
 

Process Goose Queue Methodologies with 
Applications in Plant-wide Process Optimization  

 
Jingwen Huang  

College of Information Science and Technology, Beijing University of Chemical Technology, Beijing100029, China 
Email: huangjw@mail.buct.edu.cn  

 
Hongguang Li  

College of Information Science and Technology, Beijing University of Chemical Technology, Beijing100029, China 
Email: lihg@mail.buct.edu.cn 

 
 

 
Abstract— Inspired by biologic nature of flying wild geese, a 
so-called process goose queue (PGQ) technique oriented for 
plant-wide optimization is established. Taking advantage of 
this ad-hoc structure of flying geese, a plant-wide process 
can be decomposed into several hierarchically connected 
PGQs along the direction of the objective function 
generation. In line with this thought, plant-wide process 
optimization is accordingly identical with the following and 
tracking issues between leading and following geese. 
Followed by this philosophy, related theoretical definitions 
and modeling principles together with enabling algorithms 
are explicitly introduced. With the characteristics of 
evolutionary optimization, PGQ approach is able to 
overcome the algorithmic deficiencies associated with 
conventional optimizations. To demonstrate the feasibility 
and validity of the contributions, TE process is employed as 
the case study. 
 
Index Terms—plant-wide process, process optimization, 
process goose queue (PGQ) 
 

I.  INTRODUCTION 

Traditionally, plant-wide process optimization 
approaches can be classified into two relatively distinct 
categories in terms of architecture: global or centralized 
architecture and decentralized architecture. The global 
approaches associate overall processes with economic 
objectives and optimize them based on rigorous models. 
Therein, the main impacts on optimization performance 
arise from model complexity and nonlinearity, as well as 
heavy computational burden due to enormous 
manipulated variables involved. Even though applications 
of flow-sheet simulation tools such as DMCPtus, CLP 
and RTO of AspenTech, as well as Profit Optimizer and 
Profit Max of Honeywell are increasingly extensive, it is 
acknowledged that the corresponding optimization 
solutions suffer both far from analytics and hard to 
understand. Alternatively, the decentralized approaches 
decompose large-scale optimization problems into 

several sub-systems mutually coordinated. Darby and 
White [1] exemplified that decentralized architectures 
could achieve the same performances with those of the 
global ones. Taking into account of physical structures 
and coupling factors among the subsystems, Sobieski[2] 
presented a generalized multilevel optimization approach 
named multidisciplinary design optimization (MDO), 
which is concerned with complex systems exhibiting 
challenges with three typical MDO architectures 
subsequently exploited, including concurrent subspace 
optimization (CSSO), collaborative optimization (CO) 
and Bi-Level Integrated System Synthesis (BLISS). 
MDO methods are widely applied to non-process 
industries. For example, Duddeck & Fabian[3] applied 
MDO to control system designs for car bodies and Silva 
& Valceres [4] employed MDO to those for gas turbine 
engines. However, most of existing researches highlight 
mechanical structures but rarely deal with interconnection 
characteristics of process variables. Another research 
issue of decentralized optimization focuses on 
hierarchical multi-objective optimization together with 
multi-layer optimization algorithm, in which the 
problems are firstly decomposed into a multi-system and 
subsequently dealt with using multi-objective 
programming, as addressed in references [5],[6]. 
However, owing to the demands for separable or 
approximately separable objectives, the above-cited 
method is apt to cause considerable systematic deviations 
in the presence of severe nonlinear relations between the 
global objective and sub-objectives. A popular approach 
at present is to recognize the weights of sub-objectives 
which can then be used to approximate the global 
objective. However, in the presence of severe nonlinear 
relationship between global objectives and sub-objectives, 
the solutions derived from this method can be far away 
from the actual optima.  

Plant-wide industrial processes are actually 
connections of a variety of basic operational units which 
are considered as dynamic systems constituted by output 
process variables and input process variables. Inspired by Corresponding author: Hongguang Li; Tel.: 86-10-64434797; Fax:

86-10-64442932.  

