
A Novel Approach to Hardware/Software
Partitioning for Reconfigurable Embedded

Systems

Linhai Cui
 School of Software, Harbin University of Science and Technology, Harbin, China

Email:cuilinhai@hrbust.edu.cn

Abstract—Hardware/software partition is a crucial point in
the design of a reconfigurable embedded system.
Reconfigurable computing is a promising approach to
overcome the traditional trade-off between flexibility and
performance in the design of computer architectures which
adapt their hardware to each application to achieve a high
performance of dedicated hardware. In this paper, some
hardware and software partitioning algorithms were
analyzed and summarized first, then a innovative algorithm
for task partition and scheduling is proposed based on new
features of reconfigurable hardware such as dynamic
reconfiguration and the delay of reconfiguration. In the
proposed algorithm, a large-scale application is
decomposed into multiple sub-tasks of suitable granularity
and each sub-task has constraint relationship with each
other. And a directed acyclic graph (DAG) which presents
the relationship between tasks was drawn according to the
execution order of tasks. Then the specific application
presented in the DAG is mapped to the hardware and
software platform by a strategy called GATS which
combine the Genetic Algorithm and the Tabu Search
algorithm together. The shortest time of assignment and
task execution order can be found by the priority-based
scheduling method. The experimental results show that the
method is of high performance and can effectively mapping
the application task to the reconfigurable system.

Index Terms—Reconfigurable embedded system, Task
scheduling, Hardware/software partitioning, Genetic
algorithm; Tabu search algorithm

I. INTRODUCTION

Most modern electronic systems are composed of both
hardware and software. Embedded system is some
combination of computer hardware and software to
perform a particular function. It can be found in many
applications such as automobiles, telecommunication
systems, intelligent home devices, medical equipments,
and in systems for the military.

Comparing to the hardware parts, the software parts
are much easier and faster to develop and modify. Thus,
software is less expensive in terms of the development
cost and time. Hardware, however, provides better
performance. For this reason, an embedded system
designer’s goal is to minimize the weighted sum of the
software delay, Hardware area, and power consumption.

There are two basic implementations of embedded
system. One is hardware and the other is software. The
hardware method achieves system functionality through
the design of dedicated hardware logic circuits while the
software method is based on microprocessor software to
complete the system functions through the design of the
program.

The main task of hardware/software partition is to
assign the system functions to the target structure on the
software and hardware domain under the condition of
meeting the design constraints, and its essence is a kind
of combination optimization problem. It includes the
following three aspects: first, processing unit allocation,
i.e. to determine the type and number of required
software and hardware processing unit; second, task
assignment, i.e. to assign tasks and communication to the
target structure in the processing unit and communication
resources to execute and to meet the performance and
cost constraints; third, task scheduling, i.e. to determine
the order of execution and the start time of the assigned
task and communication in each processing unit to meet
the dependency relationship of control and data between
the system tasks. The solution space is a huge
multi-dimensional non-contiguous space, so it is difficult
to solve if taking the solution quality and solution time
into account. Therefore, only the execution time, cost,
power and other major overhead are considered when
studying the hardware and software partition to reduce
the difficulty of solving the whole problem by
simplifying the model of the target structure.

Most embedded systems use CPU (Central
Processing Unit) + ASIC (Application Specific
Integrated Circuit) structure. For the systems which only
have a hardware processing unit (ASIC) and a software
processing unit (CPU), it is relatively simple to partition
the system, and it is called binary partitioning. For the
systems which have multi-processing units, the hardware
processing units and software processing units may not
be the same, and it may be more complicated to partition
the system, such problems are called multi-way
partitioning.

In addition to the CPU + ASIC structure, FPGA (Field
Programmable Gate Array)-based reconfigurable
hardware system has been developed. There are two
kinds of reconfiguration concern to the time when

2518 JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.10.2518-2525

reconfiguration take place. One is static reconfiguration
and the other is dynamic reconfiguration. More and more
studies have been focused on dynamic reconfigurations.
And a growing number of embedded systems employ
dynamic reconfigurable architecture. In order to use the
dynamic reconfiguration efficiently, one needs a support
of operating systems to manage both software and
hardware. Therefore, the structure of the traditional CPU
+ ASIC method is no longer suitable to apply to software
and hardware reconfigurable systems.

