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Abstract—Nonlinear dimensionality reduction and face 
classifier selection are two key issues of face recognition. In 
this paper, an efficient face recognition algorithm named 
OKMFA is proposed. The core idea of the algorithm is as 
follows. First, the high-dimensional face images are mapped 
into lower-dimensional discriminating feature space by 
using the feature vector selection-based optimal kernel 
marginal Fisher analysis(KMFA), then the multiplicative 
update rule-based optimal SVM classifier is applied to 
recognize different facial images  herein. Extensive 
experimental results on two benchmark face databases 
demonstrate the effectiveness and efficiency of the proposed 
algorithm.  
 
Index Terms—face recognition, kernel marginal Fisher, 
support vector machine 
 

I.  INTRODUCTION 

Face recognition (FR) aims to assist a human expert in 
determining the identity of a test face. FR has attracted 
the extensive attention of researchers for more than two 
decades due to its wide range applications in many fields, 
such as human–computer interfaces, image and video 
content analysis, multimedia surveillance, and so on. 
However, the captured face image data often lies in a 
high-dimensional space, ranging from several hundreds to 
thousands. Thus, it is necessary and beneficial to 
transform the face image data from the original high-
dimensional space to a low-dimensional one for 
alleviating the curse of dimensionality. In the low-
dimensional feature space, the traditional classification 
algorithm can be applied to recognize different face 
images. As a result, numerous face recognition 
algorithms have been proposed, and surveys in this area 
can be found in [1]. How to extract discriminating facial 
features and how to classify a new face image based on 
the extracted features are two key issues of all these face 
recognition algorithms. Therefore, this work also focuses 

on the issues of feature extraction and classifier selection. 
Principal component analysis (PCA) and linear 

discriminant analysis (LDA) are two well-known feature 
extraction and dimensionality reduction methods for face 
recognition[2]. PCA is an orthogonal basis transformation 
where the new basis is found by an eigen-decomposition 
of the covariance matrix of a normalized data set, it aims 
to choose a linear transformation for dimensionality 
reduction that maximizes the scatter of all projected 
samples. However, PCA is an unsupervised learning 
method, it does not utilize the class label information. 
Thus, features extracted by PCA are optimal for face 
representation and reconstruction, but not optimal for 
discriminating one face from others. Unlike PCA, LDA is 
a supervised method, it aims to find the optimal 
discriminant vectors by maximizing the ratio of the 
between-class distance to the within-class distance, thus 
achieving the maximum class discrimination. The 
discriminant vectors can be readily computed by applying 
the eigen-decomposition on the scatter matrices. Due to 
the utilization of label information, LDA is 
experimentally reported to outperform PCA for face 
recognition when sufficient labeled face images are 
provided. Despite the success of LDA in many pattern 
classification tasks, it often suffers from the small sample 
size problem when dealing with high-dimensional face 
data. Moreover, both PCA and LDA are designed for 
discovering only the global Euclidean structure, whereas 
the local manifold structure is ignored. Then, they fail to 
discover the underlying nonlinear structure as traditional 
linear methods. One way to handle nonlinear face 
structure can be provided by using kernel theory[3]. 
Kernel-based dimensionality reduction methods have 
been extensively investigated in the literature. For 
example, PCA is generalized to its kernel version, named 
as KPCA; kernel discriminant analysis (KDA) utilizes the 
kernel trick to extend the LDA for handling linearly 
inseparable classification problems. Although both 
KPCA and KDA have achieved great success in 
describing the complexity of face images, they fail to 
discover the intrinsic structure of face images if they are 
lying on or close to a submanifold of the ambient space. 
In fact, in many real-world classifications such as face 
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recognition, the local manifold structure is more 
important than the global Euclidean structure[4]. 

