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Abstract—This paper proposes a quantum competition 
neural network model compared to its classical counterpart 
from the relative parts of the complex system localizing 
operation without changing the perspective of entanglement 
measure. It shows that the pseudo-state is an inevitable part 
of the quantum competitive model. After the initialization of 
the quantum neural network; quantum competitive network 
is capable of associative memory through local area of 
operations because of the existence of these pseudo-states. 
Furthermore, Competitive algorithms of quantum theory 
are given, and finally an example of pattern recognition for 
simulation. Simulation results show that a quantum 
competitive learning algorithm in the learning rate and 
convergence rate is far better than the basic competitive 
artificial neural network. 
 

Index Terms—Quantum competition network model; 
quantum associative memory; Pattern recognition; 
Quantum entanglement 

I.  INTRODUCTION  
In the past ten years, the academic papers and reports 

about quantum computing have been widely published; 
the theory of quantum computing has made great progress, 
however, to the successful development of a practical 
value of the quantum computer, its physical 
implementation is very difficult, the main reason is to 
make the quantum state with the outside world. On one 
hand, the Quantum particles and the nteraction between 
the external environments will destroy the superposition 
of qubits, resulting in an error. On the other hand, with the 
development of artificial neural networks, neural 
computing limitations and shortcomings have gradually 
become prominent, especially Radovan in 1997 proved 
that this method of neural connectionism and its ability to 
express the traditional doctrine of symbolic logic methods 
are equivalent, so there is a neural network approach with 
traditional methods of symbolic logic, the same 
limitations. Since then, the neural network research 
returns to low. However, neural networks and quantum 
theoretical description of the system has a striking 
similarity, so the advantages of quantum computing can 
be used to compensate for the shortcomings of neural 
networks. In this sense, the current method of calculating 

and the emerging quantum neural network have become 
an important direction for further development. 

Quantum computing demonstrated the amazing 
potential and unusual features are all derived from the 
traditional calculation of the quantum transformation, and 
neural computation is the biological behavior of the 
analog information processing method, and its kinetic 
characteristics of quantum systems have many similarities 
place. In the literature [1-3], we also discussed the 
quantum competitive learning algorithm, but the algorithm 
is relatively simple. The following of the paper introduces 
some key concepts from quantum mechanics, briefly 
discussing some of the well-known quantum algorithms, 
and then details a quantum version of competitive learning.  
Preliminary empirical results (obtained through simulation 
on a classical computer) are presented, and these results 
demonstrate that a quantum competitive learning system is 
indeed capable of performance that is impossible. 

II. QUANTUM CONCEPTS 

Quantum computation is based upon physical principles 
from the theory of quantum mechanics, which is in many 
ways counterintuitive. Yet it has provided us with perhaps 
the most accurate physical theory ever devised. The theory 
is well-established and is covered in its basic form by 
many textbooks. Several ideas are briefly reviewed here. 

Linear superposition is closely related to the familiar 
mathematical principle of linear combination of vectors. 
Quantum systems are described by a wave function 
ψ that exists in a Hilbert space. The Hilbert space has a 

set of states | iφ >  that form a basis, and the system is 
described by a quantum state, 

| | i
i

ψ φ>= >∑
                           (1) 

|ψ >  is said to be in a linear superposition of the basis 

states | iφ >  , and in the general case, the coefficients ci 
maybe complex. Use is made here of the Dirac bracket 

notation, where the ket | ⋅ >  is analogous to a column 
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vector, and the bra |< ⋅ is analogous to the complex 
conjugate transpose of the ket. 

Coherence and decoherence are closely related to the 
idea of linear superposition. A quantum system is said to 
be coherent if it is in a linear superposition of its basis 
states.According to quantum mechanics, if a coherent 
system interacts in any way with its environment, the 
superposition is destroyed. This loss of coherence is called 
decoherence and is governed by the wave functionψ . 

The coefficients ic  are called probability amplitudes, and 

gives the probability of |ψ > collapsing into state | iφ >  
if it decoheres. Note that the wave function ψ describes a 
real physical system that must collapse to exactly one 
basis state. Therefore, the probabilities governed by the 

amplitudes ic must sum to unity. This necessary constraint 
is expressed as the unitarity condition  

2| | 1i
i

c =∑
                               (2) 

Consider, for example, a discrete physical variable 
called spin. The simplest spin system is a two-state system, 
called a spin-1/2 system, whose basis states are usually 

represented as |↑>  (spin up) and |↓>  (spin down). In 
this system the wave functionψ   is a distribution over 

two values and a coherent state |ψ >  is a linear 

superposition of |↑>  and |↓>  . One such state might be 
2 1| | |
5 5

ψ >= ↑> + ↓>
                   (3) 

As long as the system maintains its quantum coherence 
it cannot be said to be either spin up or spin down. It is in 
some sense both at once. When this system decoheres the 

result is, for example, the |↑> state with 

probability
2(2 / 5) 0.8= . 

