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Abstract—High-level synthesis consists of many 
interdependent tasks such as scheduling, allocation and 
binding. All tasks in high-level synthesis are NP-complete  
and the design objectives are in conflict for nature, most of 
the already proposed approaches are not efficient in the 
exploration of the design space and not effective in the 
identification of different trade-offs. For these reasons, 
genetic algorithms can be considered as good candidates to 
tackle such difficult explorations. A new algorithm that 
named Learning Automata Genetic Algorithm (LAGA) is 
used in this paper to perform scheduling and allocation 
concurrently. This algorithm is based on the Genetic   
Algorithm, the difference is that the Learning Process is 
added to the Genetic Algorithm. This strategy can complete 
the scheduling and the allocation effectively in the high-level 
synthesis under certain time and resource constraints. This 
algorithm is implemented in C language and is tested finally 
on a number of DSP benchmarks, and the test results then 
are compared with those obtained from four other different 
techniques which are commonly used in high-level synthesis. 
The experimental results show that the high-level synthesis 
using the LAGA algorithm is very effective, especially under 
the area constraint. 
 
Index Terms—Genetic algorithms, Learning Automata, 
High-level synthesis (HLS), Scheduling, design space 
exploration 
 

I.  INTRODUCTION 

There is a growing consensus among VLSI designers 
that one of the most effective methods to handle the 
complexity of today’s system-on-chip (SoC) designs is to 
use computer-aided design (CAD) techniques. CAD 
techniques start with an abstract behavioral or algorithmic 
description of a circuit and automatically synthesize a 
structural description of a digital circuit that realizes the 
behavior. The behavioral description consists of 
computational operations (additions, multiplications, 
comparisons, logical operations) and control operations 
(conditional statements, loops, and procedure calls) [1]. 

The structural description maps the operations and data 
transfers onto functional units in a data path and a control 
unit that coordinates the flow of data between various 
functional units of the data path. The data path include 
hardware units (ALUs, multipliers, logical gates), storage 
units (registers, registers files, RAM, ROM), and 
interconnect units (multiplexers, buses) that are 
connected together to realize the specified behavior. This 
structural description is called a register transfer (RT)-
level description. Once an RT-level design of a circuit is 
obtained, it can be transformed into a logic gate level 
netlist through logic synthesis, then into a layout via 
layout synthesis, and finally fabricated into an integrated 
circuit. Fig. 1 illustrates a typical high-level synthesis 
flow used for creating a chip design, starting from an 
abstract algorithmic specification [2].  

 
Figure 1.  Interdependence of subtasks in high level synthesis 
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High-level synthesis (HLS) is the process of translating 
a behavioral description into a hardware implementation 
at register transfer level [3]. The design specification is 
usually written as a behavioral description, in a language 
such as C. The behavioral description is first compiled 
into an internal representation (such as data flow graphs - 
DFGs), which are then mapped to the functional units 
that are selected from the resource library to meet design 
goals (such as power, area, and performance). This 
process of transforming a behavioral description into a 
synthesizable structural description affords a 
methodology of automatically synthesizing a realizable 
digital circuit from an abstract algorithmic specification 
of the design, thus considerably reducing the design cycle 
time. VLSI designs are multiobjective by nature, since 
they have to trade-off several conflicting design 
objectives such as chip area, circuit delays, and power 
dissipation. The shorter design time using behavioral 
synthesis allows one to examine many alternative circuit 
realizations during the design process [4]. Often, the 
structural specification is divided into a data path 
comprised of the functional and storage units and a 
control unit that coordinates the flow of data between the 
data path elements [5]. Due to the division, high-level 
synthesis is traditionally divided into data path synthesis 
and controller synthesis[6]. The primarily focus will be 
on data path synthesis. 

Datapath synthesis can be modeled as the process of 
searching a complex multidimensional space represented 
by the set of possible schedules, allocations, and bindings 
that can realize a given behavioral specification. 

