
High Level Synthesis using Learning Automata
Genetic Algorithm

Huijing Yang

School of Software, Harbin University of Science and Technology, Harbin, China
Email: yhj833@gmail.com

Chunying Wang

School of Software, Harbin University of Science and Technology, Harbin, China
Email: spring_hrbust@yahoo.com.cn

Ning Du

Department of Software,Harbin University of Scienc&Technology,Harbin,China.
Email:dn.duning@gmail.com

Abstract—High-level synthesis consists of many
interdependent tasks such as scheduling, allocation and
binding. All tasks in high-level synthesis are NP-complete
and the design objectives are in conflict for nature, most of
the already proposed approaches are not efficient in the
exploration of the design space and not effective in the
identification of different trade-offs. For these reasons,
genetic algorithms can be considered as good candidates to
tackle such difficult explorations. A new algorithm that
named Learning Automata Genetic Algorithm (LAGA) is
used in this paper to perform scheduling and allocation
concurrently. This algorithm is based on the Genetic
Algorithm, the difference is that the Learning Process is
added to the Genetic Algorithm. This strategy can complete
the scheduling and the allocation effectively in the high-level
synthesis under certain time and resource constraints. This
algorithm is implemented in C language and is tested finally
on a number of DSP benchmarks, and the test results then
are compared with those obtained from four other different
techniques which are commonly used in high-level synthesis.
The experimental results show that the high-level synthesis
using the LAGA algorithm is very effective, especially under
the area constraint.

Index Terms—Genetic algorithms, Learning Automata,
High-level synthesis (HLS), Scheduling, design space
exploration

I. INTRODUCTION

There is a growing consensus among VLSI designers
that one of the most effective methods to handle the
complexity of today’s system-on-chip (SoC) designs is to
use computer-aided design (CAD) techniques. CAD
techniques start with an abstract behavioral or algorithmic
description of a circuit and automatically synthesize a
structural description of a digital circuit that realizes the
behavior. The behavioral description consists of
computational operations (additions, multiplications,
comparisons, logical operations) and control operations
(conditional statements, loops, and procedure calls) [1].

The structural description maps the operations and data
transfers onto functional units in a data path and a control
unit that coordinates the flow of data between various
functional units of the data path. The data path include
hardware units (ALUs, multipliers, logical gates), storage
units (registers, registers files, RAM, ROM), and
interconnect units (multiplexers, buses) that are
connected together to realize the specified behavior. This
structural description is called a register transfer (RT)-
level description. Once an RT-level design of a circuit is
obtained, it can be transformed into a logic gate level
netlist through logic synthesis, then into a layout via
layout synthesis, and finally fabricated into an integrated
circuit. Fig. 1 illustrates a typical high-level synthesis
flow used for creating a chip design, starting from an
abstract algorithmic specification [2].

Figure 1. Interdependence of subtasks in high level synthesis

2534 JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.10.2534-2541

High-level synthesis (HLS) is the process of translating
a behavioral description into a hardware implementation
at register transfer level [3]. The design specification is
usually written as a behavioral description, in a language
such as C. The behavioral description is first compiled
into an internal representation (such as data flow graphs -
DFGs), which are then mapped to the functional units
that are selected from the resource library to meet design
goals (such as power, area, and performance). This
process of transforming a behavioral description into a
synthesizable structural description affords a
methodology of automatically synthesizing a realizable
digital circuit from an abstract algorithmic specification
of the design, thus considerably reducing the design cycle
time. VLSI designs are multiobjective by nature, since
they have to trade-off several conflicting design
objectives such as chip area, circuit delays, and power
dissipation. The shorter design time using behavioral
synthesis allows one to examine many alternative circuit
realizations during the design process [4]. Often, the
structural specification is divided into a data path
comprised of the functional and storage units and a
control unit that coordinates the flow of data between the
data path elements [5]. Due to the division, high-level
synthesis is traditionally divided into data path synthesis
and controller synthesis[6]. The primarily focus will be
on data path synthesis.

Datapath synthesis can be modeled as the process of
searching a complex multidimensional space represented
by the set of possible schedules, allocations, and bindings
that can realize a given behavioral specification.