2462 JOURNAL OF COMPUTERS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.10.2462-2470



 

the philosophy of flying goose queue, a certain kinds of 
operational units could be regarded as a goose so that the 
plant-wide process could be identified as a goose queue. 
The principle of pursuing optimal set points in plant-wide 
process is similar to the mechanism of flocks of geese 
self-organizing into V-formation. In line with this thought, 
we came up with a novel idea of “process goose queue 
(PGQ)” [7] to reconfigure plant-wide processes, thereby 
optimizing them in terms of economic perspectives. With 
the PGQ methodology, optimization model can be 
decomposed organically according to goose queue 
formation. The transformation of the subsystem optimum 
objective value can refer to the transfer mechanism of 
optimal position of through upwash models. Thus, the 
optimum operating points can be achieved based on the 
pursuing principle among geese in V-formation. As for 
inseparable objectives, the PGQ approaches could enjoy 
theoretically lossless decomposition to achieve 
decentralized optimization schemes. 

The remainder of this paper is organized as follows. 
Section 2 briefly discusses the mechanism of flocks of 
geese self-organizing into V-formation. Section 3 
proposes fundamental definitions and adjusting rules of 
PGQ along with an illustrative example. In Section 4 
plant-wide process optimization problems are formulated 
based on multi-layer PGQ metrics and enabling 
algorithms of multi-layer PGQ for plant-wide process 
optimization are introduced. In Section 5, TE process is 
employed as a case study for exemplifying the 
applications. Section 6 concludes the contribution and 
assesses the future prospects. 

II.  SELF-ORGANIZATION V-FORMATION OF FLOCK OF 
GEESE    

Goose queue refers to a flock of flying wild geese 
lined an instinctively V-shaped formation in mass 
migration, whose principal benefit lies in the increased 
flying efficiency, as shown in Fig.1. It is reported that 
geese in a V-formation may conserve 12–20 % of the 
energy they would need to fly alone [8], [9], [10]. A 
flying goose could generate an upward pressure known as 
upwash beneficial for a following goose maintaining its 
altitude and save energy. As a result, leading goose serves 
as the leader of the queue while following geese are 
responsible for following and keeping the V-formation. 
Cattivelli [11], [12] focused on the self-organizing 
V-formation of flocks of geese, thereby using a model, 
f(x,y), to describe the upwash generated by a flying goose. 
Assuming that the wingspans of all gooses are constant 
and the upwash functions are convex, an optimum 
position ),( optopt yx  is available which could maximize the 
upwash as shown in Fig. 2. Every goose located at 
position ),( kk yx in the V-formation experiences the 

overlap upwash through∑
=

−−
N

l
lklk yyxxf

1

),( , by which 

the optimum position ),( optopt yx  could be achieved. The 

underlying point behind this mechanism lies in that geese 
could measure the upwash and communicate with their 
neighbors. 

 
 

 
 

 
In simulation, Fig.3 [11] shows the resulting goose 

formations at different time instants, where the goose 
flock converges to a V-shape formation through 500 
iterations or so. Goose located at position ),( kk yx  
measures the upwash with respect to the reference geese 
so that to pursue an optimum position ),( optopt yx . After 
that a new estimate of the best relative position with other 
geese is achieved. 

  
 

A steady-state V-formation is shown in Fig. 4, 
where the red dots indicate the positions of the geese.  
Notice that every goose flies in such a way that the 
generated upwash overlaps with the upwash from its 
leading goose.  

Figure 1 V-formation of flying geese. 

Figure 3 Goose positions at different time instants. 

Figure 2 Upwash generated by a goose. 
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III.  PROCESS GOOSE QUEUE 

Generally, steady-state relationship among the basic 
operational units of a plant-wide process can be described 
by following equation: 

 ),( XSgY =                (1) 

where, Y,S, X and g indicate sets of the output state 
variables, input state variables, manipulated variables and 
steady-state relationship functions, respectively. Instead, 
we accordingly propose PGQ approaches with following 
descriptions. 
 