Reconfigurable hardware components such as FPGAs
are used more and more in embedded systems, since
such components offer a sufficient capacity for a
complete SoC (System on a Chip) or even NoC
(Network on a Chip). The advantage of a reconfigurable
hardware platform over pure software reconfiguration is
that it can provide a system implementation flexibility to
be adaptable to new functional requirements while
meeting constraints for critical system parameters such
as data throughput rates and latencies.

When doing partition, we need not only to assign the
system tasks to the software or hardware domain, but
also need to divide the tasks which is possibly assigned
on the reconfigurable devices into different segments
which is not overlapping in time. Measures should be
also taken to reduce the delay caused by the
reconfiguration when deigning a reconfigurable
embedded system.

In this paper, we proposed a portioning algorithm
called GATS which employs the advantages of
traditional algorithms such as Genetic and Tabu, and a
task schedule approach by using DAG.

II. RELATED WORK

 With the development of integrated circuit technology,
embedded system is moving towards small size, mobile,
portable, light in weight, low power consumption, more
complex and so on. Traditional design approach has
become a bottleneck restricting the development of
embedded systems. Software design and hardware design
are required to be integrated closely and coordinated
with each other. This leads to the development of a new
design theory - hardware and software co-design.

A. Evolution of Hardware/software Partitioning
The studies of hardware/software co-design began in

the early 1990s, the idea of hardware/software co-design
is formally proposed in the first International Workshop
on Hardware/Software Codesign (CODES), held in 1992.
Then many famous universities set up research group on
embedded systems engaged in software and hardware
co-design theory and research. Some EDA venders have
also introduced some tools supporting hardware and
software co-design.

SOS system [1], developed by Prakash and Parker
from the University of Southern California, is the first
hardware and software co-design systems in the world.
The system can schedule tasks on multiple processors,
but it was slow, not suitable for large-scale systems.

The COSYMA (Co-synthesis for Embedded

Architecture) [2] system, developed by the German
Technical University of Branunshweig, is mainly
restricted to a single processor and a single ASIC system.
Its partition method is mainly for software to optimize
the calculation through co-processors. The main
drawback of COSYMA is that the processor and the
coprocessor can not work concurrently [3].

The Corsair system [4], developed by Frank Slomka,
is an embedded system design environment suitable for
multi-processor and multi ASIC structure. The system
generates the system model by using tabu search
algorithm. But it uses static method to assess the system
performance when the system model is generated, so it
can not evaluate complex systems.

In 1997, Eles proposed to achieve the hardware and
software partition by using simulated annealing and tabu
search algorithm. He described a model called condition
task graph using list scheduling algorithm to realize the
structure for each processing unit to form the scheduling
table and as a basis for selection of software and
hardware. Experiments result shows that the tabu search
algorithm is more suitable for hardware and software
partition compared to simulated annealing, [5].

In 1999, Henkel introduced the IP-based low-power
embedded systems hardware and software partitioning
algorithm. The idea is to reduce the system's idle time to
reduce the power consumption [6]. In 2002, Theerayod
Wiangtong and others compared and analyzed the three
heuristic algorithms of hardware and software co-design
and finded that tabu search algorithm is proved to be
superior in hardware and software partition to the genetic
algorithm and simulated annealing algorithm [7]. In 2006,
Michalis D Galanis proposed a hybrid reconfigurable
system [8].

B. Research on Task Scheduling
Scheduling problem is a kind of combinational

optimization problem and is applied in many computer
and communications fields. It has a close relationship
with the algorithm design, complexity theory.

The research related to task scheduling was first
proposed by Liu and Layland [9] which ignores some
implementation details. It is the basis of many real-time
task models, and extends up to the processor
environment with task scheduling and feasibility analysis
in algorithm design.

Reference [10] proposed a grouping appropriate
algorithm, which is a non-dynamic scheduling algorithm
for periodic tasks. Due to the use of the grouping strategy
and appropriate scheduling policy, the utilization of
platform resource and processor is increasing in recent
years.