To discover the intrinsic manifold structure of the face 
data, nonlinear dimensional reduction algorithms such as 
ISOMAP[5], locally linear embedding (LLE)[6] and 
Laplacian eigenmap (LE)[7] were recently developed. 
ISOMAP, a variant of MDS, aims to preserve globally 
the geodesic distances between any pair of data points. 
The goal of LLE is to discover the nonlinear structure via 
locally linear reconstructions. LE restates the nonlinear 
mapping problem as an embedding problem for the 
vertices in a graph and uses the graph Laplacian to derive 
a smooth mapping. Although all of these algorithms can 
discover the intrinsic manifold structure, they are defined 
on the training data points, and the issue of how to map 
new test data remains difficult. Therefore, they are not 
suitable for face recognition. To solve the new test data 
mapping, He et al.[8] proposed the linear manifold 
learning algorithm named locality preserving projection 
(LPP), which is obtained by finding the optimal linear 
approximations to the eigenfunctions of the Laplace- 
Betrami operator on the manifold. However, these 
algorithms are designed to best preserve data locality or 
similarity in the embedding space rather than good 
discriminating capability. Therefore, these manifold 
learning algorithms might not be optimal in 
discriminating face images with different semantic which 
is the ultimate goal of face recognition. Later, different 
manifold learning algorithms have been proposed, 
Analyses and interpretations about these algorithms are 
given in view of graph embedding framework [9]. The 
utility of manifold learning has been demonstrated in 
many pattern recognition applications. Among these 
various manifold learning algorithms, the graph 
embedding framework-based marginal Fisher 
analysis(MFA) has gained significant popularity due to 
its solid theory foundation and generalization 
performance[9,10]. Although MFA seems to be more 
efficient than other manifold learning algorithms for face 
recognition, it is still a linear technique in nature. So it is 
inadequate to describe the complexity of real face images 
due to high variability of the image content and style. In 
this paper, we discuss how to perform MFA in the 
Reproducing Kernel Hilbert Space (RKHS), which gives 
rise to kernel MFA for facial feature extraction. 

As for face recognition, classifier selection is another 
key issue after facial feature extraction. At present, the 
nearest neighbor (KNN) algorithm is one of the most 
widely used classifier algorithms. However, for large face 
image data sets, the computational demand for classifying 
face image using KNN can be prohibitive. Until now, 
many classifier algorithm have been proposed for face 
recognition, such as nearest feature line(NFL)[11], naïve 
Bayes, neural network and support vector machine(SVM) 
[12]. Especially, SVM classifier has a very good 
performance for pattern classification problems by 
minimizing the Vapnik-Chervonenkis dimensions. The 
basic idea behind SVM is to find an optimal hyperplane 
in a high-dimensional feature space that maximizes the 
margin of separation between the closest training 

examples from different classes. Although SVM has 
achieved great success in many pattern classification 
tasks, its time complexity is cubic in the number of 
training points, and is thus computationally inefficient on 
massive face image data sets. In order to overcome the 
above shortcomings and fully use its advantages such as 
higher classification accuracy and better generalization 
ability, we adopted the multiplicative update rule-based 
optimal training SVM as face classifier. 

In this paper, the objective is to improve face 
recognition performance by simultaneously using kernel 
MFA and optimal SVM. The rest of this paper is 
organized as follows. In section II, we give a brief review 
of MFA. Section III deals with nonlinear dimensional 
reduction for face recognition by using the optimal kernel 
MFA. Section IV discusses the optimal training SVM 
classifier implement. Experiments are reported in Section 
V. Finally, we give concluding remarks in Section VI. 

II.  BRIEF REVIEW OF MFA 

Marginal fisher analysis(MFA)[9] is a recently 
proposed manifold learning method for feature extraction 
and dimensionality reduction, it is based on the graph 
embedding framework and explicitly considers the local 
manifold structure and class label information with 
margin criterion. MFA aims to preserve the within-class 
neighborhood relationship while dissociating the 
submanifolds for different classes from each other, it has 
achieved good discriminating performance by integrating 
the information of intraclass geometry and the interclass 
discrimination. 

Given the face image set [ ]nxxxX ,,, 21 K= , MFA 
aims to design an intrinsic graph that characterizes the 
intraclass compactness and another penalty graph which 
characterizes the interclass separability. For the intrinsic 
graph, the intraclass compactness is measured as the sum 
of distances between each sample and its neighbors 
within the same class. The formal definition of the 
intraclass compactness is as follows: 

( )
1 1

2

( )or ( )

2
k k

T T
c i j

i i N j j N i

T T

S W x W x

W X D S X W

∈ ∈

= −

= −

∑ ∑%

         (1) 

1 1
1, if ( )or ( )

0, otherwise
k k

ij

i N j j N i
S

∈ ∈⎧
= ⎨
⎩

             (2) 

where S  is a similarity matrix defined on the data points 
in the intrinsic graph, ii ijj