A simple two-state quantum system, such as the spin-
1/2 system just introduced, is used as the basic unit of 
quantum computation. Such a system is referred to as a 

quantum bit or qubit, and renaming the two states | 0 >  

and|1> , it is easy to see why this is so. 
Operators on a Hilbert space describe how one wave 

function is changed into another. Here they will be 

denoted by a capital letter with a hat, such as Â  , and they 
may be represented as matrices acting on vectors. Using 
operators, an eigenvalue equation can be written 

ˆ | |i i iA aφ φ>= >                             (4) 

Where ia  is the eigenvalue. The solutions | iφ >  to 
such an equation are called eigenstates and can be used to 
construct the basis of a Hilbert space as discussed above. 
In the quantum formalism, all properties are represented 
as operators whose eigenstates are the basis for the Hilbert 

space associated with that property and whose eigen 
values are the quantum allowed values for that property. 
Operators in quantum mechanics must be linear and 
further, operators that describe the time evolution of a 

state must be unitary so that 
† †ˆ ˆ ˆ ˆ ˆA A AA I= = ,where Î  

is the identity operator, and 
†Â is the complex conjugate 

transpose of Â . 
Interference is a familiar wave phenomenon. Wave 

peaks that are in phase interfere constructively while those 
that are out of phase interfere destructively. This 
phenomenon is common to all kinds of wave mechanics 
from water waves to optics, and the well-known double 
slit experiment proves empirically that interference also 
applies to the probability waves of quantum mechanics. 

III. THE GENERAL COMPETITIVE NEURAL NETWORK  

Artificial Neural Network [6][8] is a system loosely 
modeled based on the human brain. The field goes by 
many names, such as connectionism, parallel distributed 
processing, neuro-computing, natural intelligent systems, 
machine learning algorithms, and artificial neural 
networks. It is inherently multiprocessor-friendly 
architecture and without much modification, and it goes 
beyond one or even two processors of the von Neumann 
architecture. It has ability to account for any functional 
dependency. The network discovers (learns, models) the 
nature of the dependency without needing to be prompted. 
No need to postulate a model, or to amend it, etc. 

Competitive learning is an important learning style of 
artificial neural network. It can achieve pattern 
classification and associative memory. The Hamming 
neural network is a typical competitive learning model, 
which first introduced the following network structure and 
competitive learning process. 

The Hamming neural network topology was shown in 
figure 1, it can be divided into two basic sections: input 
layer – a layer built with neurons, all of which neurons are 
connected to all of the network inputs; output layer – 
which is called MaxNet layer; the output of each neuron 
of this layer is connected to input of each neuron of this 
layer, besides, every neuron of this layer is connected to 
exactly one neuron of the input layer (as in the picture 
right). 

 
Figure 1.  Hamming neural network model 
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For example, the dimension of the input mode is m, the 
number of samples stored patterns (i.e., network capacity) 
is n, and the learning process can be described as follows: 

Left: pattern match 

Assuming the input patterns is },,{ 21 mxxxX L= , 
patterns are stored in the network which 

is )0,0,( njmipP j
i

j ≤≤≤≤= ,calculate the 
Hamming distance between each of X  and P , that is  

2
),(

j
j PXmPXHD ⋅−
= )0( nj ≤≤ ,         (5) 

Here, 
jPX ⋅ is the inner product of two patterns. 

Simply, if expressed in binary patterns, then the Hamming 
distance can be defined as two patterns for different values 
of vector (I.e., the opposite value) the number of 
components, which is used to measure the difference 
between two patterns, the smaller the value, the closer the 
two patterns, and vice versa, Otherwise, two of the same 
patterns of Hamming distance are zero, m is the maximum 
distance. 

According to the minimum Hamming distance criteria, 
j

j PXy ⋅=
is maximum, and the following operations 

can be classified results: 

⎥
⎦

⎤
⎢
⎣

⎡
−=+ ∑

≠ jk
kjj tytyfty )()()1( ε

, here n
1

<ε
   (6) 

IV. QUANTUM-COMPETITION NEURAL NETWORK 

Quantum computing is to use the interference 
properties of quantum states, so that the results you want 
enhanced, making unnecessary results weakened, so the 
results you want at the time of measurement will occur in 
the higher probability, In the whole calculation process, 
the quantum algorithm is actually a series of unitary 
operators of continuous operation, it describes that the 
quantum state changes from the initial state to the final 
state of evolution. Similarly, we believe that quantum 
learning algorithms also have similar characteristics. 
Controlled Hamming neural networks, quantum 
competition network model and its learning algorithm are 
given below. 