Hsu Heng Ruey from China Taiwan National
University researched real-time periodic task scheduling
problem by using dynamic voltage scheduling technique
for a given energy constraints [11]. In recent 20 years,
the research on the parallel task scheduling on
multiprocessor represented in directed acyclic graph
DAG (Directed Acyclic Graph) has been developed
rapidly. DAG-based task scheduling is to map the
distribution of tasks to processors and coordinate the

JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012 2519

© 2012 ACADEMY PUBLISHER

implementation. Under the condition of meeting
constraints, the overall execution time, power
consumption, area, and other indicators of the task are
best. It is NP-complete problem.

Becchi and Crowley thought that task management is
the key to raising computing performance of a
multi-processor platform, and they developed a run-time
monitoring program to capture the dynamic behavior of
the process, allowing the process to migrate between
multiple processors. Experiments show that to use
dynamic process allocation method on a heterogeneous
multi-processor platform can significantly improve
overall system performance [12]. In recent years, some
researchers began to use some new methods to solve the
multiprocessor scheduling problems such as genetic
algorithm for multi-processor task scheduling [13].

The introduction of the new method of calculation
improves the solution accuracy. But the efficiency of the
algorithm need to be further improved. For the task
scheduling on CPU + FPGA structure, more research
focused on how to place the hardware tasks on the FPGA
dynamically. However, less corresponding research are
made in task allocation, task migration and other issues
of mixed task scheduling [14].

III. RECONFIGURABLE SYSTEM BESED ON FPGA

With the emergence of programmable device,
especially field-programmable gate array (FPGA), the
reconfigurable technology is developed rapidly in
embedded applications. The development of
reconfigurable technology makes the traditional
boundaries over hardware and software blurred.

The so-called reconfigurable means that in an
information processing system under control of software,
if the system can be reformed into a different information
processing systems to adapt to different application
requirements by using reusable resources, the
information processing system is called reconfigurable
[15].

By using reconfigurable technology, the system can
be realized in software and hardware in the case only a
little more resources are needed. On one hand, the
calculation task can be accomplished by building a
dedicated hardware circuit on FPGA, similar to the ASIC.
On the other hand, different tasks can be optimized by
building different circuit on FPGA.

Reconfigurable Systems based on Large-scale
programmable device, FPGA, perform reconfigurable of
circuitry at runtime by using the features of can be
repeated programming and configuration of FPGA. It
can dynamically change the circuit structure while a
real-time electronic systems work. Its essence is to
achieve the time-sharing reuse of all or part of the
internal FPGA logic resources. It can make the logic
circuits which are discrete in time works in order on the
same FPGA.

A. Dynamic Reconfigurable Technology

For dynamic reconfigurable, a special study group
RAW introduced the following description in 2005 [16]:

The characteristics of dynamic reconfigurable are that
the hardware architecture or devices can quickly change
(while the system running) its functions and connections.

As shown in Figure 1, the three key issues for the
research on dynamic reconfigurable system are the
hardware platform, the mapping from specific
application to the hardware platform, and the controls
needed during the running of the system.

Application

Mapping Supporting
Software

Mapped Task

Hardware
Platform

Control at
Run-Time

Figure1. Research contained in dynamic reconfiguration system

According to the reconfiguration ways of the
reconfigurable logic, the hardware supporting dynamic
reconfiguration can be divided into context configure
devices and part reconfigurable configure device [17].
Typically, the variable and time-consuming parts of the
system are implemented in hardware and the complex
controls and data structures are implemented in software
[18].

B. Unified Management of Hardware and Software

The emphasis of unified management of hardware
and software of dynamically reconfigurable system is
focused on the management of the hardware tasks. The
hardware modules are converted into hardware tasks, and
to be managed under the operating system, and then the
unified management by the extended operating system is
implemented.

In order to convert hardware modules into the
hardware tasks, certain constraints need to be imposed on
the tasks first to enable it to response to the basic
communication and control primitives in the operating
system making the user call the hardware tasks as normal
software tasks.

After the completion of the hardware tasks building,
the expanded operating system will be able to manage
them. The next step is how to manage that task, that is
when the hardware can be downloaded into a piece of
programmable logic resources.

In short, the difference between hardware tasks and
software tasks need to be fully taken into accounts when
they are managed under the operating system. Some
measures must be taken to reduce the preparation time
such as by pre-configured configuration, scheduling, etc.