D S=∑ , and 
1
( )kN i  

denotes the index set of the 1k nearest neighbors of 

sample ix  that are in the same class. 
For the penalty graph, the interclass separability is 

measured as the sum of distances between margin points 
and their neighbor points from different classes. The 
formal definition of the interclass separability is as 
follows: 
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where p
ijS  is a similarity matrix defined on the data 

points in the penalty graph, p p
ii ijj

D S=∑ , ( )il x is the 

class label of data point ix , and ( )( )
2k iP l x  is a set of 

data pairs that are the 2k  nearest pairs among the set 

( ) ( ) ( ){ }, i ji j l x l x≠ . 

Performing MFA means minimizing the intraclass 
compactness cS%  and maximizing the interclass 

separability pS% . This is equivalent to minimizing the 
following objective function: 

( )
( )

arg min

arg min

c
MFA

W p

T T

T p p T
W

SW
S

W X D S X W
W X D S X W

=

−
=

−

%

%
             (5) 

Finally, the optimal transformation vectors of MFA are 
the eigenvectors associated with the smallest eigenvalues 
of the following generalized eigen-problem: 

( ) ( )T p p TX D S X W X D S X Wλ− = −         (6) 

If ( )p p TX D S X− is nonsingular, then the optimal 

transformation vectors of MFA can be regarded as the 
eigenvectors of the matrix 

( )( ) ( )
1p p T TX D S X X D S X
−

− −  associated with 

the smallest eigenvalues. 
For face recognition, a problem arises that the matrix 

( )p p TX D S X− can not be guaranteed to be 

nonsingular since the number of training face images is 
usually much smaller than the dimension of each face 
image. In this case, we can first apply PCA to remove the 
components corresponding to zero eigenvalues. 

III.  OPTIMAL KERNEL MFA 

Although MFA seems to be more efficient than other 
dimensionality reduction algorithms for facial feature 
extraction, it often fails to deliver good performance 
when face images are subject to complex nonlinear 
changes due to large pose, expression or illumination 
variations, for it is a linear method in nature. Therefore, a 
nonlinear version of MFA is required to classify the face 
images based on their nonlinear structure in their feature 
space. Employing a nonlinear face image representation 
algorithm can result in a reduction of the statistical and 

the perceptual redundancy among representation elements. 
One way to handle nonlinear structure can be provided by 
using kernel theory. Inspired by the success of SVM, we 
introduce the similar scheme to kernelize the linear MFA. 
The main idea is to nonlinearly map the face image data 
into a high-dimensional feature space, and then perform 
to obtain a semantic manifold in that space. Such a 
generalization is of great importance since the kernelized 
MFA would generally achieve better recognition 
accuracy, and relax the restriction of MFA being only a 
linear manifold learning algorithm. 

The idea of kernel MFA(KMFA) is to solve the 
problem of MFA in an implicit feature space F  which is 
constructed by the kernel trick[12]. The intuition of 
kernel trick is to map the input data x  from the original 
feature space into a higher dimensional Hilbert space F  
constructed by the nonlinear mapping 

( ): x x Fϕ ϕ→ ∈                              (7) 
in which the data may be linearly separable. Then 
building linear MFA algorithms in the feature space 
implement nonlinear counterparts in the input data space. 
The map, rather than being given in an explicit form, is 
presented implicitly by specifying a kernel function 
( ),K as the inner product between each pair of points in 

the feature space. 

( ) ( ) ( )( ),i j i jK x x x xϕ ϕ= ⋅                   (8) 

Performing KMFA means minimizing the intraclass 
compactness cSϕ%  and maximizing the interclass 

separability pSϕ% in the feature space F simultaneously. 
According to (5), this is equivalent to minimizing the 
following objective function: 

( )( ) ( )
( )( ) ( )

arg min

arg min

c
MFA

W p

T T

T p p T
W

SW
S

W X D S X W
W X D S X W

ϕ

ϕ

ϕ ϕ
ϕ ϕ

=

−
=

−

%

%
       (9) 

where ( ) ( ) ( ) ( )1 2, , , nX x x xϕ ϕ ϕ ϕ= ⎡ ⎤⎣ ⎦K  denotes 

the face image data matrix in the feature space F . 
Then, the eigenvector problem of MFA in the Hilbert 

space F can be rewritten as follows: 
( )( ) ( ) ( )( ) ( )T p p TX D S X W X D S X Wϕ ϕ λϕ ϕ− = −   (10) 

where the optimal transformation vectors of KMFA are 
the eigenvectors associated with the smallest eigenvalues 
of the generalized eigen-problem (10). 