Definition1 (PGQ) 

A Process Goose Queue (PGQ) is a 4-tuple, PGQ = (L, 
FS, FM, A), where, 
• L is the process leading goose (PLG) such 

that φ≠⊂ ｝｛ YLL , represented as       ; 
• FS is the supervised following goose (SFG) such that 

SFS ⊂  represented as        ; 
• FM is the manipulated following goose (MFG) such 
that φ≠⊂ ｝｛ XFF MM , represented as        ; 
• A is the information arc (IA) such that 

φ≠⊂∪∪×⊆ ）｝（））（（｛ gAFFLAA MS
, represented as 

inverted V; 
• φ=∩ MS FF ， φ=∩ MFL ， φ=∩ SFL , 

),( MS FFAL＝  
The graphical description of a PGQ is illustrated in 

Fig.5,where, the PLG (L), SFG (FS) and MFG (FM) 
represent output process variables, Y, input process state 
variables, S, and input process manipulated variable, X , 
respectively. A, corresponds to the process steady-state 
models, g.  

 
Let’s take a look at an example of the Williams-Otto 

reactor [13] which is a jacketed CSTR as shown in Fig.6. 

It is operating at a temperature Tr as well as reactant 
flows Fa and Fb, where a six-component product, z, is 
produced. 

 
Based on PGQ techniques, the output state variables Z, 

input state variables Fa, manipulated variables Fb and Tr 
are equivalent to PLG, SFG, MFG, respectively, as shown 
in Fig.7, where a steady-state model between the 
output and inputs corresponds to IA of the PGQ. 

 

 
 

Definition 2(Optimum operating states) 
Optimum operating states refer to an ideal PGQ 

configuration in which a PLG operating at an ideal 
trajectory is followed by an optimum V-formation 
constituted by a SFG and a MFG, as described by: 

            　　　　　  ),( ***
MS FFAL =          (2) 

In practical industrial processes, optimum 
operating state could be destroyed by uncertain 
disturbances, which is in desperate need of 
adjustment to recover. Motivated by this idea, two 
alternative adjustment rules associated with a PGQ 
are specified as follows.  

 
Rule 1 (PLG driven adjustment) 
Once a PGQ operates away from its normal trajectory, 

PLG would try to adjust its position autonomously back 
to an ideal one. At the same time, SFG and MFG would 
operate in consistent with the activities of PLG, 
formulating an adapted V-formation. This kind of 
adjustment implies solving the following optimization 
problems.  

MUMML

SUSSL

MS

FF

FFF

FFF

FFALts

LL
SM

≤≤

≤≤

=

−

         

         

  ),(     ..

)(min 2*
,

             (3) 

Rule 2 (SFG driven adjustment) 

Once the V-formation of PGQ deviates from an 
optimum one due to SFG failing to follow it, MFG would 
try to adjust its position autonomously to formulate a new 

Fa Fb 

Tr

Figure6. Williams-Otto reactor 

Z 

Z   

Fb Tr    Fa   

Figure 7. A PGQ for Williams-Otto reactor

Figure 5. A PGQ (process goose queue) 

L 

FM FS 

Figure 4. Upwash generated by geese in steady-state. 

L 

FM

FS
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optimum formation. At the same time, PLG would 
slightly shift its position to survive the adjustment of 
MFG. This kind of adjustment implies solving the 
following optimization problems. 

MUMML

MS

F

FFF

FFALts

LL
M

≤≤

=

−

　　

  ),(     ..

)(min 

*

2*

             (4) 

Referring back to the above-mentioned example, 
if a new target of any component of z is demanded, 
the rule 1 would be launched to implement the  
adjustment; if FS=[Fa] deviates from the optimum 
operating state, the rule 2 would be triggered to 
implement the adjustment.  

IV.  PROCESS OPTIMIZATION 

A. Plant-wide PGQ for Process Optimization  
In order to cope with plant-wide processes, a 

multi-layer PGQ structure should be established 
additionally. 

Definition 3 (Multi-layer PGQ) 
A multi-layer PGQ consists of several PGQs which are 

organized in a hierarchical architecture. Therein, the 
PGQs are characterized by PGQi＝(Li, FSi, FMi, Aj), where, 
i=1,…,m, indicates the depth index, the SFG of an upper 
PGQ may serve as the PLG of the neighbored lower PGQ 
in terms of increased depth index. The graphical 
description of a multi-layer PGQ is exemplified in Fig.8.  

