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Abstract—Owing to the importance of non-differentiable 
point in a function for economy, engineering and theoretical 
analysis, this paper brings forward a novel methodology to 
figure out the non-differentiable point of function which is 
based on adjusting the models for global extremum and 
local extremum of particle swarm optimazation (PSO). The 
algorithm takes the difference between left and right 
difference quotients as the adaptive value of the particle. By 
them, it defines local extremum and global extremum for 
PSO and makes particle close to non-differentiable point of 
target function, and then figures the point out. The validity 
of the algorithm is verified by the result of numerical 
calculation. 
 
Index Terms—Non-differentiable Point; Particle Swarm 
Optimization (PSO); Difference Quotient 

I.  INTRODUCTION  

The non-differentiable point of function is importantly 
applied in analyzing the characteristics of function, 
economy and engineering practices. It will be used in 
figuring out the extremum of function. Therefore, it is 
actually and theoretically significant to figure out the 
point of function within certain interval. However, only 
few scholars pay attention to how to figure out non-
differentiable point of function within certain interval 
until now. 

It is not easy to figure out non-differentiable point of 
function. According to definition, the point has to be 
estimated one by one. That is obviously not an operable 
method. And there is no Iterative formula can be used to 
calculate non-differentiable point as used in other 
mathematic problems. 

In this paper, by adjusting Particle Swarm 
Optimization (PSO)[1,3-10] properly, the algorithm can be 
more suitable to figure out non-differentiable point of 
function.  

And there are examples in the following text which 
shows the validity of the algorithm. 

II. NON-DIFFERENTIABLE POINT OF FUNCTION  

Derivable point [2]
0x of function is the point that the 

follow limit is existed. 
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Non-differentiable point of function is the point that 
the limit is not existed. 

According to the above definition, the non-
differentiable point of function has to be figured out one 
by one to testify the existence of the limit. In this way, it 
is actually not feasible to figure out the point. 

Particle Swarm Optimization (PSO) is a kind of 
optimized algorithm designed after the simulation of 
foraging behavior of birds. It imitates the group 
biological behavior of birds and the like. In it every 
organism is called as particle. PSO means to find out the 
optimum solution among a group of particles in n-
dimensional space. The position of every particle means 
the vector for one solution. As an agent, the particle may 
memorize the optimum solution found by itself and 
acquire the optimum solution experienced by the whole 
group of particles to direct its movement and gradually 
iterate the most optimum solution.  

Take the position of No.i particle in generation-j 
as )( jix ，the optimum solutions found out by itself and 
the whole group of particles are individual extremum 
(Pbest) )( jidp  and global extremum 

(Gbest) )( jgdp respectively, its movement speed vector 

)( jiv , then No.i particle will move to the following 
position in generation-(j+1) 

))()(())()(()()1( 32211 jjjjjj igdiidii xpxpvv −+−+=+ φηφηωφ                   
(1) 

)1()()1( ++=+ jjj iii vxx              (2) 
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Among which 21  , , ηηω  are control parameters all 

taking values from [0, 1], and 321 ,, φφφ  are random 
numbers in the interval [0, 1]. The movement of every 
particle may be illustrated as follows 

 
Fig.1 Complex Movement of Particle 

III.  FIGURE OUT NON-DIFFERENTIABLE POINT OF 
FUNCTION BY PSO 

PSO adjusts itself in each step by contrasting 
the )( jidp and )( jgdp of its former step. In this way, 
the optimum value of function will be figured out after 
adjustment one step by one step. Owing to this thought, it 
is possible to figure out the solution for the certain 
characteristic by means of PSO iteration, if provided that 

)( jidp and )( jgdp  have certain characteristic. Since 
the non-differentiable point of function is a point with 
certain characteristic, so it can be figured out by PSO. 

For function    ],[),( baxxfy ∈=  

The key to figure out the non-differentiable point by 
PSO is how to confirm the global extremum and local 
extremum in PSO. Different global extremum and local 
extremum will bring forward different algorithm in 
figuring out non-differentiable point by PSO. According 
to the definition of derivative of function (1); if a function 
is not an odd function and is differentiable at certain point, 
the absolute value of left and right difference quotients at 
this point is relatively small; 
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If the function is at the non-differentiable point, the 
absolute value of left and right difference quotients at this 
point is relatively big. 

If 0)( 0 =xp appears in the calculation of formula (3), 

it means )(xf  is an odd function within the local field 

of 0x . If it is differentiable at 0x , that 
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is relatively small; if the function is at the non-
differentiable point, the absolute value is relatively large. 

In this paper, the absolute value of the difference 
between left and right difference quotients of every 
particle is used as the adaptive of this particle. The 
individual extremum and global extremum are same with 
general algorithm. In this way, PSO is used to figure out 
the non-differentiable point of function. 

A.   Flow of Algorithm 
The basic procedure in figuring out mean value by 

PSO is: 
Step1 1=k    given 0, >Mh     

Given m initial points like mxxx ,,, 21 L  and initial 

speed iv ),,2,1( mi L= ， 
Step2 Figure out respective adaptive values by formula 

(4) or formula (3) according to )(xf  whether or not it is 
odd function. 