Since the eigenvectors of (10) must lie in the span of 
all the samples in the feature space F , there exist 
coefficients , 1, 2, ,i i nα = K such that 

( ) ( )
1

n

i i
i

W x Xα ϕ ϕ α
=

= =∑                    (11) 

where [ ]1 2, , , T
nα α α α= K . 

By using (11) and (8), we can rewrite (10) as follows: 
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( ) ( )T p p TK D S K K D S Kα λ α− = −        (12) 

Then, the problem of KMFA is converted into finding 
the eigenvectors of the matrix 

( )( ) ( )
1p p T TK D S K K D S K
−

− −  associated with 

the smallest eigenvalues. For a new face image data x , its 
projection onto W  in the feature space F  can be 
calculated as follows: 

( ) ( )( ) ( )
1

,
n

i i
i

f x W x K x xϕ α
=

= ⋅ =∑             (13) 

In fact, matrix ( ) TK D S K−  and 

( )p p TK D S K− is usually singular in face recognition, 

which stems from the fact that the dimension of the 
kernel feature space is usually much higher than that of 
the empirical feature space, a deficiency that is generally 
known as small sample size (SSS) problem. One possible 
way to address the SSS problem is by performing PCA 
projection to reduce the dimension of the feature space 
and make the two matrixes nonsingular. 

According to the above derivation of KMFA, we can 
observe that different kernel function will produce 
different implicit kernel feature space. However, how to 
choose a suitable kernel function for a given application 
is still an open problem so far. In this research, motivated 
by the fact the inner product between two vectors can be 
considered as a similarity representation in the implicit 
feature space[13], we employ the normalized polynomial 
kernel function. 

( ) ( )
( ) ( )

,
,

, ,
i j

i j

i i j j

k x x
K x x

k x x k x x
=                (14) 

where ( ),k is the polynomial kernel. The degree of the 
polynomial kernel is set to 2 since it has achieved better 
performance in many pattern recognition tasks[14,15]. 

In addition, we can observe that the kernel trick-based 
KMFA algorithm is computationally expensive in the 
training phase since its computational complexity is 
proportional to the number of training points needed to 
represent the transformation vectors from (11). In fact, 
the dimensionality of the data subspace spanned by 
( )ixϕ  is given by the rank of kernel matrix K , and the 

( )rank K n�  for massive training data set. If we 

replace n  with ( )rank K  and select a corresponding 

subset of feature vectors in the feature space F , which 
will greatly improve the computational efficiency of 
KMFA. Based on the above consideration, we adopt the 
feature vector selection methods[16] to accelerate the 
running speed of KMFA. 

The essential idea of the feature vector selection is to 
find a subset which is sufficient to express all the data as 
a linear combination of the selected subset in the feature 
space F . Let the selected feature vector subset 

( ) ( ) ( ){ }1 2, , ,s s srS x x xϕ ϕ ϕ= K  in the feature 

space F is known, where r denotes the number of 
selected feature vector, then we can estimate the mapping 
( )ixϕ) of any input data ix as a linear combination of Sϕ  

in the feature space F . The formal description is as 
follows: 

( )i S ixϕ ϕ β= ⋅)
                               (15) 

where ( )1 2, , , r
i i i iβ β β β= K is the coefficient vector. 

Then, the goal of feature vector selection is to find the 
coefficients iβ  so that the estimated mapping 

( )ixϕ) approaches to the real mapping ( )ixϕ as far as 
possible, which can be attained by minimizing the 
following objective function: 

( ) ( )
( )

2

2
i i

i

i

x x

x

ϕ ϕ
δ

ϕ

−
=

)

                          (16) 

The above optimization problem is performed by 
setting the partial derivative of iδ  with respect to iβ  to 
zero. By using matrix form, the optimal objective 
function of (16) can be rewritten as follow: 

1

min 1
T
Si SS Si

i
ii

K K K
K

δ
−

= −                          (17) 

where SSK is a square matrix of dot products of the 

selected vectors, and SiK is the vector of dot product 

between ix  and the selected vector set S . 
Then, the ultimate goal of feature vector selection 

method is make (17) apply to all the sample data, which 
can be summarized as the following form: 

11max
i

T
Si SS Si

SS x X ii

K K KJ
n K

−

∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                   (18) 

The above optimal problem of solution can be obtained 
with an iterative algorithm[16], and the algorithm stops 
when SSK  is no longer invertible or the predefined 
number of selected vectors is reached. 