A. Quantum Neural Network Model 
Consider a discrete physical variable called spin.  The 

simplest spin system is a two-state system, called a spin-
1/2 system, whose basis states are usually represented as 

>0|  (spin up) and >1|   (spin down).  In this system the 
wave function ϕ  is a distribution over two values and a 
coherent state ϕ  is a linear superposition of 

>0| and >1| .  One such state might 

be >+>>= 1|0|| baϕ  , here ba,  are complex 

numbers such that 1|||| 22 =+ ba . A composed system 

with N  qubits is described using 
nN 2=  independent 

states obtained through the tensor product of the Hilbert 
Space associated with each qubit. 

 
Figure 2.  The quantum neural model 

To better describe the quantum Competition Network, 
the concept of the amount of entanglement will be 
introduced; Entanglement is described in the quantum 
mechanics properties between several parts of the same 
system state, suppose a system is composed of A, B, C etc, 
general States of composite systems with the density 

matrix ρ̂  to describe. There are several properties of the 
amount of entanglement. 

(1) If the density matrix ρ̂  described state is not 
entanglement and Separable, it can be expressed 
as belonging to different parts of the state of the 
tensor product 

L⊗⊗= ∑ B
i

A
i

i
iP ρρρ ˆˆ

,                                   (7) 

Here, LA
i

A
i ρρ ˆ,ˆ

 is the description of the various 

parts of the density operator, 
∑ =≥

i
ii PP 1,0

, Of non-

entanglement, entanglement is zero, 0)ˆ( =ρE . 
(2) Related to the various parts in the local area under 

the unitary transformation (Relative to various parts 
of the local operation).These operations can be part 
of the base of the unitary transformation, and the 
implementation is of the general measure, part of the 
Hilbert space to expand or give up some space, then 
the total entanglement remains unchanged in this 
system. 

)ˆ()ˆ( ++ ⊗⊗= BABA UUUUEE ρρ ,   (8) 

B. Quantum Storage Mode 
Traditional artificial neural networks (such as Hopfield 

networks) allow association mode response, but its main 
drawback is the limited storage capacity. For example, to 
deposit a pattern of length n requires n-neuron network, 
the model can be stored number knm ≤ , in 
general 5.015.0 ≤≤ k ; the use of quantum associative 
memory can greatly expand the memory capacity. In the 
given incomplete distorted input samples can be relatively 
large probability to restore a complete prototype. 

In storage mode, with a quantum associative memory 
proposed by Ventura and Martinez difference is that a 

>1| x

>ix| QNN
sU

>)(| ty
>d|

>nx|

>d|
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corresponds to a neuron, the longest field mode number of 
bits n as the number of neurons, uses Hamiltonian 

transformation HHHH n ⊗⊗⊗= L)(
( n is the 

number)to the initial state >00| L to get equal weight 
superposition state of qubits. Each basic state represents 

an initial mode. That n qubits can store 
n2 patterns. When 

the input pattern number is less than n, it is inevitable that 
there are some pseudo-states. For example, to store the 

three pattern >000| , >010| , >111| , and need three 
qubits, there are five pseudo-states, and probability 

amplitude for each patter 221 . Prepare all the qubits 

in the state >0| , using Hamilton equations to qubits is 
written as follows: 

>>= 000|| )( LnHs ∑
−

=

>=
12

0
2/ |

2
1 n

x
n x

.           (9) 

In general, the n qubits open 
n2  dimensional Hilbert 

space, there are 
n2 orthogonal states, and the 

n2 basic 

state is expressed by >x| , 

>>= ∑
=

iC
n

i
i ||

2

1
ϕ

,                                                (10) 

Note that >i| is one of the 
n2 basic states, iC is 

Stacking factor. x  is n-bit string made of 0 and 1, 
>xH n |)(

 is an equal weight superposition state of 

binary number from 0  to 12 −n
 . State >s|  can 

be expressed as the following formula: 
>>>>= −− 1)( 0|0|0|| ininHs  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>>+>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
>= ∑∑

−

=

−−
−−−

−

=

−− 12

0

1
2/)1(

12

0
2/

1

|
2

1)1|0(|
2

1|
2

1 ini

x

in
in

x

i
i xx

 

)1|0(|
2

1|
2

1 12

0

1
2/)1(

1

>+>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>= ∑

−

=

−
−

−n

x

n
n x

, (11) 
Here j is the binary digit string. From the above known 

equation, the location of the binary character in the 
quantum system is equivalent. The location of the binary 
character in the quantum system is equivalent. 