As modern VLSI and SoC designs become more
complex, a major problem is the extremely large number
of possible schedule and allocation combinations that
must be examined in order to select a design that meets
constraints and is optimal [7]. This process, called design
space exploration, is further compounded by the need for
shortening design times due to time-to-market pressures.
Since an exhaustive search could be prohibitive and an ad
hoc design exploration could be inefficient, designers
often select a conservative architecture after some
experimentation, which often results in a suboptimal
design. Given this scenario, there is an acute need for
techniques that automate the efficient exploration the
large space in a reasonable time, during high-level
synthesis of datapaths [8].

Searching a complex space of problem solutions often
involves a tradeoff between two apparently conflicting
objectives: exploiting the best solutions currently
available and robustly exploring the design space.
Genetic algorithms (GAS) manage this tradeoff in an
intelligent way. GAS have recently been applied
successfully to optimization problems in diverse fields,
such as standard cell placement [9], searching and
machine learning [10] and data path synthesis [11].

The Genetic Algorithm begins with a randomly
selected population, and through recurrence of the
production of the generation, looks for the best
chromosome [12]. The aim of the Genetic Algorithm is to
find the best chromosome. The position of genes in each

chromosome, in the Genetic Algorithm is random. If we
should select the appropriate position of genes, it would
be possible to appropriate the nearly optimal answer in
fewer generations [13]. The Genetic Algorithm, in fact
chooses the best chromosome from among the existing
ones, and the positions of the genes of chromosomes are
totally random [14]. If it were possible to find the optimal
place of the genes of chromosomes, we would be able to
find the ideal answer in fewer generations. Through
utilizing the advantage of both methods, the proposed
algorithm tries to achieve the optimal answer in fewer
generations.

In the LAGA algorithm each chromosome is equal to
an automaton and each gene equal to an action of an
automaton.

In this paper, we use LAGA performing subtasks of
scheduling in high-level synthesis, and to trade-off
conflicting design objectives the process of scheduling
based on DFG with weights. And we set weights for DFG
according to the constraints of resource.

The paper is organized as follows. Section II provides
a brief review of the related work, with particular
attention to the evolutionary approaches. Then, Section
III describe in details methodology of LAGA, while
Section IV presents the results of the experimental.
Section V we summarize the paper and draw conclusions
based on our experimental results.

II. RELATED WORK

A. High Level Synthesis Methods
A large number of scheduling and allocation

techniques have been developed for HLS over the past
two decades. It is well-known that there is a strong
interdependence between the HLS subtasks, and there is
no clear consensus on their order of execution [18]. Such
decision often has a large impact on the quality of
solutions found and most of the early HLS systems
performed those two subtasks separately, obtaining poor
results. In literature, the high level synthesis techniques
can be classified into four categories: constructive
approaches, iterative transformational approaches, exact
approaches and non-deterministic approaches. The
constructive approaches operate on one operation or
resource at a time until all elements are considered.
Important algorithms following this approach, for
example for scheduling, include common as-soon-as-
possible (ASAP) and as-late-as-possible (ALAP)
scheduling, list based scheduling [15], force-directed
scheduling [16] and path-based scheduling [17]. The
iterative transformational approaches perform continuous
refinements to the set of solutions while exact approaches
[18] exploit a mathematical formulation of the problem to
find the optimal solution, but the execution time of these
algorithms grows exponentially with the number of
variables and the number of inequalities. Therefore, these
methods are impractical for large designs. Several high-
level synthesis systems use nondeterministic approaches,
and in particular GAs, to perform some or all of the
synthesis subtasks. Most of them consider two phases and

JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012 2535

© 2012 ACADEMY PUBLISHER

problems separately like in [19] where GAs are used to
schedule the operation while in [20] they are used to
allocate and bind a scheduled graph. In the last years, the
design of algorithms for DSE is becoming crucial to
consider the effects of all the HLS subtasks.

