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Abstract—In this paper, a robust image watermarking 
method in two-dimensional space/spatial-frequency 
distributions domain is proposed which is robust against 
geometric distortion. This watermarking is detected by a 
linear frequency change. The one-dimensional S 
transformation and radon transformation are used to detect 
the watermark. The chirp signals are used as watermarks 
and this type of signals is resistant to all stationary filtering 
methods and exhibits geometrical symmetry. In the two-
dimensional Radon-Wigner transformation domain, the 
chirp signals used as watermarks change only its position in 
space/spatial-frequency distribution, after applying linear 
geometrical attack, such as scale rotation and cropping. But 
the two-dimensional Radon-Wigner transformation needs 
too much difficult computing. So the image is put into a 
series of 1D signal by choosing scalable local time windows. 
The watermark embedded in the 1D improved S-Radon 
transformation domains. The watermark thus generated is 
invisible and performs well in StirMark test and is robust to 
geometrical attacks. Compared with other watermarking 
algorithms, this algorithm is more robust, especially against 
geometric distortion, while having excellent frequency 
properties. 
 
Index Terms—Digital watermarking, improved S-Radon 
transform, Geometrical attack 
 

I.  INTRODUCTION 

With the arrival of the information era and the broad 
application of E-business, there is a growing importance 
to protect the security of messages. As an important 
branch in the field of the research on the message cryptic 
technique, the digital watermarking technique is an 
efficient way to the authentication of content and 
copyright. This technique authenticate and protect the 
data by imbed watermark in the original data. The 
watermark imbedded can be a passage, some marks or 

images. The traditional encryption can only assure the 
message security when being visited and the security of 
both parts when in a single-phase communication mode, 
but to the public messages transformed in the multi phase 
mode a new technique and mechanism is needed. As a 
potential method to solve the problem, digital 
watermarking technique is being widely concerned, and it 
is becoming the top research in the international 
academic field. 

Digital watermark is a special mark cryptic in the 
multi-media products. Digital watermark should have 
three basic characteristics: Insensitive, that is the imbed 
watermark can’t destroy the digital products, and we can 
feel the exist of the watermark neither visual nor aural; 
robustness, that is under the usual signal processing 
(compressed, rejected or effected by noise) and geometric 
transmitting (translated, flexed or rotated), It can assure 
that the watermark can’t be destroyed. The imbedded 
watermark can be done in time-space frequency, and it 
can also be done in the transformable domain. The first 
method is easy to be carried out, but the protecting from 
the attack to signal processing can’t be done perfectly. 
However, the watermarking method under transformable 
domain is better. The robustness must be better in the 
efficient digital watermark in [1]-[7]. 

In this paper we put forward a robust digital image 
watermarking based on S-Radon transform. In Srdjan 
Stankovic’s paper, a watermarking algorithm in the 
space/spatial domain using two-dimensional Radon-
Wigner distribution is introduced. This algorithm uses of 
the Radon-Wigner transform to detect the watermark and 
the two-dimensional chirp signals are used as watermarks. 
In the two-dimensional Radon-Wigner transformation 
domain, the chirp signals used as watermarks change only 
its position in space/spatial-frequency distribution, after 
applying linear geometrical attack, such as scale rotation 
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and cropping. Compared with other watermarking 
algorithms, this algorithm is more robust, especially 
against geometric distortion, while having excellent 
frequency properties. But the 2D Radon-Wigner 
transformation needs much difficult computing and can 
be impossible in reality. So we introduce a algorithm 
based on 1D S transform. In this algorithm, the chirp 
signals used as watermarks are inserted in the image and 
the image is put into a series of 1D signal by choosing 
scalable local time windows. By using improved S-Radon 
transformation on the 1D image signal series, the 
watermark is detected. The shearing attack can break 
watermarks in one part of space support district, but 
watermarks in another one part of space support district 
still can not be destroyed. Synthesizing each supporting 
space, the watermark extracted still can be clear and the 
algorithm achieves the robustness to the shearing attacks. 