Find out the maximum among 
)(),(),( 21 mxpxpxp L  and take it as )( gdpf . 

Accordingly, the current global mean value point is gdp . 

Local mean value is iid xp = , calculate )( idpf . 

Step3 Update according to iteration formula (1), (2). 

Step4 Confirm the local mean value. 

On the assumption that after the update of Step2, the 
m  points and their speeds are mxxx ,,, 21 L and 

iv ),,2,1( mi L=  respectively, calculate 

)(,),(),( 21 mxpxpxp L  

Compare )(),( idi ppxp , and take the maximum as the 

new )( idpp ，the local mean value point is idp . 

Step5 Confirm the global mean value 

Compare ),,2,1(),( mipf id L=  and )( gdpf , take 

the maximum as the new )( gdpf , the global mean value 

point gdp  and the global mean value )( gdpf  are 
acquired. 

Step6 1+= kk , judge if it conforms to the condition 
of conclusion. If it does, it may conclude. If not, return to 
Step2. 

Step7 When the final maximum is bigger than M, it is 
considered that the function is non-differentiable 
at gdxx = . When it is smaller than M, it is considered 
that the function is differentiable at every point within the 
interval [a, b]. 
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B.  Performance Test of Arithmetic 

Test: to test following functions in different types, 

（1）  20|||,| ≤= xxy    
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(7)     5.0||||,1|ln| ≤−= xxy  

The initial population of the algorithm is 100 and 
iteration generation number is 100. 

Example 1 Parameter 1.0=h , after 200 times of 
calculation, the curve of the average of the acquired non-
differentiable points was given in figure2 and the non-
differentiable points was listed in the appendix A. 

Example 2 Parameter 01.0=h , after 200 times of 
calculation, the curve of the average of the acquired non-
differentiable points was given in figure3 and the non-
differentiable points was listed in the appendix B. 

Example 3 Parameter 001.0=h , after 200 times of 
calculation, the curve of the average of the acquired non-
differentiable points was given in figure 4 and the non-
differentiable points was listed in the appendix C. 
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Fig.2  The curve of the relation the non-differentiable point and steps 
of example 1 
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Fig.3 The curve of the relation the non-differentiable point and steps 
of example 2 
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Fig.4 The curve of the relation the non-differentiable point and steps 
of example 3 

Example 4 Parameter 1.0=h , after 200 times of 
calculation, the curve of the average of the acquired non-
differentiable points was given in figure5 and the non-
differentiable points was listed in the appendix D. 
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Fig.5 The curve of the relation the non-differentiable point and steps of 

example 4 
 

Example 5 Parameter 1.0=h , after 200 times of 
calculation, the curve of the average of the acquired non-
differentiable points was given in figure 6 and the non-
differentiable points was listed in the appendix E. 
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Fig.6 the curve of the relation the non-differentiable point and steps of 

example 5 
 

Example 6 Parameter 1.0=h , after 200 times of 
calculation, the curve of the average of the acquired non-
differentiable points was given in figure7 and the non-
differentiable points was listed in the appendix F. 
 

Example7 Parameter 1.0=h , after 200 times of 
calculation, the curve of the average of the acquired non-
differentiable points was given in figure 8 and the non-
differentiable points was listed in the appendix G. 

 

From the above results, it is obvious that the algorithm 
can figure out non-differentiable points of function 
relatively and correctly within certain interval. This is 
because the algorithm makes proper definition for local 
extremum and global extremum in PSO, which may 

move closely to the non-differentiable points of function 
and finally figure them out. 
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Fig.7 The curve of the relation the non-differentiable point and steps 

of example 6 
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Fig.8 the curve of the relation the non-differentiable point and steps 

of example 7 

C.  Analysis of Time and Capability of Algorithms 

The calculation of the algorithm is same with the 
calculation of standard PSO without additional 
calculation. Therefore, it is same with PSO in complicacy 
of calculation. Through the above test, good result is 
figured out. This is because PSO is a kind of global 
search arithmetic. During the course of iteration, the main 
trend is always moving forward the optimum value. As a 
result, after global mean value and local mean value are 
defined in this paper, the main trend of the algorithm 
moves forward the non-differentiable points of function 
and finally figure out the non-differentiable points of 
function. 

Performance analysis: The results of the above 
showed that the algorithm has strong searching property 
for figuring out Non-differentiable Point of function if the 
function exist the non-differentiable Point. It is because 
that the algorithm can fully take advantage of the idea of 
the PSO.  By the definition of the non-differentiable point 
of the function, it gave extremum and global extremum. 
From the extremum, we can see that it fully use the 
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change rate in the neighborhood of one point of the 
function. So, in the course of the iteration, the extremum 
point closer to the non-differentiable by step and step, 
and finally find out the non-differentiable. 

Convergence analysis: Since the algorithm is based 
on PSO, and no other performance was added to it. Then, 
if the non-differentiable is exists, the algorithm will be 
convergence to it 

Time Complexity analysis: The algorithm is based 
on PSO, and only advance the extremum and global 
extremum definition of the non-differentiable, in order to 
make PSO can use to find out the non-differentiable, so 
the time complexity of this algorithm is same to the 
PSO’s, and their run-time is similar. 