B. Genetic Algorithm
Among the optimization methods inspired by the living

nature, genetic algorithm, which is based on the
principles of natural evolution, is considered one the best
and most sophisticated [21]. Genetic Algorithm is a non-
classic and random search optimization method that deals
with the function itself, not its derivations, and is based
on the theory of the survival of the fittest, inspire by
Darwin's evolution theory, and natural genetics [22]. In
this method, search begins from several points in solution
space simultaneously and through point to point search.
The variables of target function are evaluated and, finally,
the point which the most or the least absolute is
introduced as the optimal point [23]. Optimization is the
most important and function of the Genetic Algorithm. In
common optimization methods target function must
necessarily be coherent and consistent [24]. In Genetic
Algorithm, however, a consistent and devisable function
is not needed. In accordance with Genetic Algorithm, a
sample from among all decision variables, that affects the
function, is regarded as a member, and a certain number
of these samples, makes up a set of members[25]. In this
method, a set of the population of variables is used in the
process of search. As a result, as the chance of creating
better variables is boosted, the possibility of finding the
absolute or general optimal point is heighted. This quality
is specifically suitable for functions sudden changes and
possessing several situational optimal points. Complete
information concerning Genetic Algorithm is brought in
[26].

C. Learning Automata
A learning automaton is an abstract model that

randomly selects an action from a set of the finite actions
and applies it to the environment. The environment
evaluates the selected action and informs the result of its
evaluation, by a boosted signal, to the learning automata.
By using the selected action and boosted signal, the
learning automata results its internal situation and then
selects its next action.

We can present the environment by E={α ,β , c} in
which α={α1,α2,...,αr} is the set of inputs,
β={β1,β2,...,βr }is the set of outputs and c={c1,c2,...,cr}
is the set of penalty possibilities. When β is a two-
member set, the environment is P type. In such
environment, β1=1 is considered penalty and β2=0
reward. In a type Q environment, β set of processes an
infinite number of members. ci is the possibility of a
action's being penalized. Learning automata are directed
into two groups: those with fixed structures, those with
variable structures [27].

III. SCHEDULE USING LAGA

LAGA algorithm is constructed of two phase. In first
phase with use of Genetic Algorithm, the result is
optimized and in second phases the obtained results from
Genetic algorithm improved using learning automata. In
first phase the genetic Algorithm is endeavor to optimize
the chromosomes and then the obtained chromosomes are
putting into learning automata. Then Learning Automata
is focus on Chromosome Genes and finding the most
suitable place of Genes in Chromosomes. Figure 2 shows
the flowchart of proposed algorithm.

Figure 2. The Steps of proposed algorithm is described in below

A. Initial Population
At first, P (number of population) random generated

chromosome and then all tasks are allocated to genes of
chromosomes. Then a number is allocated randomly to all
genes. The random allocated number to genes includes 2
concepts:

1. Task priority.
2. Processor’s number, which executes the task.
After allocating random numbers to chromosome

genes, the values of the genes are interchanged with the
number of 2/N load.

We are going to perform, the shown graph in Figure 3,
referring to Figure 4, you can observe how tasks are
allocated to interior status in order. Since there are two
processors in the system, so odd numbers indicate P1
processor and even numbers indicate P2 processor. If the
system includes more than two processors, processor’s
number will consist of the result of the allocated number
to the number of all processors.

2536 JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

Figure 3. Operator task graph

B. Task Execution on Processors
When implementing a program on parallel processors,

the data dependence between tasks should also be taken
into consideration. In fact, a task cannot be implemented
unless all of its parent tasks are implemented. In this
section, how tasks are implemented on processors has
been described [28]. Each task will be implemented in its
relevant processor with regard to the automata of figure 4.
From among all ready tasks, one, priority is higher than
other tasks is implemented. In case, priorities of two tasks
are the same as such other, one is randomly chosen for
implementation. Ready task is one whose all parent tasks
have been implemented.

Figure 4. Example of automata for Figure 3 operator task graph

For example, by considering the automata of figure 4
and the task graph of figure 3 in the first phase, it
becomes evident that only T1 task is ready. In the first
phase, then, T1 will be executing. After the execution of
T1 task, T2, T3, T4, T5 tasks will be on the ready. In this
phase, priority of T5 task is higher than other ready tasks,
so it is executed. In the same fashion, all tasks are
implemented on their own specific processors [29].