As modern VLSI and SoC designs become more 
complex, a major problem is the extremely large number 
of possible schedule and allocation combinations that 
must be examined in order to select a design that meets 
constraints and is optimal [7]. This process, called design 
space exploration, is further compounded by the need for 
shortening design times due to time-to-market pressures. 
Since an exhaustive search could be prohibitive and an ad 
hoc design exploration could be inefficient, designers 
often select a conservative architecture after some 
experimentation, which often results in a suboptimal 
design. Given this scenario, there is an acute need for 
techniques that automate the efficient exploration the 
large space in a reasonable time, during high-level 
synthesis of datapaths [8]. 

Searching a complex space of problem solutions often 
involves a tradeoff between two apparently conflicting 
objectives: exploiting the best solutions currently 
available and robustly exploring the design space. 
Genetic algorithms (GAS) manage this tradeoff in an 
intelligent way. GAS have recently been applied 
successfully to optimization problems in diverse fields, 
such as standard cell placement [9], searching and 
machine learning [10] and data path synthesis [11]. 

The Genetic Algorithm begins with a randomly 
selected population, and through recurrence of the 
production of the generation, looks for the best 
chromosome [12]. The aim of the Genetic Algorithm is to 
find the best chromosome. The position of genes in each 

chromosome, in the Genetic Algorithm is random. If we 
should select the appropriate position of genes, it would 
be possible to appropriate the nearly optimal answer in 
fewer generations [13]. The Genetic Algorithm, in fact 
chooses the best chromosome from among the existing 
ones, and the positions of the genes of chromosomes are 
totally random [14]. If it were possible to find the optimal 
place of the genes of chromosomes, we would be able to 
find the ideal answer in fewer generations. Through 
utilizing the advantage of both methods, the proposed 
algorithm tries to achieve the optimal answer in fewer 
generations. 

In the LAGA algorithm each chromosome is equal to 
an automaton and each gene equal to an action of an 
automaton. 

In this paper, we use LAGA performing subtasks of 
scheduling in high-level synthesis, and to trade-off 
conflicting design objectives the process of scheduling 
based on DFG with weights. And we set weights for DFG 
according to the constraints of resource. 

The paper is organized as follows. Section II provides 
a brief review of the related work, with particular 
attention to the evolutionary approaches. Then, Section 
III describe in details methodology of LAGA, while 
Section IV presents the results of the experimental. 
Section V we summarize the paper and draw conclusions 
based on our experimental results. 

II.  RELATED WORK 

A.  High Level Synthesis Methods 
A large number of scheduling and allocation 

techniques have been developed for HLS over the past 
two decades. It is well-known that there is a strong 
interdependence between the HLS subtasks, and there is 
no clear consensus on their order of execution [18]. Such 
decision often has a large impact on the quality of 
solutions found and most of the early HLS systems 
performed those two subtasks separately, obtaining poor 
results. In literature, the high level synthesis techniques 
can be classified into four categories: constructive 
approaches, iterative transformational approaches, exact 
approaches and non-deterministic approaches. The 
constructive approaches operate on one operation or 
resource at a time until all elements are considered. 
Important algorithms following this approach, for 
example for scheduling, include common as-soon-as-
possible (ASAP) and as-late-as-possible (ALAP) 
scheduling, list based scheduling [15], force-directed 
scheduling [16] and path-based scheduling [17]. The 
iterative transformational approaches perform continuous 
refinements to the set of solutions while exact approaches 
[18] exploit a mathematical formulation of the problem to 
find the optimal solution, but the execution time of these 
algorithms grows exponentially with the number of 
variables and the number of inequalities. Therefore, these 
methods are impractical for large designs. Several high-
level synthesis systems use nondeterministic approaches, 
and in particular GAs, to perform some or all of the 
synthesis subtasks. Most of them consider two phases and 
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problems separately like in [19] where GAs are used to 
schedule the operation while in [20] they are used to 
allocate and bind a scheduled graph. In the last years, the 
design of algorithms for DSE is becoming crucial to 
consider the effects of all the HLS subtasks. 

