objects, 
including mc categorical attributes, and the RD(xj, xt) is 
number that xj and xt are same in same attributes. 

From the definition of relationship degree, we know 
that the maximum value of relationship degree is the 
number of categorical attributes. Therefore, we will 
present the theorem and prove it. 

Theorem1: Supposing xj and xt are two arbitrary data 
objects, including mc categorical attributes, if RD(xj, xt)=0, 
supposing any object xs, satisfying RD(xj, xs)=a and RD(xt, 
xs)=b (a,b>0), then RD(xj, xt) could be modified as RD(xj, 
xt)= min(a,b)/2. 

The proof for Theorem1 will be given after that for 
Theorem2. 

Theorem2: Let xj and xt be any two objects, including 
mc categorical attributes, and the distance (xj,xt) between 
xj and xt could be obtain as (3). 
(xj,xt)=mc-RD(xj,xt)  (3) 
Proof:  could be used to definite distance because it 

satisfies the characteristics of distance space. 
1) Reflexivity: 0, and (xj,xt)=0<=> xj=xt. 
2) Symmetry: (xj,xt)= (xt,xj). 
3) Transitivity: if (xj,xt) (xt,xs),(xt,xs) (xt,xs) 

(xj,xt) (xt,xs). 
4) Triangle theorems: (xj,xt) (xj,xs)+ (xs,xt). 
It is obvious that the reflexivity, symmetry and 

transitivity are established, and we only need to prove the 
triangle theorems. 

Proof: Let xj, xs and xt be any three different objects, 
and supposing all of them have mc categorical attributes, 
if RD(xj, xt)=0, RD(xj, xs)=a and RD(xt, xs)=b, then RD(xj, 
xt)= min(a,b)/2, and there distance can be updated as 
follows. 
(xj,xt)=mc-RD(xj,xt)= mc-min(a,b)/2 mc 
(xt,xs)+ (xt,xs)=(mc-RD(xt,xs))+ (mc-RD(xt,xs)) 
= (mc-a)+ (mc-b)= mc+ (mc-a-b) 
Due to RD(xj, xt)=0, RD(xj, xs)=a and RD(xt, xs)=b, then 

we can get  (mc-a-b)0, thus (xt,xs)+ (xt,xs)  mc. 
According to the proof mentioned above, we know that 

it is a distance space and could be used to obtain the 
distance between any two categorical data. 

Proof for Theorem1: Let RD(xj, xt)=x, then we can 
know that (mc-a)+(mc-b)>(mc-x) due to triangle theorems, 
which can be shown in Figure 1. Next we can grasp 
x>a+b-mc, at the same time to meet |(mc-a)-(mc-b)|>(mc-x). 
supposing b>a, we gain x<mc-(b-a). 

mc-a mc-b

mc-x  
Figure1. Triangle theorems 

 

Form the definition of relationship degree, we can 
establish the structure of relationship degree based on 
RD(xj, xt)=0, RD(xj, xs)=a and RD(xt, xs)=b, which can be 
shown as Figure2. 

 
Figure2 structure of relationship degree among objects 

 
Then we know that relationship degree satisfies the 

characteristics of geometric structure Form Figure2. 
b/mc=x/a, could be transformed to mc=ab/x, 

substitution into x>a+b-mc, we can get x>a+b-ab/x, then 
know that x<a according to x<mc-(b-a). 

Thus, in this paper, we let x=a/2. So RD(xj, xt)= 
min(a,b)/2 meets the requirements. 

We will give an example for relationship degree in 
Table1. 

 
Table1. Categorical data 

Object a1 a2 a3 a4 
xj X A T M 
xs X A S N 
xt Y B S N 

From Table1, we know that RD(xj, xs)=2 and RD(xt, 
xs)=2, and then we can get the distance RD(xj, xt)=0 by 
traditional function and RD(xj, xt)=2/2=1 by relationship 
degree mentioned above. 