With regard to Figure 4 automata, tasks T1, T5, T2, T4,
T6, T7, T9 will be run on P1 processor and T3, T8 on P2

processor as well. Tasks execution order will be as
TABLE 1.

TABLE I.
TASK EXECUTION ORDER

J S’ v(j) J* TS

0 {1} v(1)-15 1 S-{1}

2 {2,3,4,5} v(2)-11,v(3)-14,v(9)-
9,v(5)-17 2 S-{1,5}

1 {2,3,4} v(2)-11,v(3)-14,v(9)-9 3 S-{1,5,3}

3 {2,4} v(2)-11, v(9)-9 4 S-{1,5,3,2}

5 {4,6,7} v(4)-9,v(6)-5,v(7)-3 5 S-{1,5,3,2,4}

4 {6,7,8} v(6)-5,v(7)-3,v(8)-2 6 S-{1,5,3,2,4,6}

7 {7,8} v(7)-3,v(8)-2 7 S-{1,5,3,2,4,6,7}

9 {8} v(8)-2 8 S-{1,5,3,2,4,6,7,8}

6 {9} v(9)-7 9 S-{1,5,3,2,4,6,7,8,9}

All tasks, now, will be executed according to table2. It
shows task execution order on processors in details.

TABLE II.
DISPLAY OF TASK EXECUTION ORDER IN DETAILS

J* S pi tj=ej+pj
1 P1-{1},P2-{} 1 T1 – 0+2-2
2 P1-{1,5},P2-{} 1 T5 – 2+5-7
3 P1-{1,5},P2-{3} 2 T3 – 3+3-6
4 P1-{1,5,2},P2-{3} 1 T2 – 7+3-10
5 P1-{1,5,2,4},P2-{3} 1 T4 – 10+4-14
6 P1-{1,5,2,4,6},P2-{3} 1 T6 – 14+4-18
7 P1-{1,5,2,4,6,7},P2-{3} 1 T7 – 18+4-22
8 P1-{1,5,2,4,6,7},P2-{3,8} 2 T8 – 17+4-21
9 P1-{1,5,2,4,6,7,9},P2-{3,8} 1 T9 – 31+1-32

C. Fitness Function
In Genetic Algorithm, fitness function determines

whether chromosomes are going to stay alive. In the
problem of task scheduling, the object is to find a short
makes pan. Analysis function for scheduling problem is:

eval(v k) =1/fk, k=12,..., pop size
fk : the makes pan resulting from kth chromosome.

D. Crossover Operator
Crossover is a technique which produces off-springs

when two parents mate together. The parents are selected
by binary tournament selection method [30]. In this paper,
a novel method for combining chromosomes has been put
forward. The combination method used in this paper is a
two-point one. First two points are randomly chosen as
subclasses, and then their contents and orders are
analyzed. For instance, the substring chosen from 1 v ,
has a weight order of 1-2-3-4.This weight order is used
for changing the subclass chosen by v2 . Thus, the 6-13-
15-11 is changed to 15-13-11-6 and changes with the
weight order of v1 subclass.

WMX algorithm is not one, which changes only the
contents of two points selected from two chromosomes,
but it also changes the contents of classes according to
weight priorities. WMA is comprised of three steps.

Step1: random substring selection for two
chromosomes. In figure 5, an example of the step1 of

JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012 2537

© 2012 ACADEMY PUBLISHER

combining chromosome by using WMA algorithm is
displayed.

Figure 5. Step1 of WMA algorithm

Step2: defined genes mapping relation. Such as
TABLE III.

Figure 6. Step2 of WMA algorithm

Step3: creating two new offspring generation, the
result of above example indicated in Figure6.

Figure 7. Step3 of WMA algorithm

E. Mutation Operator
For operating mutation, two Genes are randomly

selected from a chromosome and their amounts are
changed with each other. The manner of swapping
actions values of a chromosome is departed into three
step.

Step1: automata action status after allocating values
randomly.

Step2: Selection of two random actions.
Step3: The output for automata after swapping actions

randomly.