 

 
In fact, process optimization could be identified as a 

procedure of adjusting manipulated variables to minimize 
or maximize economic goals subjecting to the constraints 
of process models. What’s more, the fact that actual 
formations of process models involved in a plant-wide 
process optimization depend on the connections of 
operational units accounts for particular hierarchical 
decompositions of process models, as shown in Fig.9.  

Specifically, the economic objective function of a 
plant-wide optimization problem can be expressed in 
terms of direct related process state variables and 
manipulated variables. Accordingly, an additional concept 
about the objectives of a multi-layer PGQ is presented as 

follows. 
Definition 4（PGQ-Objective）: 
A PGQ-Objective is equivalent to an economic 

objective function of a plant-wide process, 
characterized by 

     
),...,2,1(

),,...,,(minP 21

nj

PPPP MSjSS

=

= ϕ
       (5) 

where, PSj and PM are process state variables and 
manipulated variables respectively. 

Referring back to definition 1, PSj and PM could be 
similarly considered as PLG and MFG of a PGQ, 
respectively. The graphical descriptions of a 
PGQ-Objective are shown in Fig.10. In this context, the 
procedures towards establishing a plant-wide PGQ for 
process optimization are summarized as follows. 

(1) A plant-wide process is decomposed into several 
operational units / areas corresponding to the PGQs using 
sequential modular approaches. In the presence of a 
tree-structural plant-wide process, the multi-layer PGQs 
are consistent with the connections of the process 
operational areas. Otherwise, additional modeling 
treatments such as block segmentation, staggered breaks, 
and convergence calculation should be carried out before 
the multi-layer PGQs are obtained. 

(2) Construct the economic objective functions with 
respect to the related process state variables PSj which 
serve as PLG (L1j) and manipulated variables PM. 

(3) Connect each PSj (L1j) with a multi-layer PGQ. 
Thus, a plant-wide PGQ could be realized, whose 
exemplary graphical description is shown in Fig.11.  
 

 
 
Figure 10. A PGQ (process goose queue)-Objective 
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Figure 11. A plant-wide PGQ 
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B. Implement of Plant-wide PGQ Optimization 
Algorithms  
According to the fundamental description of the PGQ, 

plant-wide process optimization is equivalent to 
implementing PLG autonomous adjustment rule in 
corresponding multi-layer PGQs. Therefore, solving 
a plant-wide optimization problem can be converted 
into implementing multi-layer PGQ optimization 

algorithms which involves three kinds of 
interconnected tasks, such as assignment of a 
PGQ-Objective, configuration of the multi-layer PGQ 
formations and achievement of a PGQ-Objective, 
described as follows. 

(1) Assignment of a PGQ-Objective: A 
PGQ-Objective could be achieved by means of 
assignment of optimum points of process state variables 

Figure 9 Decompositions of a plant-wide process optimization problem
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jSP (j=1,2,…n) and manipulated variable set PM involved, 

which could be implemented by applying rule 1(PLG 
driven adjustment), i.e. solving the following 
optimization problem. 
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(2) Configuration of the multi-layer PGQ formations: 
It supposed that there is a couple of multi-layer PGQ 
associated with a PGQ-Objective for a practical problem. 
For simplicity’s sake, we only consider the treatment of 
one multi-layer PGQ. Starting off with i=1, rule 1 (PLG 
driven adjustment) is stepwise applied to PGQi at an 
increasing index i, which implies solving the following 
optimization problem (Noting Fs0=Ps). 
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(3) Achievement of a PGQ-Objective: From the PGQ 
with the largest depth index to the PGQ-Objective, we 
should update the achievement of PLG associated with 
each PGQ with respect to the optimum solutions (process 
variables) configured in step (2) until that of the 
PGQ-Objective.      

V.  CASE STUDIES 

Since TE process (Tennessee Eastman Process) [14], 
shown in Fig.12, was proposed by Downs and Vogel 
(1993), it has been widely circulated in the literature as a 
case study due to attractive challenging properties. TE 
process involves five major operational units including a 
two-phase reactor, a partial condenser, a separator, a 
stripper and a compressor, in which two products are 
created from four reactants, an inert component B and a 
byproduct F, denoted by a total of eight components, A, B, 
C, D, E, F, G, and H instead. 