IV. PARTITION STRATEGY

Hardware/software co-design is to give an algorithm
which can automatically search for the best compromise
point between the hardware and software under certain

2520 JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

constraints and to produce the actual system architecture.

A. Dynamically Reconfigurable System Modeling

There are significant differences in performance and
cost between software and hardware implementation.
Hardware and software partition is one of the key issues
in co-design. Its goal is to maximize resource utilization,
and to minimize application execution time under the
constraints to meet the time and shared resources conflict
conditions constraints.

A typical dynamic reconfiguration system is shown
in Figure 2. It consists of microprocessor, configuration
controller, reconfigurable hardware (FPGA), memory
and configuration file memory. To rescue the
microprocessor from the task of configure FPGA, and to
make them perform parallel computing, an additional
configuration controller is added to configure the FPGA.

Micro
processor

Local
Memory

Configuration
Memory

Local
Memory

Global
Memory

Reconfigurable
Hardware

Configuration
Controller

Figure2. Dynamic reconfiguration system

When the microprocessor executes a hardware
configuration instruction, data is passed to the
configuration controller, and the latter retrieve the
corresponding configuration data from the configuration
memory, and download it to the FPGA to complete the
configuration. Microprocessor and the reconfigurable
hardware communicate by sharing memory, so the two
tasks located on the microprocessor and reconfigurable
hardware not only need time for data transfer and
communication, but also need data reading and writing
time.
 The calculation model must be considered as an
important element in the hardware and software partition.
Different levels of abstraction of the system forms the
different calculation model, and the partition can be
performed in a different granularity. These models have
different features and application areas, and they can be
divided into the following categories: finite state
machine model, data flow diagrams, Petri nets, data /
control flow graph, task flow diagram.

Task flow diagram, also called a directed acyclic
graph (DAG), is the behavior level description of the
system. It’s purpose is to describe the controls between
the tasks in the reconfigurable system, data relationship
and the cost information for each task. It has nothing to
do with the system architecture. It can be expressed as a
triple G = (V, R, E), as shown in Figure 3, the V on
behalf of the task node set, R is the edge connecting node,
the node E on behalf of its right to inter-communication.

Each node in the diagram represents a system task (or

a function module), including its software, hardware,
cost information, the edge represents the data flow or
control relationship between tasks, and its weight is on
behalf of the communication overhead between two
tasks.

A

B E

C

D

4 4

2 3

6

Figure3. Task flow diagram

B. Hardware and Software Partition
Functional partition between hardware and software

and its implementation vary with the applications. The
solution is to find the time / space mapping from the
application described with the task flow diagram to the
reconfigurable system consist of microprocessor and
reconfigurable hardware.
There are three main methods to solve the hardware and
software partition problem. The first one is planning
method which uses planning to partition the problem and
to get the optimal solution. Its drawback is the high
computational complexity and large memory overhead.
The second method is construction approach. The
construct method compares the pros and cons of the
solution layer by layer first, and then the optimal solution
will be drawn from each comparison group to obtain the
optimal solution, such as poly-clustering technology. The
advantage is that you can find the optimal solution or
near optimal solution more efficiently. The third one is
search methods. It includes local search method and
oriented random search method. By searching its
neighborhood and replacing the current solution to
achieve the optimization.

Oriented random search methods include tabu search,
simulated annealing, genetic algorithms, and etc. The
main idea is to use some guidance rules to guide the
search within entire solution space for good solutions.
Randomly oriented search method does not rely on
objective information, and can be used to solve
complex issue. At present, most researchers have
adopted oriented random search method.

C. Traditional Partitioning Algorithm
Genetic Algorithm (GA) is an algorithm based on

Darwin's biological evolution theory. It simulates the
biological mechanisms of natural selection and genetic
search heuristic. Each element in the solution space is
encoded and then divided optimal solution space into
groups by iteration to find the optimal solution.
Crossover and mutation operator are the two most
important components of GA hardware and software
partition which are repeatedly applied to the solution of
the problem encoding and form chromosomes.

As a global optimization search algorithm, genetic

JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012 2521

© 2012 ACADEMY PUBLISHER

algorithm is simple, universal, robust, and has wide
applications. It can meet the requirements of
multi-partition, and it has become the key technology to
deal with traditional search methods to solve difficult,
complex and nonlinear problems. But it also has many
shortcomings, such as the genetic algorithms search the
solution space in parallel way. This makes it have strong
global search ability, but the local optimization ability is
poor. The remature convergence phenomena may occur.