F. Selection Operator
Selection operator in this paper is as follows: In each

step of new population production, (1-p) % of

chromosome, which has least amount of FT, are selected
and enter the new population directly. The rest of the
population is, than produced through combining
chromosomes.

G. Reward and Penalize Operators
Since, each chromosome is presented as a learning

automaton, in each automaton, after considering the
fitness of a gene (either processor or action), which is
selected on a random basis, that gene, is duly penalized or
rewarded. As a result of rewarding or penalizing a gene,
its position in the boundary position of an action, its
punishment leads to a change in its action and, in
consequence, creation of a new makes pan. Departing on
the type of learning automata, reward and penalize
operator will be different.

Reward action occurs when the fitness of a task is
smaller than threshold.

Fitness of ti is: x/y
x: is the sum of connection cost of all parent and

offspring nodes of tj node so that. [Σc(ti,tj) if(pti≠ptj)]
pti: A processor that i t task is performed on it. ptj: A
processor that j t task is performed on it.

y: is the sum of costs of all parent and offspring nodes
of ti node. Σ c(ti,tj)

c(ti,tj) : Communication cost between tj and ti tasks.
Threshold rate is equal T/Ntaks

T: Consist of a number of related tasks to ti task that is
executed on a processor which ti task is run in it.

Ntasks: The number of all graph tasks.
The more fitness level of tj task tends to zero of the

connection cost between processors tends towards zero
too. If, therefore, the fitness level of a ti task is equal to
zero, It turns out that all related tasks of ti are performed
on the same processors. T has a direct relation with x; as
T increases x decreases and vice versa.

In case the fitness level of a task is lower or equal to
the threshold amount, then the head of the task gets
penalized. Two positions are possible when penalizing a
head:

1. The head might be in a position other than frontier
position. In the case, penalizing makes it less important.
How the head of task T7 is penalizes, is shown in Figure
8.

Figure 8. T7 task penalizing.

2. The head might be in frontier position. In that case,
we look for a head in the graph that has the greatest
reduction in the amount of FT when processors (the
numbers attributed to heads) are changed. Now if the

2538 JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

found head is in the frontier position, the positions of the
two heads are changed with each other and if otherwise,
i.e. if the found head is not in the frontier position,

First the found head should be moved to its frontier
position and then change occurs. Figure 9 shows how T8
task is penalized

a. T8 task status before penalizing.

b. T5 vertex transmits to border.

c. T8, T5 task interchanging.

Figure 9. T8 task penalizing.

In this paper, the performance of the proposed
algorithm is compared with well-known definite and
indefinite algorithms. At first the proposed algorithm is
simulated and evaluated on homogeneous platforms and
then evaluated on heterogeneous platforms. Parameters
that are used in the hybrid algorithm are shown in
TABLE III.

TABLE III.
HYBRID ALGORITHM PARAMETERS

Algorith Memory
Depth

Mutation
Rate

Crossover
Rate

Iteration Population

GA - 0.2 0.7 40 50
LAGA 4 0.2 0.7 20 50

First by observing the task graph in figure 6, results
obtained from various algorithms and the proposed
algorithm is displayed in figure 10.

Figure 10. Comparison of proposed algorithm with other algorithms

(for indicated graph in Figure 3).

IV. EXPERIMENTAL RESULTS
The proposed LAGA-based high-level synthesis

system has been implemented in the C language. The
extended high level synthesis tool accepts ANSI C
programs and generates RTL specifications in verilog.

To perform a qualitative assessment of algorithm of
LAGA in the high-level synthesis, it was tested on a
number of DSP benchmarks drawn from high-level
synthesis literature.

For all the benchmarks tested, the synthesized designs
were assumed to operate with a clock period of 20 ns. We
used a 0.35- CMOS module library, where ALUs,
multipliers, registers, and multiplexers are implemented
as hard macro cells (cells having fixed aspect ratio and
pin locations). The ALUs have a propagations delay of
6.5 ns, and multipliers have a propagations delay of 15 ns.
We assume that the area cost and delay of a pipelined
multiplier are the same as those of a nonpipelined
multiplier, respectively.