 
Figure 12 TE process 

There are 12 manipulated variables and 41 state 

variables involved in the process. Specifically, the 
manipulated variable vector FM contains 10 variables, 
FM=[ F1, F2, F3, F4, F8, F9, F10, F11, Tcr, Tcs], where, F

i 
is the molar flow rate of stream i [kmol/h] (i=1,2,…,11), 
T

cr 
and T

cs 
are temperatures of the reactor and separator. 

Here, the objective function corresponds to the hourly 
operating cost (Ctot) in $/h which is aimed to be 
minimized. Therein, the reactant and product losses in 
terms of the purge and product streams, steam cost and 
compressor power cost and is measured by (8). 
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Based on the steady-state first-principle models, TE 
process can be developed into a plant-wide PGQ which 
includes two multi-layer PGQs as shown in Fig.13, in 
which the corresponding notations are listed in Table I. 
As a result, the following steps are implemented to solve 
the plant-wide PGQ optimization problem. 

TABLE I.   

CORRESPONDING PGQ NOTATIONS FOR TE PROCESS 
PGQ SFG/ PLG MFG 

PGQ-Objective
 

PS1/L11＝ [Xi,9] 
PS2/L12＝ [Xi,11] 

PM3＝[F9 F11] 

PGQ11 FS11 / L21＝[ [Ps Ts] FM11＝[F10  F8]
PGQ21 FS21/ L31＝[TR] FM21＝[TCS] 
PGQ31 FS31/L41＝[FR PR LR] FM31＝[F12 TCR]
PGQ41 0 FM41＝[F1 F2 F3]
PGQ12 FS11 / L21＝[Tstr  Pstr] FM12＝[F4] 
PGQ22 FS11 / L21＝[ [Ps, Ts  ] FM22 ＝[F10] 
PGQ32 FS21/ L31＝[TR] FM32＝[TCS] 
PGQ42 FS31/L41＝[FR PR LR] FM42＝[TCR] 
PGQ52 0 FM52＝[F1 F2 F3]  

 
(1) Assignment of the PGQ-Objective: Referring to the 

optimization scheme carried out by Ricker [15], 
compressor and steamer are specified at the OFF 
positions. The state variables xi,9 and xi,11 and the 
manipulated variables F9 and F11 involved in the 
objective function are selected as PS and PM, 
respectively. Table II presents assignment of the 
optimum points associated with the problem. 

(2) Configuration of the multi-layer PGQ formations: 
There are two multi-layer PGQs involved in this case. 
The optimum points L*

11 and L*
12

 responsible for the 
PGQ-Objective are followed and tracked by PGQ11 and 
PGQ12, attaining F*

S11 / L*
21=[Ps=2700, Ts=92], 

FM11=[F10=37.2, F8=0], F*
S12 / L*

22=[Pstr=3330, 
Tstr=66.60], FM12=[F4=60.9], where F*

S11 and F*
S12  

serves as L*
21 of  PGQ11 and L*

21 of  PGQ21 
respectively. Similarly, the rest PGQs are treated along 
with a minimum objective value 116$/h expected, as 
listed in Table II.  
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TABLE II.   

ASSIGNMENT OF THE OPTIMUM POINTS 

Name of PGQ SFG/ PLG MFG 

PGQ 
-Objective 

PS1/L*
11 ＝ [Xi,9(i=A,C,D,E,F,G,H) ＝ 32.63 13.29 0.89 

16.13 6.675  3.265 ] 
PS2/L*

12＝Xi,11(i=D,E,F) ＝[0.011 0.575  0.186] 

PM3＝[F9＝24.2  F11＝46.4] 

PGQ11 F*
S11 / L*

21=[ Ps＝2700, Ts =92 ] FM11＝  
[F10=37.2  F8=0] 

PGQ21 F*
S21/ L*

31＝[TR =123.1] FM21＝[TCS = 13.0] 
PGQ31 F*

S31/L*
41＝[PR=2800, LR =65 ] FM31＝[TCR=35.94 ] 

PGQ41 F*
S41＝ [0] FM41＝[F1=26.17 

F2=62.89F3=53.30] 
PGQ12 F*

S12 / L*
22=[ Pstr=3330 Tstr =66.60] FM12＝[F4=60.9] 