II.  THE PRINCIPLE OF S TRANSFORM 

As a linear time-frequency analysis, S transform in [8] 
has some features similar to the nature of time-frequency 
domain of the Fourier transform and the wavelet 
transform. For example, it is a reversible transformation 
of non-destructive and it’s inverse transform can perfectly 
reconstruct the original signal. So the time-frequency 
invariant feature ensures that the invariant features with 
the transformation signal for a specific application. One-
dimensional S transform is: 

( )2 2

22( , ) ( )
2

t f
i ftf

S f h t e e dt
τ

πτ
π

− −
+∞ −

−∞
= ∫                (1) 

where t, r are t domain variables and f is frequency 
domain variable. One-dimensional signal ( )h t  is 
mapped from the one-dimensional time domain to the 
two-dimensional time-frequency plane through S 
transform. One-dimensional S inverse transform is 

2( ) ( , ) i fth t S f d e dfπτ τ
+∞ +∞

−∞ −∞
= ∫ ∫                             (2) 

If S transform is local spectrum, the Fourier spectrum 
can be received by computing the average local spectrum 
through the whole time domain. So S transformation: 

           ( , ) ( )S f d H fτ τ
+∞

−∞
=∫                                    (3) 

( )H f  is the Fourier transform of ( )h t . ( )h t  can be 
deduced from ( , )S fτ . S transform is the general 
Fourier transform of non-stationary time series.  

S transform is the linear computation of time series 
( )h t . The transformed noise can often influence time-

frequency resolution ratio. If signal ( )x t  is equal to the 
sum of original data ( )s t  and noise ( )n t . 

           ( ) ( ) ( )x t s t n t= +                                              (4) 
After S transform: 
                { } { } { }( ) ( ) ( )S x t S s t S n t= +                          (5) 
The S transform can not creat cross terms and 
overwhelmingly increase the time-frequency resolution 

ratio. If the S transform of ( )h t  is ( , )S fτ , the S 

transform of ( )h t r−  is 2( , ) i frS r f e πτ −− . 
From equation 3, we can know that S transform has 

direct connection with Fourier transform. S transform and 
S inverse transform are a lossless reversible procedure. S 
transform will not create the cross terms and has nice 
time-frequency energy centralization quality. 

Two-dimensional S transform is based on one-
dimensional S transform to develop, that formula to 
transform is: 

           

2 2 22( ) /2 ( ) /2( , , , ) ( , )
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yx y i k yx i k xx x y y
x y
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∫ ∫

                                                                                          
(6) 
where ( , )h x y′ ′  is the two-dimensional image and 
( , )x y′ ′  is the space domain variables. After 
transformation, S transform spectrum contains 4 variables 
( , , , )x yx y k k . ( , )x y  are the variables in space domain 

and ( , )x yk k  are the variables in frequency domain, also 
known as the wavelength. Similar to the two-dimensional 
Fourier transform, the nature of the two-dimensional S 
transform can be seen as a cascade of two one-
dimensional S transformations. 

Reference to the fast Fourier transform, the 
( )( 0,1, , )h n n N= L  is the corresponding ( )h t  

discrete time series and sampling time interval is T. The 
discrete Fourier transform is: 

21

0

1 1( ) ( )
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k
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π− −

=
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   The discrete S transformation of time series ( )h t  is as 
follows: 

             

2 2

2
2 21
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When n = 0 (equivalent to zero frequency), discrete form 
of expression is: 

            
1

0

1[ ,0] [ ]
N

m

mS jT h
N NT

−

=

= ∑                                     (9) 

Equ.9 ensures that the time series of anti-transformation 
can be accurate. Of course, discrete S transformation has 
been limited by sampling and the length and will have a 
border effect in time and frequency domain. 

Discrete S inverse transformation is to obtain by 
calculating the discrete Fourier transform. When n is not 
equal to 0, the summation of S matrix (S [n, m]) along the 
line is: 

        

2 2

2
2 21 1

0 0
[ , ] [ ]

m i mjN N
n N

j m

n m nS jT H e e
NT NT

π π− − −

= =

+
=∑∑      (10) 

Equ.10 can be turned into: 
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The average of [ , ]nS jT
NT

 is: 
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Therefore, discrete inverse S transformation is: 
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When n is equal to zero, the width of the Gaussian 
function is zero. Zero frequency is the average of time 

series and is constant. [ , ]nS jT
NT

 is the average of 

[ ]h kT when the value of n reduced to zero. That is, 
every value along zero n value is replaced by this value. 
In this way, it ensures that S transformation is completely 
reversible. 