In all the experiments, the size of the GA population
was set to 100, the crossover probability was 0.90, and
the mutation probability set to 0.20. Each of the GA runs
was stopped after 10000 fitness evaluations. Since GA
algorithms are stochastic algorithms, ten independent
runs with different random number seeds were performed
for each of the benchmark problem instances, and the
best solution found by the GA in each of the ten runs was
recorded.

We compared our results with those obtained from
four different scheduling techniques commonly used in
high-level synthesis, namely, the GA scheduling , ALAP
scheduling , force-directed (FDS) scheduling , and
simultaneous scheduling, allocation, and binding (SAM)
technique . These scheduling algorithms were tested in a
traditional high-level synthesis framework that performs
the three synthesis subtasks of scheduling, allocation, and
binding independently. The goal of this comparison was
twofold: 1) to verify the performance gains from
concurrently performing scheduling and allocation, over a
traditional synthesis flow that carries out these subtasks
independently and 2) to use the performance of these
scheduling techniques as a baseline to compare our
results. The same benchmarks are used for comparing the
results.

JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012 2539

© 2012 ACADEMY PUBLISHER

For each of the benchmark problems, a design-space
exploration was performed by setting different values to
the weights (and) corresponding area constraints. Results
are shown in TABLE IV and TABLE V.

In TABLE IV, the chip latency in bold indicate the
Fastest designs for each areas value. From the table, it
can be seen that LAGA algorithm finds better solutions
than those of the other four scheduling techniques, for all
the benchmarks tested.

TABLE IV.
COMPARISON OF OUR LAGA-BASED METHOD WITH OTHER

SCHEDULING ALGORITHMS

Benchmark
Example

Area
Constraint

Chip Latency(ns)
LAGA GA ALAP FDS SAM

IIR 6.0mm2 62 63 65 66 70

FIR 5.0 mm2 97 99 101 101 106
EWF 4.5 mm2 272 274 283 281 296
ARF 10.0 mm2 76 78 80 79 91

DCT 12 mm2 56 58 58 62 61
FDCT 18 mm2 65 66 68 75 72

TABLE V shows the improvement of the LAGA-based
solutions over those of the other four scheduling
techniques. The average improvements range from 0.74%
(compared to the GA method) to 19.74% (compared to
the FDS method).

TABLE V.
INCREASE PROPORTION OF THE LAGA-BASED SOLUTIONS

OVER OTHERS

0.74%

19.74%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 3 4 5 6

GA

ALAP

FDS

SAM

The experimental results show that the LAGA

algorithm to complete scheduling and allocation
concurrently in high level synthesis is very effective,
especially under area constraint. It can obtain a better
delay performance than other algorithms.

V. CONCLUSION

In this paper, a new method LAGA is used in high
level synthesis to deal with scheduling and allocation
simultaneously. It can produce area and performance
optimized designs. This algorithm utilizes Genetic
Algorithm and Learning Automata methods sequentially
to search for the mode space. It can find the Solutions
quickly by using Genetic Algorithm and Learning
Automata sequentially in search process.

The method is simulated on a number of DSP
benchmarks. It can succeed in obtaining optimal solutions.
The same problems have been also solved in a general
way. The experimental results indicate that LAGA
algorithm is very effective in high-level synthesis,
especially under the area constraint.

REFERENCES

[1] I. Das. A preference ordering among various Pareto
optimal alternatives. Structural and Multidisciplinary
Optimization, 18(1):30–35, Aug. 1999.

[2] M. Palesi and T. Givargis, “Multi-objective design space
exploration using genetic algorithms,” in CODES ’02:
Proceedings of the tenth international symposium on
Hardware/software codesign. Estes Park, Colorado: ACM,
pp. 67–72. 2002,

[3] M. Laumanns, L. Thiele, and E. Zitzler, “An efficient,
adaptive parameter variation scheme for metaheuristics
based on the epsilon-constraint method,” European Journal
of Operational Research, vol. 169, no. 3, pp. 932–942, Mar.
2006.