PGQ22 F*
S22 / L*

32=[ Ps＝2700, Ts =92 ] FM22＝[F10=37.2  F8=0] 
PGQ32 F*

S32/ L*
42＝[TR =123.1] FM32＝[TCS = 13.0] 

PGQ42 F*
S42/L*

52＝[PR=2800, LR =65 ] FM42＝[TCR=35.94 ] 
PGQ52 F*

S52＝ [0] FM52=[F1=26.17  
F2=62.89  F3=53.30] 

 
 

 
 

(3) Achievement of the PGQ-Objective: Starting along 
the paths of PGQ41 → PGQ31 → PGQ21 → PGQ11 →

PGQ-Objective and PGQ52→PGQ42→PGQ32 →PGQ22

→PGQ12→PGQ-Objective, the two multi-layer PGQs are 

implemented for the achievements. The resultant 
optimum solutions are listed in Table III, showing an 
actual objective value 118$/h. 
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Figure 13. Plant-wide PGQ for TE process
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TABLE III.   

FINAL OPTIMUM SOLUTIONS 

 
Name of PGQ 

 
SFG/ PLG  

 
MFG 

PGQ 
-Objective 

PS1/L11＝ [Xi,9(i=A,C,D,E,F,G,H)＝32.56 13.61  0.9162  
 15.71 5.392 6.703 3.308 ] 

PS2/L12＝Xi,11(i=D,E,F)＝[0.0142 0.5880 0.1782 ] 

PM3＝[F9＝24.57   F11＝46.41] 

PGQ11 FS11/L21=[Ps＝2702.59 Ts = 92.15 ] FM11＝[F10=37.16  F8=0] 

PGQ21 FS21/ L31＝[TR =123.10] FM21＝[TCS = 13.89] 
PGQ31 FS31/L41＝[PR =2798.6  LR =65.23] FM3＝  [TCR=35.97 ] 
PGQ41 FS41＝[0] FM4＝[F1=26.11 F2=62.98 F3=53.08 ] 
PGQ12 FS12 / L22=[ Pstr=3329.88Tstr =66.75] FM12＝[F4=60.65]     
PGQ22 FS22 / L32=[Ps＝2702.59 Ts = 92.15 ] FM22＝[F10=37.16  F8=0] 
PGQ32 FS32/ L42＝[TR =123.10]  FM32＝[TCS = 13.89] 
PGQ42 FS42/L52＝[PR =2798.6  LR =65.23] FM42＝[TCR=35.97 ] 
PGQ52 FS52＝[0] FM52=[F1=26.11F2=62.98  F3=53.08 ] 

VI.  CONCLUSIONS 

Inspired by biologic nature of flying goose queue, this 
paper proposed novel PGQ strategies for plant-wide 
modeling and optimization, contributing to overcoming 
the algorithmic deficiencies associated with conventional 
plant-wide process optimization. To offer PGQ 
theoretical foundations, key definitions and enabling 
algorithms have been explicitly. The benefits of the 
proposed strategies are demonstrated through a case 
study of TE process. It could be expected that advantages 
of the PGQ approaches towards plant-wide process 
optimization are potentially attractive in the following 
aspects.  

(1) Focusing on inseparable objectives, the PGQ 
approaches could enjoy theoretically lossless 
decomposition to achieve decentralized optimization 
schemes. 

(2) The PGQ methodology is accommodated to 
relatively simple nominal forms of the objective 
functions and process models. In contrast to conventional 
optimization methods which need to deal with enormous 
manipulated variables, the PGQ approaches could take 
advantage of more accurate process models by solving 
several small-scale PGQ optimization problems, which 
are more beneficial for effectively utilizing as much 
information of process variables as possible against 
modeling uncertainty. 

(3) It is found that the algorithms related with the 
PGQs and PGQ-Objective could be launched 
independently, helping make options for appropriate 
optimization algorithms more flexible. 

Anyway, to promote this research issue more attractive, 
an in-depth investigation on PGQ real-time optimization 
(RTO) approaches together with the applicability 
potential should be strongly advisable. 
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