III.  IMPROVED FCM CLUSTERING FOR MIXED DATA 
FUZZY K-MEANS INCREMENTAL CLUSTERING BASED ON 

K-CENTER AND VECTOR QUANTIZATION 

A.  Objective Function of Improved FCM Clustering for 
Mixed Data 

In order to classify mixed data, the new cost function 
can be updated as (4). 
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Here, x  is the mean of all object, and ix the value of 

the ith attribute, and 
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algorithm in this paper is efficient where 1l . But the 

value of 
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i
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1

2 ),()(   can be zero, which 

means that the denominator of cost function may be zero 
and makes the computation for cost function impossible. 
At same time, the value of denominator may change at 
any time and is liner to square sum of distance between 
each mean ix  and x . 

The proof for the improved FCM clustering for mixed 
clustering is similar to that for numerical data in [9], but 
they have some following differences. 

A. Weight correction 
Let T and C be fixed, and F will be minimum while 

weight equals the process in (5). 
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Where, lt  satisfies (6). 
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B. Degree of membership 
Let W and C be fixed, and we know that the jth object 

will belong to the lth cluster if their distance is closest, 
which can be shown as (7). 
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Where, lj=1means that the jth object belong to the lth 
cluster, and lj=0 means that the jth object don’t belong to 
the lth cluster. 

The another form for solving degree of membership 
can be shown as (8). 
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C. Center selection 
Center selection for mixed data can be divided into two 

aspects, one is for centers of numerical attributes, named 
means, another is for centers of categorical attributes, 
which can be obtain by the value of attribute maximum 
number of occurrences.  

Which is similar to (9) or (10). 
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Where, 1lk and mr+1i’m. 

B.  The Solving Steps of Improved FCM Clustering for 
Mixed Data  

The Solving steps of improved FCM clustering for 
mixed data in this paper can be presented as following. 

Input: parameters m, mr, n, k, ,  and the largest 
number of iterations. 

Output: degree of membership T. 
Step1. Let initial weight wli=mr

-1, choose k objects as k 
centers stochastically. 

Step2. Obtain T according to (7) or (8). 
Step3. Obtain cost function F(T,W,C) according to (4). 
Step4. Refresh C according to (9) and (10). 
Step5. Refresh W according to (5) and (6). 
Step6. Repeat Step2-Step5 until value of cost function 

unchanged or the time of iteration reaches to certain 
number. 

The complexity of the clustering in this paper is 
O(mnk), which is liner to the number of objects needing 
to classify. Thus, the improved FCM clustering for mixed 
data could be suitable for large dataset. 

IV.  LOGISTICS SERVICE PROVIDER SEGMENTATION 
BASED ON IMPROVED FCM CLUSTERING FOR MIXED 

DATA 

We classify 30 logistics service providers through their 
revolving credit, financial capacity, and customer 
evaluation, evaluation of bank and discount, which can be 
shown as Table2. 

 
Table2  Data of 30 logistics service providers 

No Revolving 
credit 

Financial 
capacity

Customer 
evaluation 

Evaluation 
of Bank Discount

1 0 0.4 0 0 1 

2 0.2 1 0.2 0 0.4 

3 0 0 0 0.2 1 

4 0.2 0 0.8 0.2 0.2 

5 0 0.2 0.8 0 0 

6 0.2 0.2 0 1 0 

7 0 1 0 0.4 0.2 

8 0.8 0 0.2 0 0 

9 1 0 0 0 0 

10 0 0 1 0 0 

11 0 0 1 0.4 0 

12 0 0.2 0.8 0 0.2 

13 1 0 0 0 0.4 

14 0 0.2 0 0.2 1 

15 0 1 0 0.4 0 

16 0 0 0.2 0 1 

17 0.2 0.4 0.8 0 0.2 

18 0.2 0.4 0 0.2 1 

19 0 0.8 0.2 0.4 0.2 

20 0 0 0.2 0 0.8 

21 1 0 0 0.2 0.4 

22 0 0.2 0 0 1 

23 1 0 0 0.2 0 

24 0.4 1 0 0.2 0 
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25 0.8 0.2 0 0 0.2 

26 0 0 0.2 0.2 1 

27 0 0.4 0 0.2 1 

28 0.8 0 0 0 0.2 

29 0 0.2 1 0 0 

30 0 0.8 0.2 0.2 0 

We applied the improved FCM clustering for mixed 
data into dataset in Table2 and its result can be shown as 
Table3. 