[4] R. J. Cloutier and D. E. Thomas, “The combination of
scheduling, allocation and mapping in a single algorithm,”
in Proc. 27th Design Automation Conf., pp. 71–76, Jun.
1990.

[5] X. Yao and T. Higuchi, “Promises and challenges of
evolvable hardware,” IEEE Trans. Syst., Man, Cybern., pt.
C, vol. 29, no. 1, pp. 87–97, Feb. 1999.

[6] S.M. Logesh, D.S. Harish Ram, M.C. Bhuvaneswari,
Multi-objective Optimization of Power, Area and Delay
during High-Level Synthesis of DFG’s - A Genetic
Algorithm Approach, Electronics Computer Technology
(ICECT), 2011 3rd International Conference on, pages 108
– 112, 8-10 April 2011.

[7] J. C. Gallagher, S. Vigraham, and G. Kramer, “A family of
compact genetic algorithms for intrinsic evolvable
hardware,” IEEE Trans. Evol. Comput., vol. 8, no. 2, pp.
1–126, Apr. 2004.

[8] G. Ascia, V. Catania, and M. Palesi, “A GA-based design
space exploration framework for parameterized system-on-
a-chip platform,” IEEE Trans. Evol. Comput., vol. 8, no. 4,
pp. 329–346, Aug. 2004.

[9] Fujimoto, N.; Hagihara, K.; A comparison among grid
scheduling algorithms for independent coarse-grained tasks.
International Symposium on Applications and the Internet
Workshops, SAINT 2004, Pages: 674 - 680, 2004.

[10] Zhang, Yaping; Peng, Haoyu; Wang, Zonghui; Shi,
Jiaoying; Research and Implementation of Distributed
Simulation and Parallel Rendering System Based on Grid.
2010 First International Conference on Networking and
Distributed Computing (ICNDC), Pages: 3 - 7, 2010.

[11] Yanfang Fu; Yan Fan; Scheduling Method of Resource for
Simulation System Based on Grid. Second International
Conference on Computer Modeling and Simulation,
ICCMS ’10, Pages: 226 - 229, 2010.

[12] Liu, Hanbing; Su, Hongyi; Zhan, Shouyi; Chai, Xundong;
Zhang, Yabin; Hou, Baocun; Guo, Linqin; Fan, Shuai.
Resource scheduling based on dynamic dependence
injection in virtualization-based simulation grid. 14th
International Conference on Computer Supported
Cooperative Work in Design (CSCWD), Pages: 396 - 401 ,
2010.

[13] Huang Hai, Tian Lei, Wu Wei, Sun Songlin, Jing Xiaojun.
Genetic algorithm for scheduling of interactive tasks in
simulation grid. Proceedings of 2010 WASE International

2540 JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

Conference on Information Engineering, ICIE 2010, v 1,
Pages 30-33, 2010.

[14] Wei Hongtao. Task Management and Scheduling Methods
for Grid-Computing-based Simulation, Doctor’s thesis,
National University of Defense Technology, 2005.

[15] B. M. Pangrle and D. D. Gajski, “Slicer: A state
synthesizer for intelligent silicon compilation,” in Proc. Int.
Conf. Computer-Aided Des., pp. 536–541, 1987.

[16] P. G. Paulin and J. P. Knight, “Force-directed scheduling
for the behavioral synthesis of ASICs,” IEEE Trans.
Comput.-Aided Des., vol. 8, no. 6, pp. 661–679, 1989.

[17] A. C. Parker, J. T. Pizarro, and M. Mlinar, “Maha: A
program for datapath synthesis,” in Proc. 23rd ACM/IEEE
Design Automation Conf., pp. 461–466., 1986,

[18] R. Camposano, “Path-based scheduling for synthesis,”
IEEE Trans. Comput.-Aided Des., vol. 10, pp. 85–93, 1991.

[19] R. K. Brayton, R. Camposano, G. De Micheli, R. Otten,
and J. van Eijndhoven,“The Yorktown silicon compiler
system,” in Silicon Compilation, D. Gajski, Ed. Reading,
MA: Addison-Wesley, pp. 204–310, 1988.