IV.  OPTIMAL TRAINING SVM CLASSIFIER 

Once the discriminating facial features are extracted by 
KMFA, face recognition becomes a pattern recognition 
task. Pattern recognition systems employing support 
vector machine (SVM) have drawn much attention due to 
its good performance in practical applications and their 
solid theoretical foundations. The essential idea of SVM 
is to find a linear separating hyperplane which achieves 
the maximal margin among different classes of data. 
Furthermore, one can extend SVM to build nonlinear 
separating decision hyperplanes by exploiting kernel 
techniques. Although SVM has achieved great success in 
many pattern classification tasks, its time complexity is 
cubic in the number of training points, and is thus 
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computationally inefficient on large scale face image data 
sets. In order to overcome the above shortcomings and 
fully use its advantages such as higher classification 
accuracy and better generalization ability, we adopted the 
multiplicative update rule-based optimal training SVM as 
face classifier. 

Consider n face data points in the low-dimensional 
feature space extracted by KMFA that belong to two 
different classes: 

( ){ } 1
,

n
i i i

x y
=

 and  { }1, 1iy ∈ − +                (19) 

where ix is a low-dimension feature vector and iy  is the 
label of the class that the vector belongs to. SVM aims to 
separate the two classes of sample data by finding a 
hyperplane 

0Tw x b+ =                                  (20) 
where w  is the normal vector to the hyperplane and b is 
the corresponding bias term of the hyperplane. 

The optimization objective of SVM is to maximize of 
the margin 2 w and minimize the training error, which 
can be formally stated as the following optimization 
problem: 

2

, , 1

1min
2

n

iw b i
w C

ξ
ξ

=

+ ∑                             (21) 

subject to 

( ) 1 , 0T
i i i iy w x bφ ξ ξ⎡ ⎤+ ≥ − >⎣ ⎦               (22) 

where ( )φ  is the nonlinear mapping function, C  is 
used to balance the tradeoff between maximizing the 
margin and minimizing the training error, and iξ  is the 
slack variable that quantifies SVM training error. 

In the primal form, the Lagrangian of the above SVM 
optimization problem is as follows: 

( )( )

2

1

1 1

1
2

1

n

i
i

n n
T

i i i i i i
i i

L w C

y w x b

ξ

α φ ξ λξ

=

= =

= +

⎡ ⎤− + − + −⎣ ⎦

∑

∑ ∑
        (23) 

where the Lagrange multipliers 0iα ≥  and 0iλ ≥ for 

all 1, 2, ,i n= K . 
With Lagrange multipliers and Karush-Kuhn-

Tucker(KTT) conditions, the solutions of  (21) under 
constraint condition (22) can be obtained by solving its 
dual problem: 

( ) ( )
1 , 1

1max ,
2

n n

i i j i j i j
i i j

Q y y K x x
α

α α α α
= =

= −∑ ∑    (24) 

subject to 

 
1

0
n

i i
i

yα
=

=∑  and 0 i Cα≤ ≤ , 1, 2, ,i n= K       (25) 

where ( ) ( ) ( ), T
i j i jK x x x xφ φ=  is a kernel function 

satisfying Mercer’s condition. 

Once the optimal α  is obtained by solving the 
quadratic programming (QP) problem of (24), the 
decision function of SVM classifier is given as follows: 

( ) ( )( )

( )
1

sgn

sgn ,

T

n

i i i
i

f x w x b

y K x x b

φ

α
=

= +

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

            (26) 

Note that the above decision function depends only on 
the training samples with non-zero Lagrange multipliers 

iα . Such training samples are known as the support 

vectors. Meanwhile, the threshold b  is computed by 

averaging ( ),j i i i jb y y K x xα= −∑  over all support 

vectors ( )0j jx α > . 