The generalized S-transform is given by 
2( , , ) ( ) ( , , ) i ftS f h t t f e dtπτ β ω τ β

+∞ −

−∞
= −∫              (15) 

where ω  is the window function of the S-transform and 
β  denotes the set of parameters that determine the shape 
and property of the window function. The window 
satisfies the normalized condition 

  ( , , ) 1t f dtω β
+∞

−∞
=∫                                              (16) 

The alternative expression of (15) by using the 
convolution theorem through the Fourier transform can 
be written as 

 2( , , ) ( ) ( , , ) i tS f X f W f e dπαττ β α α β α
+∞

−∞
= +∫     (17) 

Where: 
2 ( )( ) ( ) i f tX f h t e dtπ αα

+∞ − +

−∞
+ = ∫                       (18) 

And  
2( , , ) ( , , ) i tW f t f e dtπαα β ω β

+∞ −

−∞
= ∫               (19) 

The variable α and f in the above expression have the 
same units. In this scheme we retain the window function 
as the same Gaussian window because it satisfies the 
minimum value of the uncertainty principle. We have 
introduced an additional parameter ( into the Gaussian 
window where its width varies with frequency as follows 

       ( )f
f
δσ =                                                   (20) 

Hence the generalized S-transform becomes 

2 2

2
( )

22( , , ) ( )
2

t f
i ftf

S f h t e e dt
τ

πδτ δ
πδ

− −
−+∞ −

−∞
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Where the Gaussian window becomes 
2 2

22( , , )
2

t ff
t f e δω δ

πδ

−
−

=                             (22) 

And its frequency domain representation is 
2 2 2

2
2

( , , ) fW f e
π σ δ

α δ
−

=                                   (23) 

III  THE PRINCIPLE OF RADON TRANSFORM 

The 2D Radon transformation is the projection of the 
image intensity along a radial line oriented at a specific 
angle [9]. Radon expresses the fact that reconstructing an 
image, using projections obtained by rotational scanning 
is feasible. His theorem is the following: The value of a 
2-D function at an arbitrary point is uniquely obtained by 
the integrals along the lines of all directions passing the 
point. The Radon transformation shows the relationship 
between the 2-D object and its projections [10]. 

The Radon Transformation is a fundamental tool which 
is used in various applications such as radar imaging, 
geophysical imaging, nondestructive testing and medical 
imaging [11]. Many publications exploit the Radon 
Transformation. Meneses-Fabian et al. [12] describe a 
novel technique for obtaining border-enhanced 
topographic images of a slice belonging to a phase object. 
Vítezslav [13] examines fast implementations of the 
inverse Radon transform for filtered back projection on 
computer graphic cards. Sandberg et al. [14] describe a 
novel algorithm for topographic reconstruction of 3-D 
biological data obtained by a transmission electron 
microscope. Milanfar [15] exploits the shift property of 
Radon transformation to image processing. Barva et al. 
[16] present a method for automatic electrode localization 
in soft tissue from radio-frequency signal, by exploiting a 
property of the Radon Transform. Challenor et al. [17] 
generalize the two dimensional Radon transform to three 
dimensions and use it to study atmospheric and ocean 
dynamics phenomena. 

Figure 2 illustrates several 1D projections from 
different angles of an image consisting of three spots in 
the 2D domain. In some of the projections, only two spots 
are shown. This reveals the importance of the selection of 
the “correct” projections for image reconstruction. 
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Figure1. Different projections of a three-dot image example 

Suppose a 2-D function ),( yxf  (Fig. 3). 
Integrating along the line, whose normal vector is in θ  
direction, results in the ),( θsg  function which is the 
projection of the 2D function ),( yxf  on the axis s  of  
θ  direction. When s  is zero, the g  function has the 
value ),0( θg  which is obtained by the integration along 
the line passing the origin of ),( yx -coordinate. The 
points on the line whose normal vector is in θ  direction 
and passes the origin of ),( yx -coordinate satisfy the 
equation: 