Tabu search (TS) is a algorithm simulating human
intelligence process. It is the expansion of the local field
search, and is a global step by step optimization
algorithm. A flexible memory structure and the
corresponding Tabu search criteria was introduced to
avoid circuitous search.

Fields, tabu table, tabu length, candidate solutions and
amnesty criteria are the key factors in tabu search
algorithm design. There are two tables in the tabu search
algorithm which impact the performance of search
algorithm: the length of taboo objects. Compared with
traditional optimization algorithms, tabu search
algorithm has flexible memory and amnesty guidelines,
and in the search process, it can accept inferior solutions,
with a strong climbing ability, it can jump out of local
search optimal solution, turn to the other regions of
solution space, leading to better probability of a global
optimal solution. It is a strong local search global
iterative optimization algorithm.

However, the tabu search algorithms have significant
deficiencies, such as: strong dependence on the initial
solution, a good initial solution can make the tabu search
in the solution space to search for good solutions, and
poor initial solution will reduce convergence speed of
tabu search. It is not efficient to search the solution space
in individual, serial way. Its global search capability is
not strong.

D. Proposed Partitioning Algorithm
After analyzing the genetic (GA) and Tabu Search (TS)

algorithm, a hybrid approach based on GA and TS
strategy, called GATS was proposed. It can map the
specific application to a software and hardware platforms
under the reconfigurable system resource constraints and
other conditions.

The main idea of GATS is to make the TS as a
mutation operator of GA, TSM. It employ the strong
memory function and the climbing ability of TS to
overcome the weaknesses of poor climbing ability of GA.
And it remains the advantage of multi starting point
maintaining in the GA.

Genetic Algorithm can not be directly used in the
solution of the problem space. So what you need to do is
to encode the solution by using chromosome. Encoding
is the most important thing required to apply genetic
algorithms to solve the problem, and it also is a critical
step in designing genetic algorithm. The encoding
method will directly affect the solution quality, restrict
the choice of genetic manipulation. For a single
microprocessor and single reconfigurable hardware
architecture, the binary encoding makes the encoding
and decoding simple, and also makes the crossover

operation and mutation operation easy to implement.
Each task is represented as a binary genes, gene is

mapped to the microprocessor if its value is 0, and it is
mapped to the reconfigurable hardware if it is1. The
chromosome is a vector whose length is N standing for
the number of the tasks. The coding chart of tasks is
shown in Figure 4. This encoding method makes the
crossover and mutation operation easy to use and does
not produce invalid chromosomes.

Figure4. Coding Chart of Tasks

For reconfigurable hardware, the above logic
resources are part dynamically reconfigurable at runtime.
So that for any a different chromosome, the number of
different modules in reconfigurable hardware, the
process of reconfiguration, the time of reconfiguration,
and the calculation overlap will change according to the
assigned tasks on reconfigurable hardware that is
genetically different.

The choice of fitness function can be the first target
that is based on algorithm to optimize the overall system
running time T and the cost to construct a generalized
objective function C, then by scaling the objective
function to be generalized. Running time is converted to
the general penalty term in the objective function. Note
that the choice of penalty term should ensure that the
results meet the constraint requirements, and partition
results must also ensure the full utilization.

In addition, costs and the values of run-time may
vary on the scope and magnitude. Normalization is
needed. Equation (3-1) and (3-2) were used to introduce
the normalization factor

c and t .
CostSwCostHwc  (3-1)

)Re,Remax(TimeHwqTimeqTimeTimeSwt  (3-2)
Where CostHW stands for the cost when all the nodes

are implemented in hardware, and costSW stands for the
cost when all the nodes are implemented in software.
TimeHW and TimeSW stand for hardware execution time
and software execution time respectively. TimeReq is the
constraint time provided by the designer, and its value is
between TimeHW and TimeSW. So the generalized
objective function can be defined as:

c

C

t

qTimeT

tiM

qTimeT
COBJ





)1(

Re
)

Re
exp(




 (3-3)

And the fitness function is defined as:

COBJ
Fitness




1
1 (3-4)

The C and T in formula (3-3) stand for the partition
cost and execution time respectively. And  here is
used to adjust the relative weight of C and T. Since

Chromosome

1

2
3

N

1 0 1 0

1 2 3 N Task

2522 JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

system performance determines whether the design is
available, so  equals 0.6.