B.  Genetic Algorithm 
Among the optimization methods inspired by the living 

nature, genetic algorithm, which is based on the 
principles of natural evolution, is considered one the best 
and most sophisticated [21]. Genetic Algorithm is a non-
classic and random search optimization method that deals 
with the function itself, not its derivations, and is based 
on the theory of the survival of the fittest, inspire by 
Darwin's evolution theory, and natural genetics [22]. In 
this method, search begins from several points in solution 
space simultaneously and through point to point search. 
The variables of target function are evaluated and, finally, 
the point which the most or the least absolute is 
introduced as the optimal point [23]. Optimization is the 
most important and function of the Genetic Algorithm. In 
common optimization methods target function must 
necessarily be coherent and consistent [24]. In Genetic 
Algorithm, however, a consistent and devisable function 
is not needed. In accordance with Genetic Algorithm, a 
sample from among all decision variables, that affects the 
function, is regarded as a member, and a certain number 
of these samples, makes up a set of members[25]. In this 
method, a set of the population of variables is used in the 
process of search. As a result, as the chance of creating 
better variables is boosted, the possibility of finding the 
absolute or general optimal point is heighted. This quality 
is specifically suitable for functions sudden changes and 
possessing several situational optimal points. Complete 
information concerning Genetic Algorithm is brought in 
[26]. 

C.  Learning Automata 
A learning automaton is an abstract model that 

randomly selects an action from a set of the finite actions 
and applies it to the environment. The environment 
evaluates the selected action and informs the result of its 
evaluation, by a boosted signal, to the learning automata. 
By using the selected action and boosted signal, the 
learning automata results its internal situation and then 
selects its next action.  

We can present the environment by E={α ,β , c} in 
which α={α1,α2,...,αr} is the set of inputs, 
β={β1,β2,...,βr }is the set of outputs and c={c1,c2,...,cr} 
is the set of penalty possibilities. When β is a two-
member set, the environment is P type. In such 
environment, β1=1 is considered penalty and β2=0 
reward. In a type Q environment, β set of processes an 
infinite number of members. ci is the possibility of a 
action's being penalized. Learning automata are directed 
into two groups: those with fixed structures, those with 
variable structures [27]. 

III. SCHEDULE USING LAGA 

LAGA algorithm is constructed of two phase. In first 
phase with use of Genetic Algorithm, the result is 
optimized and in second phases the obtained results from 
Genetic algorithm improved using learning automata. In 
first phase the genetic Algorithm is endeavor to optimize 
the chromosomes and then the obtained chromosomes are 
putting into learning automata. Then Learning Automata 
is focus on Chromosome Genes and finding the most 
suitable place of Genes in Chromosomes. Figure 2 shows 
the flowchart of proposed algorithm. 

 
Figure 2.  The Steps of proposed algorithm is described in below 

A. Initial Population 
At first, P (number of population) random generated 

chromosome and then all tasks are allocated to genes of 
chromosomes. Then a number is allocated randomly to all 
genes. The random allocated number to genes includes 2 
concepts: 

1. Task priority. 
2. Processor’s number, which executes the task. 
After allocating random numbers to chromosome 

genes, the values of the genes are interchanged with the 
number of 2/N load. 

We are going to perform, the shown graph in Figure 3, 
referring to Figure 4, you can observe how tasks are 
allocated to interior status in order. Since there are two 
processors in the system, so odd numbers indicate P1 
processor and even numbers indicate P2 processor. If the 
system includes more than two processors, processor’s 
number will consist of the result of the allocated number 
to the number of all processors. 
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Figure 3.  Operator task graph 

B. Task Execution on Processors 
When implementing a program on parallel processors, 

the data dependence between tasks should also be taken 
into consideration. In fact, a task cannot be implemented 
unless all of its parent tasks are implemented. In this 
section, how tasks are implemented on processors has 
been described [28]. Each task will be implemented in its 
relevant processor with regard to the automata of figure 4. 
From among all ready tasks, one, priority is higher than 
other tasks is implemented. In case, priorities of two tasks 
are the same as such other, one is randomly chosen for 
implementation. Ready task is one whose all parent tasks 
have been implemented. 