[20] S. G. Ara ′ ujo, A. C. Mesquita, and A. Pedroza.
Optimized Datapath Design by Evolutionary Computation.
In Proceedings of the 3rd IEEE International Workshop on
System-on-Chip for Real-Time Applications (IWSOC’03),
30 June - 2 July 2003, Calgary, Alberta, Canada, pages6–9,
2003.

[21] F. Ferrandi, P. L. Lanzi, G. Palermo, C. Pilato, D. Sciuto,
and A. Tumeo. An evolutionary approach to area-time
optimization of FPGA designs. Embedded Computer
Systems: Architectures, Modeling and Simulation, 2007.
IC-SAMOS 2007. International Conference on, pages 145–
152, 16-19 July 2007.

[22] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark: a
high-level synthesis framework for applying parallelizing
compiler transformations. VLSI Design, 2003. Proceedings.
16th International Conference on, pages 461–466, 4-8 Jan.
2003.

[23] V. Krishnan and S. Katkoori. A genetic algorithm for the
design space exploration of datapaths during high-level
synthesis‘. IEEE Trans. Evolutionary Computation,
10(3):213–229, 2006.

[24] C. Mandal, P. Chakrabarti, and S. Ghose. Design space
exploration for data path synthesis. Proc. of the 10-th
International Conference on VLSI Design, pages 166–170,
1996.

[25] C. Mandal, P. P. Chakrabarti, and S. Ghose. GABIND: a
GA approach to allocation and binding for the high-level
synthesis of data paths. IEEE Trans. Very Large Scale
Integr. Syst., 8(6):747–750, 2000.

[26] M. Palesi and T. Givargis. Multi-objective design space
exploration using genetic algorithms. In Proc. CODES’02

Workshop, pages 67–72, New York, NY, USA, 2002.
ACM.

[27] P. G. Paulin and J. P. Knight. Force-directed scheduling in
automated data path synthesis. In Design Automation
Conference, 1987.

[28] C. Pilato, G. Palermo, A. Tumeo, F. Ferrandi, P. L. Lanzi,
and D. Sciuto. Fitness inheritance in evolutionary and
multi-objective highlevel synthesis. In IEEE Proceedings
of CEC 2007 - Congress on Evolutionary Computation,
2007.

[29] G. Papa, J. silc, Scheduling algorithms based on genetic
approach, Proc. 4'h Conference on Neural networks and
their applications, Zakopane, Poland, pp. 469-474, May
1999.

[30] G. Papa, J. silc, The Use of Genetic Algorithm in the
Integrated Circuit Design, Proc. 2nd Intl. Workshop on
Design, Test and Applications WDTA'99, Dubrovnik,
Croatia , pp. 73-76 June 1999.

[31] G. Papa, J. silc, Using Simulated Annealing and Genetic
Algorithm in the Automated Synthesis of Digital Systems,
In Mastorakis (ed.): Recent advances in circuits and
systems, World Scientific, pp. 377-381, 1998.

Huijing Yang received the B.S. degree in Computer Science
and Technology from Heilongjiang University in 2002. And she
received the M.S. degree in Computer Software and Theory
from Harbin Engineering University in 2005. Her primary
research area focused on IC design and Computer Architecture.
Currently she is a Lecturer of the School of Software, Harbin
University of Science and Technology, Harbin, China.

Chunying Wang was born in Jilin Province, China, in
1977 .She received the B.S. degree in Computer Science and
Technology from Northeast Forestry University, China in 2000,
and M.S. degree in Computer Software and Theory from
Technology from Harbin University of Science and Technology,
China in 2003. She has been working in Harbin University of
Science and Technology from 2005. Currently, she is a in
school of Software. Her major research interests include
wireless network and network security.

Ning Du was born in Heilongjiang Province, China, in
1979 .She received the B.S. degree in Computer Science and
Technology from Harbin University of Science and Technology,
China in 2003 , and M.S. degree in Computer Software and
Theory from Technology from Harbin University of Science
and Technology, China in 2006. She has been working in
Harbin University of Science and Technology from 2006.
Currently, she is a in college of Software. Her major research
interests include wireless network and network security.

JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012 2541

© 2012 ACADEMY PUBLISHER