V. TASK SCHEDULING ALGORITHM

 One of the key technologies of traditional operating
system is task scheduling. In dynamically reconfigurable
systems, especially in large-scale applications, the
hardware task can not be configured to the
reconfigurable device at one-time. Then scheduling
becomes more important, and the scheduling algorithm
have a direct impact on the system performance.

Task scheduling has two main purposes. One is to
fully use the resources on the device and the second is to
optimize the device configuration sequence. Scheduling
should be done to have the tasks whose execution order
are more close or simultaneously at one-time schedule to
the device. To optimize the configuration sequence can
reduce the configuration time overhead caused by the
configuration process, and it can reduce the
configuration time is too long to the system bottleneck
effect.

Scheduling on reconfigurable hardware is also a
constrained layout problem. What you need to do is not
only to find out the schedule start time, but also to
identify the layout position of tasks in reconfigurable
hardware under certain conditions and resource
constraints.

In summary, the purpose of this section is to find
the shortest time of assignment in entire task flow
diagram and the task execution order based on the
partition result by using genetic and tabu search
algorithm.

A. Scheduling Algorithms based on DAG

In practice, for any DAG graph in which the weight
values of the nodes and edges can be any value,
heuristics method is the first choice for solving those
DAG scheduling problems. To sum up, the current DAG
scheduling algorithm can be divided into four categories:
List Scheduling algorithm, Clustering scheduling
algorithm, Scheduling algorithm based on Task
Duplication, and random search technology.

The basic idea of list scheduling algorithm is to sort
the priority of node, to construct a scheduling list, so that
all the ready tasks are in the schedule list, and then the
highest priority task is selected from a list and put it into
idle computing resources began to run.

The basic idea of Clustering scheduling algorithm is
that if there are infinite numbers of processors, the DAG
task graph nodes are taken as a cluster when starting
scheduled, and merger all of these clusters without
increasing the overall task completion time until there is
no cluster can be merged finally.

The basic idea of the scheduling algorithm based on
task duplication is to duplicate the precursor mission
when the processor is idle to avoid some of data
transmission from the precursor task, thus to decrease the
gap of waits time for the processor.

Random search technique is mainly driven by a
random choice to search for the problem solution. The

searching results are better than other algorithms, but its
scheduling length is longer, so it is not employed so
much.

B. Configuration Prefetch Scheduling Algorithms

Dynamically reconfigurable hardware architecture or
device is characterized by changing its functionality and
connectivity rapidly. The computing time of a system
employ dynamic reconfiguration can be divided into
work time and preparation time. The real effective
operation time is the time required for the module and
the communication time between modules. Preparation
time is the delay caused by the configuration between the
function switching.

Now the bottleneck of a dynamically reconfigurable
system is that the preparation time is too long. The
preparation time can be shortened by hiding the critical
software configuration time in addition to improving the
speed of reconfigurable devices.

The basic idea is that to configure the successor
node in advance when node in the DAG to be scheduled
for execution. And save the configuration node that need
to be configured but because of the FPGA configuration
port is occupied and can not start immediately by using a
configuration wait queue.

VI. EXPERIENMENTAL RESULTS

In order to verify the hardware/software partitioning
algorithm presented here and the effectiveness of the
configuration scheduling strategy, we perform the
following software simulation.
 First, we use the TGFF tool (Windows Version) to
randomly generate the task flow graph in which 30, 40,
50, 60, 70, 80 nodes are included. Each node contains
hardware and software implementation costs, hardware
resources area, and other information, reconfiguration
time and the area occupied by the specific tasks related
to the number of resources.

For the same computing tasks, a reconfigurable
hardware implementation is usually 10 times faster than
using a microprocessor[23], it is assumed that for each
task on the processor, the average execution time of
reconfigurable hardware in the average execution time of
10 times. Simulation environment for hardware and
software test are Inter 1GHz processor, 512MB RAM,
Linux operating system, GNU compiler. And assuming
that the target system consists of a single processor and
Virtex Ⅱ series xc2v1000 FPGA which has 1280 CLBs.
Table1 shows the comparisons between the three
algorithms used to get the fitness value.