IV.  APPLICATION OF ALGORITHM 

We all know that it is important to solving 
optimization problems, so lots of algorithm was advanced 
to solve it. Especially, evolution algorithm provides more 
possibility and advantage for optimization algorithm to 
solve optimization problems. But evolution optimization 
algorithm is easy to be trapped into local minima in 
optimizing it, and lots of improve tactics[11-39] was put 
forward to improve evolution algorithm. Because, we 
know that the non-differentiable point is quietly possible 
the minima point, so it is entirely to improve one 
optimization algorithm by leading searching non-
differentiable points mechanism to it to enhance the 
searching of the algorithm.  

For example, we can improve Particle Swarm 
Optimization by added non-differentiable points 
searching to it (PSOS), and the principle is as follows::     

)(min xf  

Step 1: Randomly produce k particles kxxx ,,, 21 L  
in solution space, and given 0>h    

Stp2  Figure out respective adaptive values by formula 
(4) or formula (3) according to )(xf  whether or not it is 
odd function. And find out the maximum among 

)(),(),( 21 mppp xxx L ,let it is )( 0xp  

Step 3:  Compute the current global optimum gp  and 

local optimum ip , substitutes iterative equations with 
the values 
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Compute )(,),(),( 21 kfff xxx L  

Step 4: Return to Step 2, repeat the process until a stop 
criterion is met. 

One benchmark functions are given to examine the 
performance of PSOS. 

Test1 30 dimensions Griewank function 

( ) 1cos
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1)(
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1
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600≤ix .    

The best result is min f (x)=f (0,0,…,0) .  
Test 2 Hartman’s Function 
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where  10 ≤≤ jx ,  )2.332.11(=c , 
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0381.01091.05743.08732.08828.04047.0
6650.03047.02883.03522.01415.02348.0
9991.01004.03736.08307.04135.02329.0
5886.08283.00124.05569.01696.01312.0
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⎣

⎡
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141.01005.0817
817107.15.33

1481.0171005.0
87.15.317310

)( ijaA  

min(f (x)) =f (0.201,0.15,0.477,0.275,0.311,0.657)=-3.32. 
PSOS and PSO was run 10 times, and the final 

optimal results showed that PSOS is better than PSO 

V.  FURTHER EXTENSION OF ALGORITHM  

By using this algorithm, the non-partially differentiable 
point of multi-function can also be figured out. 
Meanwhile, the maximum and minimum of function may 
be calculated in combination of this algorithm.  

VI.  CONCLUSION 

In this paper, a novel method of constructing local 
extremum and global extremum in PSO is given 
according to the need of figuring out the non-
differentiable point of function. By this method, PSO can 
be used to calculate the non-differentiable point of 
function at a certain interval. The results in the paper 
show the algorithm is practical. 

APPENDIX A   THE DATE OF EXAMPLE 1 

0.0002   -0.0000   -0.0000   -0.0000    0.0000    0.0001    
0.0011    0.0000    -0.0000    0.0045   -0.0000    0.0000    
0.0000  -0.0000  -0.0000  0.0000    -0.0000   -0.0000 …         
 

APPENDIX B   THE DATE OF EXAMPLE 2 

0.0050    -0.8458     0.0043     0.0037    0.0022    0.0050   
-0.0041    0.0011     0.0013    0.0035    0.0028    0.0024    
0.0029   0.0048     0.0049     0.0009     0.0001   -0.0016…       

APPENDIX C   THE DATE OF EXAMPLE 3 

-0.0033   -0.0054   -0.0033    0.0075    0.0045    0.0075   -
0.0036    0.0075     0.0075    0.0075   -0.0036    0.0075    
0.0075  0.0075    0.0075    0.0075     0.0075    0.0075    ….      
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APPENDIX D   THE DATE OF EXAMPLE 4 

0.0001    0.0000    0.0049    0.0191    0.0016    0.0000    
0.0392    0.0056     0.0148    0.0000    0.0000    0.0164    
0.0137   -0.0216    0.0000    0.0088     0.0037    0.0000 …      

APPENDIX E   THE DATE OF EXAMPLE 5 

-0.0001    0.0212    0.0002    0.0056    0.0000    0.0178    
0.0000    0.0000     0.0176    0.0001    0.0062    0.0000    
0.0208    0.0000    0.0038    0.0110     0.0014    0.0356  ….      

APPENDIX  F   THE DATE OF EXAMPLE 6 

1.0e-003 * 
 -0.0083   -0.0244   -0.0227   -0.0107   -0.0638    0.1712    
0.0216   -0.0200  -0.0085   -0.0088   -0.0437   -0.0067   -
0.0050   -0.0089   -0.0229   -0.0516  -0.0194    0.1974…   

APPENDIX G   THE DATE OF EXAMPLE 7 

1.0E-005 * 

-0.1851    0.0515   -0.2821   -0.0893    0.0207    0.0264   -
0.1997   -0.1132      -0.3145    0.0292   -0.0787    0.0647    
0.1891    0.0655   -0.2352    0.3584     -0.1287   -0.3723….      
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