θ
θπθ

sin
cos)

2
tan( −

=+=
x
y

 ⇒  

⇒  0sincos =+ θθ yx  
 

 
Figure2. The Radon Transform computation 

The integration along the line whose normal vector is 
in θ  direction and that passes the origin of ),( yx -
coordinate means the integration of ),( yxf  only at the 
points satisfying the previous equation. With the help of 
the Dirac “function” δ , which is zero for every 

argument except to 0 and its integral is one, ),0( θg is 
expressed as: 

∫∫ +⋅= dxdyyxyxfg )sincos(),(),0( θθδθ           (24) 

Similarly, the line with normal vector in θ  direction 
and distance s from the origin is satisfying the following 
equation: 

0sin)sin(cos)cos( =⋅⋅−+⋅⋅− θθθθ sysx  ⇒  
0sincos =−+ syx θθ   

So the general equation of the Radon transformation is 
acquired: [10, 11, 15, 16, 18]  

∫∫ −+⋅= dxdysyxyxfsg )sincos(),(),( θθδθ           (25) 

The inverse of Radon transform is calculated by the 
following equation [14] : 

( )( ) θρ
π

π
θ dyxsRyxf ∫

−

⋅=
2

2

,),(                           (26) 

where θR  is the Radon transformation, ρ  is a filter and 

( ) θθ sincos, yxyxs +=                                         (27) 
Radon-Wigner transformation is a kind of projective 

transformation of linear integration, It is the Radon 
transformation of linear integration projection for the 
signal wigner transformation, as shown in the Figure3. 

  

 
Ficture3. Schematic illustrating the geometry for calculation of the 

Radon-Wigner spectrum 

The Wigner distribution of the image I (x, y) is defined 
as: 

ζξ

ζξζξ

ωω

ζωξω jde

yxIyxI
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* )2/,2/()2/,2/(

),,,(

+−

∞+

∞−

∞+
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×

−−++= ∫∫      

its pseudo form is used in practical realizations 
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where ( , )w ξ ζ  is a 2D window function. The 2D chirp 
signal, used here as a base for watermarking, has this 
form: 

)(

)cos(2),(
)()(

22

2222 cbyaxjcbyaxj eeA

cbyaxAyx
++−++ +=

++=Ω
 

where A is the watermark amplitude or strength. Note 
that the Wigner distribution of this signal is highly 
concentrated. 

termscross

byaxWA

byaxWAyxWD

yx

yxyx

−

+++

+−−=

)2,2(

)2,2(),,,(
2

2

ωω

ωωωω
 

where the Fourier transform of the window. 
)2,2( byaxw yx −− ωω , is close to a delta function 

)2,2( byax yx −− ωωδ  for a sufficiently wide window, 

since the cross-terms in the Wigner distribution will be 
eliminated by use of projections, they will be neglected in the 
sequel. 

After a general linear geometrical transformation, 
signal can be written in this form 

)cos(2),( 6543
2

2
2

1 ayaxaxyayaxaAyx +++++=Ω′

     This transformation corresponds to a mapping of 
centered ellipse into the rotated one, whose center is 
displaced from the origin. From the point of view of the 
Wigner distribution concentration on the local frequency, 
we may say that it is invariant with respect to this 
transformation. Only the position of the local frequency 
of the distribution concentration will be changed. 

termscross

axaya
axyaxaWA

axaya

axyaxaWAyxWD

y

x

y

xyx

−

++++
+++

+−−−

−−−=

)2
,2(

)2

,2(),,,(
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2

532

31
2

ω
ω

ω

ωωω

                                          

This means that the described geometrical 
transformation does not influence the maximal value of 
the Wigner distribution which we intend to use for the 
watermark detection. The Wigner distribution of the 
watermark remains close to the delta pulse. Although, we 
have a very specific and recognizable function over the 
enter space, its energy could be much smaller than the 
energy of the Wigner distribution of an image because the 
value of A should be drastically smeller than the average 
image values. For this reason the watermark detection of 
us only the Wigner distribution is not reliable enough. 
 