Table1. The best fitness value comparison of GA, TS and GATS

The relationship between the fitness values is shown
in Figure5. It is clear that the values get from GATS are
greater than that of the genetic algorithm GA and tabu

 30 40 50 60 70 80

TS 0.853600 0.852139 0.853721 0.860228 0.863175 0.864006

GA 0.848012 0.848369 0.842773 0.846343 0.847218 0.845983

GATS 0.922487 0.924224 0.920106 0.914286 0.928246 0.949677

JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012 2523

© 2012 ACADEMY PUBLISHER

search algorithm TS. It is shows that the GATS
algorithm has the advantage of multi-start point and a
strong hill-climbing ability. Although the running time of
GATS algorithm is longer than the GA, TS algorithm,
the accuracy is high. So the GATS algorithm can be
applied in the applications demanding high accuracy.

0.78
0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94
0.96

30 40 50 60 70 80 90

TS

GA

GATS

 Figure5. Fitness Value/Nodes Curve
Table2 shows the results using these three algorithms

in different scale applications, in which S and NS stand
for the scheduling strategies with and without
configuration prefetch respectively.

Table2 Data comparison of GA,TS and GATS
Task GA TS GATS
Node NS S NS S NS S

30 2071 1644 2058 1950 2056 1538
40 2845 2241 2835 2743 2809 2076
50 3680 3087 3573 3402 3362 2458
60 4316 3085 4311 4001 4310 2770
70 4944 3324 4806 4522 4776 3014

VII. CONCLUSIONS
This paper focuses on the hardware/software

partition technologies in reconfigurable embedded
systems. The characteristics of reconfigurable systems
and the key issues involved in dynamic reconfigurable
technology are analyzed in detail. A reconfigurable
hardware architecture model consists of microprocessor,
configuration controller, reconfigurable hardware
(FPGA), memory, and configuration file memory is
proposed. And it gives a directed acyclic graph DAG for
reconfigurable embedded systems modeling. After
comparing the advantages and disadvantages of GA and
TS algorithms, a mixture of GA and TS strategy, called
GATS algorithm is proposed. The GATS approach
drawing on the strengths of genetic algorithms and tabu
search algorithm respectively, and achieved good results.

Task scheduling algorithms based on DAG models
such as configuration prefetch, priority-based scheduling
algorithm, especially for the CPU + FPGA structure, are
proposed. The scheduling algorithms are used to evaluate
the system partitioned in GATS algorithm. The results
show that it effectively reduces the reconfiguration time
and the overall application execution time.

REFERENCES
[1] Parkash S, Parker A C. SOS: Synthesis of
Application-Specific Heterogeneous Multiprocessor Systems.
Journal of Parallel and Distributed Computing, Vol.16, 1992,