C. Response mode 
Now the system is divided into any two parts, part A 

(input layer) and Part B (competitive layer) as shown in 
Figure 2.A part searches known part string , and the 
character of B part may be incomplete state. These two 
parts are connected by certain entanglement. 

Suppose we want to recall the incomplete 
mode >+− nii yyyyy LL 1121 ?| , the Symbol ? means 

that it did not know the i  bits but now need to association 
it. By the formula (7) we know that system does not 

change the whole entanglement when using Grover's 
algorithm to find a matching string 

>+− nii yyyyy LL 1121| in
12 −n

 dimensional Hilbert 
space, no matter what one bit data is not clear. So after 

about NT
4
π

≅  iterations, system state changes as 

fallow: 

)1|0(|
2

1|| 221 >+>>>= + nii yyyyys LL
,       (12) 

 
Figure 3.  quantum competition network models 

Then, with some measurements, the system will 
collapse to a 50% probability to 
state >⊗>⊗ + nii yyyyy LL 221 0|| and 

>⊗>⊗ + nii yyyyy LL 221 1||  
 

V. PATTERN RECOGNITION USED QUANTUM COMPETITION 
NETWORK  

To test Quantum competition network (QCNN) 
algorithm performance, we selected a typical example of 
pattern recognition to simulate, with the General 
competitive neural network for performance comparison. 
For example, to store the four 
models >000| , >010| , >111| , >110| , requires four q-ubits, 
there are four pseudo-states, the probability amplitude of 

each mode is 221 . Now we give an incomplete 

pattern >?11| , it’s the first two quantum bits constitute 
Input part, implementation of Grover iteration algorithm 

[4-5] on the input part will find the matching state >11| in 

12
44

13 ==≅ −ππ NT
 times. Using formula (8) 

can be obtained 

 

>1| x

>nx|

 

>2| x

>ix|

Input layer Competitive layer 
 

1W 2U

mW mU

>)(| 1 ty

>)(| tym

JOURNAL OF COMPUTERS, VOL. 7, NO. 9, SEPTEMBER 2012 2315

© 2012 ACADEMY PUBLISHER



>+>=>+>> 111|
2

1110|
2

1)1|0(|
2

111|

, (9) 
The system will collapse to a 50% probability to 

state >111| and >110| . 
We choose simulation of typical examples of pattern 

recognition and General competitive neural network 
(GCNN) for performance comparison.  

 
Figure 4.  The nine-point pattern distribution map 
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Figure 5.  The comparison chart of GCNN and QCNN convergence 

rate   

Nine samples of pattern recognition are shown in 
Figure 3. This mode is a typical two-class classification 
problem, which can be seen as "exclusive or" 
generalization of the problem, often as the inspection 
algorithms of classification ability scale. Since GCNN and 
QCNN are respectively as a classifier, network structure 
are taken by a 2-10-1 model, limited the number of 
iteration step is 15,000, limited error precision of 0.01, 
learning rate from 0.1, 0.2,0 ...1 in the value. For each 
learning rate, respectively QCNN and GCNN to 100 times 
the simulation, convergence times were recorded as the 
evaluation index, such as the maximum number of 
Iterative steps, the minimum number of Iterative steps, 
and the average number of iterative steps. When the 
learning rate is changed, the comparisons of the 

convergence of the two models are shown in Figure 5; the 
comparisons of the number of Iterative step are shown in 
Figure 6. 
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Figure 6.  The comparison chart of QCNN and GCNN number of 

iterative step 

Figure 5 shows that when learning rate changes, QCNN 
convergence rate is of 100%, while the CBP convergence 
rate of the minimum is 22%, Max is only 69%.Figure 6 
shows that when learning rate changes, QCNN the 
average number of Iterative steps up to 687.70, down to 
275.01, fluctuation range is only 412.69.Average number 
of GCNN iteration steps up to 12335.45, about 6 times of 
Q QCNN, and fluctuation range is up to 10638.21, about 
26 times of QCNN. Simulation results show that QCNN 
are not only small number of iteration step, also high rate 
of convergence, when the parameters change with strong 
robustness. 

VI. CONCLUSIONS 

Ideas from classical neural network theory are recast in 
a quantum computational framework, using the language 
of wave functions and operators. The unique 
characteristics of quantum systems are utilized to produce 
a quantum competitive learning network capable of 
storing exponentially more prototype patterns than 
possible classically. This demonstrates that quantum 
computational ideas can be combined with concepts from 
the field of neural networks to produce useful and 
interesting results. Simulations using real-world data show 
that the quantum competitive learner performs very 
favorably during pattern recall. 

Ongoing work focuses on discovering new operators to 
improve performance by weighted feature discovery. 
Future work includes searching for further applications of 
quantum computation to neural networks and generally 
further developing the field of quantum computational 
learning. 
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