IV. THE IMBEDDING AND TEST OF DIGITAL 
WATERMARK 

We consider how to construct a watermark to insert 
into the image. In the Srdjan Stankovic and Igor 
Djurovic’s paper, the two-dimensional chirp signals are 
used as watermarks and in the algorithm two-dimensional 
Radon-Wigner transformation is applied to additionally 
concentrate the energy of the watermark signal and shows 
perfect robustness to the geometrical attacks. But the 

computing of two-dimensional Radon-Wigner needs too 
much time and could be very difficult. This algorithm is 
very impractical and the ordinary computer could not 
finish this work. So we want to look for a new time –
frequency distributions domain algorithm to solve this 
problem.  

We imbed the watermark in the S transformation 
domain of image. In Stockwell’s paper, the S 
transformation is introduced and can detect linear 
frequency-modulated signals. But 2D S transformation 
needs expensive computing. Obviously, it is necessary to 
apply one-dimensional S transformation on image and 
additionally concentrate the energy of the watermark 
signals. We select the linear frequency-modulated signals 
as watermark. The digital watermark is W  with the sum 
of many linear frequency-modulated signals with 
different frequency: 

1 1( ) cos[2 ( ) ] cos[2 ( ) ]m mWn f knTnT f k nTnTπ π= + + + +L     (28) 

The length of W  is n, and then choose D0 and D1 two 
areas with the same size of watermark in wavelet 
transformation middle frequency domain 0LH  and 

0HL  of digital image frame ijC .  The method to imbed 
watermark is as followed: 

0 0 1 1( , ) ( ( , ) ( )), ( , ) ( ( , ) ( ))D i j D i j W n D i j D i j W n′ ′= + = +  (29) 
Then we synthesize wavelet to get watermark image. 

All the frames be done the same way as above-mentioned 
calculate ways. When withdrawing watermark, we carry 
on wavelet decomposition again and withdraw a 1-D 
signal from the known domains. We make S 
transformation on the 1-D signal and detect the linear 
frequency-modulated signals that are the watermarks. 
Then we take Radon transformation on the S 
transformation image and the more clear watermarks is 
shown. 

In this paper, we use standard 256 ×256 gray image 
Lena as an original image. Applying Haar wavelet 
transformation in the algorithm, the image after imbedded 
the two and three linear frequency-modulated signals 
with different frequency as watermark is shown in 
Ficture4. The detecting result is shown in Ficture5 and 
Ficture6. The picture frame decomposition adding three 
watermarks cuts pictures in the different position and the 
different size. After cutting an attack withdraw 
watermark. We cut 50% and 75% of the image random 
such as Ficture7 Ficture12. Then extracted watermark 
result is shown such as follows. According to the result of 
the experiment, it can be seen that the watermarking 
image can still be extracted well even the original image 
is shearing attacked by 75% with the S-Radon 
transformation. This algorithm is better than the S 
transformation and Wigner transformation. This proves 
the efficient of the method used above. In the testing 
process, this algorithm can be used in the reality. 
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Ficture4.Watermarked image 

 
Ficture5. The two Watermarks extracted with S transformation 

 
Ficture6. The three Watermarks extracted with S transformation 

    
Ficture7.Sheared by 50% in the middle 

 
Ficture8. The two Watermarks extracted with S transformation 

 
Ficture9. The three Watermarks extracted with S transformation 

 

 
Ficture10. The three Watermarks extracted with Wigner transformation 

 
Ficture11. The three Watermarks extracted with improved S-Radon 

transformation 
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Ficture12. Sheared by 75% upside 

  

 
Ficture13. The three Watermarks extracted with S transformation 

 

 
Ficture14. The three Watermarks extracted with Wigner transformation 

 
Ficture15. The three Watermarks extracted with improved S-Radon 

transformation 

V. CONCLUSIONS 
In this paper, a robust watermarking method against 

shearing based on S-Radon transform is introduced. The 
proposed method makes use of the person’s sense of 
vision characteristics and wavelet transformation to 
achieve the improved S-Radon transform on the image. 
The linear frequency-modulated signals are selected as 
watermarks and are added in middle frequency 
coefficients in the transformation matrix. Based on 1D S 
transform and Radon transformation, the watermark is 
extracted. The method improves the validity of 
watermarking and shows excellent advantage against 
shearing attack. 
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