pp: 338-351.
[2] J.Henkel and R.Ernst. High-Level Estimation Techniques
for Usage in Hardware/Software Co-Design. In IEEE/ACM
Proc of Asia and South Pacific Design Automation Conference,
Yokohama, Japan, February 1998: 353-360.
[3]ERNST, R, J HENKEL, and T. BENNER.
Hardware-Software Co-Synthesis for Micro-Controllers[J],
IEEE Design & Test of Computer, 1993, 10(4): 64-75.
[4] Frank Slomka, Matthias Dorfel Ralf Munzenberger,
Richard Hofmann. Hardware/Software Codesign and Rapid
Prototyping of Embedded Systems. IEEE Design & Test of
Computers, 2000, 17(2): 28-38.
[5] P ELES, Z PENG, K KUCHCINSKI, et al. System Level
Hardware/Software Partitioning Based on Simulated Annealing
and Tabu Search [J]. Design Automation for Embedded
Systems, 1997, 2(5): 5-32.
[6] HENKEL J. A Low Power Hardware/Software
Partitioning Approach for Core-Based Embedded System[C].
In: Proceedings of the 36th ACM/IEEE Conference on Design
Automation Conference, 1999, 122-127.
 [7] THEERAYOD WIANGTONG, PETER Y.K CHEUNG,
WAYNE LUK. Comparing Three Heuristic Search Methods
for Functional Partitioning in Hardware-Software Codesign[J].
Design Automation for Embedded Systems, 2002(6): 425-449.
[8] MICHALIS D GALANIS, ATHANASIOS MILIDONIS,
GEORGE THEODORIDIS. A Method for Partitioning
Applications in Hybrid Reconfigurable Architectures[J]. Des
Automation Embedded System, 2006(10): 27-47.
[9] Liu C ， Layland J. Scheduling algorithms for
multiprogramming in a hard real-time environment [J]. Journal
of the ACM,1973,20(1):4-61.
[10] R. Gupta and G. De Micheli. System-level synthesis
using re-programmable components. Proceedings of EDAC,
IEEE Press, 1992, 2–7.
[11] Institute of Electrical and Electronics Engineers, New
York, USA, IEEE Standard VHDL Language Reference
Manual (IEEE Std 1076-1987), 1987.
[12] J. Iyoda. ParTS: A Support Tool to Hardware/Software
Partitioning. Master thesis, Federal University of Pernambuco,
Brazil, May 2000 (in Portuguese).
[13] L. Silva. An Algebraic Approach Hardware/Software
Partitioning. PhD. thesis, Federal University of Pernambuco,
Recife, Brazil, July 2000.
[14] C.Steiger, H.Walder and M.Platzner. Operating Systems
for Reconfigurable Embedded Platforms: Online Scheduling of
Real-Time Tasks[J].IEEE Transactions on Computers, 2004,
53(11): 1393-1407
[15] R.B. Hughes and G. Musgrave. The lambda approach to
system verification. Hardware/Software Codesign, Kluwer
Academic Publisher, 1996, 427–451.
[16] A.Dehon. Comparing computing machines.Configurable
Computing: Technology and Applications of Proc.Of SPIE,
1998, 3526:124-133
[17] J. Iyoda, A. Sampaio, and L. Silva. ParTS: A partitioning
transformation system. Proceedings of FM99(World Congress
on Formal Methods), Vol. 1709, Lecture Notes in Computer
Science, 1999, 1400–1419.
[18] A. Kalavade and E. Lee. The extended partitioning
problem: Hardware/software mapping, scheduling and
implementation-bin selection. Design Automation for
Embedded Systems, Vol. 2, No. 2, 1997, 125–163.
[19] J. Madsen, J. Groge, P.V. Knudsen, M.E. Petersen, and
A. Haxthausen. Lycos: The lyngby co-synthesis system. Design
Automation of Embedded Systems, Vol. 2, No. 2, 1997,
195–235.
[20] R. Niemann and P. Marwedel. An algorithm for
hardware/software partitioning using mixed integer linear

2524 JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

Programming. Design Automation of Embedded Systems, Vol.
2, 1997, No. 2, 165–193.
[21] D. Saha, R.S. Mitra, and A. Basu. Hardware/software
partitioning using genetic algorithm. Proceedings. of 10th
International Conference on VLSI Design, India, 1997,
155–160.
[22] A. Sampaio. An Algebraic Approach to Compiler
Design. Vol. 4 of Algebraic Methodology and Software
Technology (AMAST) Series in Computing, World Scientific,
1997.
[23] A.Dehon. Comparing computing machines.Configurable
Computing: Technology and Applications of Proc.Of SPIE,
1998, 3526:124-133
 [24] L. Silva, A. Sampaio, and G. Jones. Serialising parallel
processes in a hardware/software partitioning context.
Proceedings of Formal Method Europe (FME) 2001, Vol. 2021,
Lecture Notes in Computer Science, 2001, 344–363.
[25] DICK R P, RHODES D L, WOLF W. TGFF: Task graphs
for free. Proc. Int. Workshop Hardware/Software Co-design
[M]. Mar. 1998: 97–101.

Linhai Cui was born in HeiLongJiang, China, in 1961. He
received the B.S. degree in computer science from the Xi’an
JiaoTong University, China, in 1983. In 2006, he received the
M.S. degree in electrical engineering from the Northwestern
Polytechnic University, USA. He is an Associate Professor at
the Harbin University of Science and Technology, China.

JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012 2525

© 2012 ACADEMY PUBLISHER