 

 
Figure 4.  Example of automata for Figure 3 operator task graph 

For example, by considering the automata of figure 4 
and the task graph of figure 3 in the first phase, it 
becomes evident that only T1 task is ready. In the first 
phase, then, T1 will be executing. After the execution of 
T1 task, T2, T3, T4, T5 tasks will be on the ready. In this 
phase, priority of T5 task is higher than other ready tasks, 
so it is executed. In the same fashion, all tasks are 
implemented on their own specific processors [29]. 

With regard to Figure 4 automata, tasks T1, T5, T2, T4, 
T6, T7, T9 will be run on P1 processor and T3, T8 on P2 

processor as well. Tasks execution order will be as 
TABLE 1. 

TABLE I.   
TASK EXECUTION ORDER 

J S’ v(j) J* TS 

0 {1} v(1)-15 1 S-{1} 

2 {2,3,4,5} v(2)-11,v(3)-14,v(9)-
9,v(5)-17 2 S-{1,5} 

1 {2,3,4} v(2)-11,v(3)-14,v(9)-9 3 S-{1,5,3} 

3 {2,4} v(2)-11, v(9)-9 4 S-{1,5,3,2} 

5 {4,6,7} v(4)-9,v(6)-5,v(7)-3 5 S-{1,5,3,2,4} 

4 {6,7,8} v(6)-5,v(7)-3,v(8)-2 6 S-{1,5,3,2,4,6} 

7 {7,8} v(7)-3,v(8)-2 7 S-{1,5,3,2,4,6,7} 

9 {8} v(8)-2 8 S-{1,5,3,2,4,6,7,8} 

6 {9} v(9)-7 9 S-{1,5,3,2,4,6,7,8,9} 

All tasks, now, will be executed according to table2. It 
shows task execution order on processors in details. 

TABLE II.   
DISPLAY OF TASK EXECUTION ORDER IN DETAILS 

J* S pi tj=ej+pj 
1 P1-{1},P2-{} 1 T1 – 0+2-2 
2 P1-{1,5},P2-{} 1 T5 – 2+5-7 
3 P1-{1,5},P2-{3} 2 T3 – 3+3-6 
4 P1-{1,5,2},P2-{3} 1 T2 – 7+3-10 
5 P1-{1,5,2,4},P2-{3} 1 T4 – 10+4-14 
6 P1-{1,5,2,4,6},P2-{3} 1 T6 – 14+4-18 
7 P1-{1,5,2,4,6,7},P2-{3} 1 T7 – 18+4-22 
8 P1-{1,5,2,4,6,7},P2-{3,8} 2 T8 – 17+4-21 
9 P1-{1,5,2,4,6,7,9},P2-{3,8} 1 T9 – 31+1-32 

C. Fitness Function 
In Genetic Algorithm, fitness function determines 

whether chromosomes are going to stay alive. In the 
problem of task scheduling, the object is to find a short 
makes pan. Analysis function for scheduling problem is: 

eval(v k) =1/fk,    k=12,..., pop size 
fk : the makes pan resulting from kth chromosome. 

D. Crossover Operator 
Crossover is a technique which produces off-springs 

when two parents mate together. The parents are selected 
by binary tournament selection method [30]. In this paper, 
a novel method for combining chromosomes has been put 
forward. The combination method used in this paper is a 
two-point one. First two points are randomly chosen as 
subclasses, and then their contents and orders are 
analyzed. For instance, the substring chosen from 1 v , 
has a weight order of 1-2-3-4.This weight order is used 
for changing the subclass chosen by v2 . Thus, the 6-13-
15-11 is changed to 15-13-11-6 and changes with the 
weight order of v1 subclass. 

WMX algorithm is not one, which changes only the 
contents of two points selected from two chromosomes, 
but it also changes the contents of classes according to 
weight priorities. WMA is comprised of three steps. 

Step1: random substring selection for two 
chromosomes. In figure 5, an example of the step1 of 
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combining chromosome by using WMA algorithm is 
displayed. 

 
Figure 5.  Step1 of  WMA algorithm 

Step2: defined genes mapping relation. Such as 
TABLE III. 

 
Figure 6.  Step2 of  WMA algorithm 

Step3: creating two new offspring generation, the 
result of above example indicated in Figure6. 