 
Table3 Clustering results 

No k F c 

1 2 3.27 {0.41, 0.11, 0.05, 0.09, 0.63; 
0.09, 0.49, 0.49, 0.23, 0.1} 

2 3 0.88 
{0.02, 0.18, 0.07, 0.1, 0.98; 
0.06, 0.14, 0.89, 0.09, 0.09; 
0.51, 0.43, 0.06, 0.21, 0.14} 

3 4 0.07 

{0.06, 0.14, 0.89, 0.09, 0.09; 
0.02, 0.18, 0.07, 0.11, 0.98; 
0.11, 0.82, 0.09, 0.37, 0.11; 
0.91, 0.03, 0.03, 0.06, 0.17} 

4 5 0.27 

{0, 0, 0.15, 0.1, 0.95; 
0.04, 0.32, 0, 0.12, 1; 
0.2, 1, 0.2, 0, 0.4; 
0.1, 0.8, 0.07, 0.43, 0.07; 
0.49, 0.09, 0.46, 0.07, 0.13} 

5 6 -0.19 

{0.02, 0.18, 0.07, 0.11, 0.98; 
0.1, 0, 0.9, 0.3, 0.1; 
0, 0.15, 0.9, 0, 0.05; 
0.11, 0.83, 0.086, 0.37, 0.11; 
0.2, 0.4, 0.8, 0, 0.2; 
0.91, 0.03, 0.03, 0.06, 0.17} 

6 7 -1.3 

{0, 0.07, 0.1, 0.1, 0.97; 
0, 0, 1, 0.2, 0; 
0.08, 0.2, 0.84, 0.04, 0.12; 
0.07, 0.4, 0, 0.13, 1; 
0.2, 0.2, 0, 1, 0; 
0.1, 0.93, 0.1, 0.27, 0.13; 
0.91, 0.03, 0.03, 0.06, 0.17} 

7 8 -1.29 

{0, 0.1, 0, 0.2, 1; 
0.06, 0.14, 0.89, 0.09, 0.09; 
0.05, 0.3, 0, 0.15, 1; 
0, 0.4, 0, 0, 1; 
0.08, 0.92, 0.08, 0.32, 0.08; 
0.2, 0.2, 0, 1, 0; 
0.2, 1, 0.2, 0, 0.4; 
0.91, 0.03, 0.03, 0.06, 0.17} 

8 9 -1.24 

{0, 0.1, 0, 0.2, 1; 
0, 0, 0.2, 0.07, 0.93; 
0.05, 0.35, 0, 0.1, 1; 
0.03, 0.1, 0.9, 0.1, 0.07; 
0.2, 0.93, 0.13, 0.13, 0.13; 
0.05, 0.75, 0.05, 0.55, 0.1; 
0.2, 0.4, 0.8, 0, 0.2; 
0.9, 0.05, 0, 0.05, 0.3} 

The tendency of objective function F of the proposed 
algorithm can be shown as Figure3. 

 
Figure3. Objective function F 

We obtained 5 clusters as shown in Table4. 
 

Table4 Results of logistics service provider segmentation 
No Number No of provider proportion
1 4 3, 15, 20, 26 13% 
2 5 1, 14, 18, 22, 27 17% 
3 1 2 3% 
4 6 6, 7, 15, 19, 24, 30 20% 

5 14 4, 5, 8, 9, 10, 11, 12, 13, 17, 
21, 23, 25, 28, 29 47% 

From Table4, we know that the 30 logistics service 
providers are divided into 5 clusters, which show that we 
can choose logistics service provider in certain group 
according to our preference. Clustering can reduce the 
range of logistics service providers and make us choose 
suitable logistics service provider from one group and 
improve our efficiency. 

V.  CONCLUSIONS 

With the development of requirement for logistics in 
everyday life, all kinds of logistics service providers 
show up and how to choose suitable ones from so many 
logistics service providers is critical. We could improve 
the efficiency and applicability of logistics service 
provider segmentation if we can choose logistics service 
providers from a small range.  

We study the improved FCM clustering algorithm by 
drawing lessons from customer segmentation in other 
fields and consider their characteristics in this paper. 
Then we update the distance function of categorical data. 
Finally, the proposed clustering is applied into logistics 
service provider segmentation and its results show that it 
is suitable for classifying logistics service providers and 
reducing their range. 
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