 
Figure 7.  Step3 of  WMA algorithm 

E. Mutation Operator 
For operating mutation, two Genes are randomly 

selected from a chromosome and their amounts are 
changed with each other. The manner of swapping 
actions values of a chromosome is departed into three 
step. 

Step1: automata action status after allocating values 
randomly. 

Step2: Selection of two random actions. 
Step3: The output for automata after swapping actions 

randomly. 

F. Selection Operator 
Selection operator in this paper is as follows: In each 

step of new population production, (1-p) % of 

chromosome, which has least amount of FT, are selected 
and enter the new population directly. The rest of the 
population is, than produced through combining 
chromosomes. 

G. Reward and Penalize Operators 
Since, each chromosome is presented as a learning 

automaton, in each automaton, after considering the 
fitness of a gene (either processor or action), which is 
selected on a random basis, that gene, is duly penalized or 
rewarded. As a result of rewarding or penalizing a gene, 
its position in the boundary position of an action, its 
punishment leads to a change in its action and, in 
consequence, creation of a new makes pan. Departing on 
the type of learning automata, reward and penalize 
operator will be different. 

Reward action occurs when the fitness of a task is 
smaller than threshold. 

Fitness of ti is: x/y 
x: is the sum of connection cost of all parent and 

offspring nodes of tj node so that. [Σc(ti,tj)  if(pti≠ptj)]  
pti: A processor that i t task is performed on it. ptj: A 
processor that j t task is performed on it. 

y: is the sum of costs of all parent and offspring nodes 
of ti node. Σ c(ti,tj) 

c(ti,tj) : Communication cost between tj and ti tasks. 
Threshold rate is equal T/Ntaks 

T: Consist of a number of related tasks to ti task that is 
executed on a processor which ti task is run in it.  

Ntasks: The number of all graph tasks. 
The more fitness level of tj task tends to zero of the 

connection cost between processors tends towards zero 
too. If, therefore, the fitness level of a ti task is equal to 
zero, It turns out that all related tasks of ti are performed 
on the same processors. T has a direct relation with x; as 
T increases x decreases and vice versa. 

In case the fitness level of a task is lower or equal to 
the threshold amount, then the head of the task gets 
penalized. Two positions are possible when penalizing a 
head: 

1. The head might be in a position other than frontier 
position. In the case, penalizing makes it less important. 
How the head of task T7 is penalizes, is shown in Figure 
8. 

 
Figure 8.  T7 task penalizing. 

2. The head might be in frontier position. In that case, 
we look for a head in the graph that has the greatest 
reduction in the amount of FT when processors (the 
numbers attributed to heads) are changed. Now if the 
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found head is in the frontier position, the positions of the 
two heads are changed with each other and if otherwise, 
i.e. if the found head is not in the frontier position, 

First the found head should be moved to its frontier 
position and then change occurs. Figure 9 shows how T8 
task is penalized 

 
a. T8 task status before penalizing. 

 
b. T5 vertex transmits to border. 

 
c. T8, T5 task interchanging. 

Figure 9.  T8 task penalizing. 

In this paper, the performance of the proposed 
algorithm is compared with well-known definite and 
indefinite algorithms. At first the proposed algorithm is 
simulated and evaluated on homogeneous platforms and 
then evaluated on heterogeneous platforms. Parameters 
that are used in the hybrid algorithm are shown in 
TABLE III. 

TABLE III.   
HYBRID ALGORITHM PARAMETERS 

Algorith Memory 
Depth 

Mutation 
Rate 

Crossover 
Rate 

Iteration Population

GA - 0.2 0.7 40 50 
LAGA 4 0.2 0.7 20 50 

First by observing the task graph in figure 6, results 
obtained from various algorithms and the proposed 
algorithm is displayed in figure 10. 

 
Figure 10.  Comparison of proposed algorithm with other algorithms 

(for indicated graph in Figure 3). 

IV. EXPERIMENTAL RESULTS 
The proposed LAGA-based high-level synthesis 

system has been implemented in the C language. The 
extended high level synthesis tool accepts ANSI C 
programs and generates RTL specifications in verilog. 

To perform a qualitative assessment of algorithm of 
LAGA in the high-level synthesis, it was tested on a 
number of DSP benchmarks drawn from high-level 
synthesis literature. 

For all the benchmarks tested, the synthesized designs 
were assumed to operate with a clock period of 20 ns. We 
used a 0.35- CMOS module library, where ALUs, 
multipliers, registers, and multiplexers are implemented 
as hard macro cells (cells having fixed aspect ratio and 
pin locations). The ALUs have a propagations delay of 
6.5 ns, and multipliers have a propagations delay of 15 ns. 
We assume that the area cost and delay of a pipelined 
multiplier are the same as those of a nonpipelined 
multiplier, respectively.  

In all the experiments, the size of the GA population 
was set to 100, the crossover probability was 0.90, and 
the mutation probability set to 0.20. Each of the GA runs 
was stopped after 10000 fitness evaluations. Since GA 
algorithms are stochastic algorithms, ten independent 
runs with different random number seeds were performed 
for each of the benchmark problem instances, and the 
best solution found by the GA in each of the ten runs was 
recorded. 

We compared our results with those obtained from 
four different scheduling techniques commonly used in 
high-level synthesis, namely, the GA scheduling , ALAP 
scheduling , force-directed (FDS) scheduling , and 
simultaneous scheduling, allocation, and binding (SAM) 
technique . These scheduling algorithms were tested in a 
traditional high-level synthesis framework that performs 
the three synthesis subtasks of scheduling, allocation, and 
binding independently. The goal of this comparison was 
twofold: 1) to verify the performance gains from 
concurrently performing scheduling and allocation, over a 
traditional synthesis flow that carries out these subtasks 
independently and 2) to use the performance of these 
scheduling techniques as a baseline to compare our 
results. The same benchmarks are used for comparing the 
results.  

JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012 2539

© 2012 ACADEMY PUBLISHER



For each of the benchmark problems, a design-space 
exploration was performed by setting different values to 
the weights (and) corresponding area constraints. Results 
are shown in TABLE IV and TABLE V. 

In TABLE IV, the chip latency in bold indicate the 
Fastest designs for each areas value. From the table, it 
can be seen that LAGA algorithm finds better solutions 
than those of the other four scheduling techniques, for all 
the benchmarks tested.  

TABLE IV.   
COMPARISON OF OUR LAGA-BASED METHOD WITH OTHER 

SCHEDULING ALGORITHMS 

Benchmark 
Example 

Area 
Constraint 

Chip Latency(ns) 
LAGA GA ALAP FDS SAM

IIR 6.0mm2 62 63 65 66 70 

FIR 5.0 mm2 97 99 101 101 106 
EWF 4.5 mm2 272 274 283 281 296 
ARF 10.0 mm2 76 78 80 79 91 

DCT 12 mm2 56 58 58 62 61 
FDCT 18 mm2 65 66 68 75 72 

TABLE V shows the improvement of the LAGA-based 
solutions over those of the other four scheduling 
techniques. The average improvements range from 0.74% 
(compared to the GA method) to 19.74% (compared to 
the FDS method). 

 

TABLE V.   
INCREASE PROPORTION OF THE LAGA-BASED SOLUTIONS 

OVER OTHERS 

0.74%

19.74%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 3 4 5 6

GA

ALAP

FDS

SAM

 
The experimental results show that the LAGA 

algorithm to complete scheduling and allocation 
concurrently in high level synthesis is very effective, 
especially under area constraint. It can obtain a better 
delay performance than other algorithms. 

V. CONCLUSION 

In this paper, a new method LAGA is used in high 
level synthesis to deal with scheduling and allocation 
simultaneously. It can produce area and performance 
optimized designs. This algorithm utilizes Genetic 
Algorithm and Learning Automata methods sequentially 
to search for the mode space. It can find the Solutions 
quickly by using Genetic Algorithm and Learning 
Automata sequentially in search process. 

The method is simulated on a number of DSP 
benchmarks. It can succeed in obtaining optimal solutions. 
The same problems have been also solved in a general 
way. The experimental results indicate that LAGA 
algorithm is very effective in high-level synthesis, 
especially under the area constraint.   
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