In addition, although the quadratic programming (QP) 
problem of (24) has the important computational 
advantage of not suffering from of local minima, given 
n  training samples, the naive implementation of QP 

solver is of ( )3O n computational complexity, which is 

computationally infeasible on very large face image data 
sets. Hence, a replacement of the naive method for 
solving QP solutions posed by the SVM classifier is 
highly desirable. To this end, we applied the 
multiplicative update rule-based method[17] to improve 
the training speed of  SVM classifier. 

Since the optimal problem of (24) can be boiled down 
to the general nonnegative quadratic programming 

( ) 1min
2

T T

v
F v v Av b v⎛ ⎞= +⎜ ⎟

⎝ ⎠
 subject to 0v ≥ .   (27) 

where matrix A  is a symmetric and semipositive definite 
matrix. Hence, the optimization of objective function 
( )F v  is convex. 
Due to the nonnegativity constraints in (27), we adopt 

the multiplicative iterative updates rule to obtain the 
optimal solution. The iterative update algorithm is 
implemented according to the positive and negative 
components of the matrix A  in (27).Their definitions are 
as follows: 

, 0.

0 , .
ij ij

ij

A if A
A

otherwise
+

≥⎧
= ⎨
⎩

                         (28) 

, 0.

0 , .
ij ij

ij

A if A
A

otherwise
−

⎧ <⎪= ⎨
⎪⎩

                        (29) 

From the above definition, we can easily observe that 
A A A+ −= − . Then, the multiplicative iterative updates 

rule can be defined as follows in terms of nonnegative 
matrices. 

( ) ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++−
← +

−+

i

iiii
ii vA

vAvAbb
vv

2
42

           (30) 

The remarkable advantage of the multiplicative 
iterative update rule in (30) is that it can be easily 
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implemented and never violate the nonnegativity 
condition constraints. Furthermore, it has been proved 
that the multiplicative update rule has the correct fixed 
points[17] and can monotonically improve the optimal 
objective function of (27). Especially, since the optimal 
objective function of SVM in (24) is a special case of 
(27), for the training of SVM with the multiplicative 
iterative update rule, we can make 

( )jijiij xxKyyA ,= , 1−=ib .                      (31) 
Then, the multiplicative update rule for solving the 

objective function of (27) in SVM can be described the 
following form: 

( ) ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++
← +

−+

i

ii
ii A

AA
α

αα
αα

2
411

               (32) 

where A+  and A−  are defined as in (28) and (29). 
In short, the face recognition procedure has three steps.  

First, we obtain the face subspace with the optimal 
manifold learning algorithm KMFA; then the new face 
image to be identified is projected into the face subspace; 
finally, the optimal training SVM classifier is adopted to 
identify the new facial image. The outline of the proposed 
face recognition algorithm is shown in Figure 1. 

 
Input the high-

dimensional 
face images

Obtaining the face 
subspace with KMFA

The new testing face 
images are projected 

onto the face subspace

Training SVM with the
multiplicative  update 
rule in the subspace

The obtained optimal 
SVM is used to identify   

new facial images

Output the face 
recognition results  

Figure 1.  The proposed face recognition algorithm. 

V.  EXPERIMENTAL RESULTS 

In this section, we investigate the performance of our 
proposed optimal KMFA plus SVM (OKMFA for short) 
algorithm for face recognition. The algorithm 
performance is compared with the kernel PCA 
(KPCA)[18], kernel LDA(KLDA)[19], and kernel 
LPP(KLPP)[8] algorithms, three of the most popular 
nonlinear dimensionality reduction algorithms for face 
recognition. In this experiment, two publicly available 

benchmark face databases including the FERET standard 
facial database [20] and Yale database [21] were tested. 

 

 
Figure 2.  The sample image cropped from the face 

database FERET. 

 
Figure 3.  The sample image cropped from the face 

database Yale. 

The FERET face database is a rather larger database. It 
contains 13,539 face images of 1565 subjects taken 
during different photo sessions with variations in size, 
pose, illumination, facial expression and even age. We 
test the four algorithms on a subset of the FERET 
database. This subset includes 1,400 images of 200 
individuals (each with seven images labeled as ba, bc, bd, 
be, bf, bg, and bh). Some cropped sample face images 
from the face database FERET are displayed in Figure 2. 
All of the gray-level images are aligned by fixing the 
locations of the two eyes, normalizing in size to a 
resolution of 32 32×  pixels, and preprocessing with 
histogram equalization. For each individual, p(=2,3,4,5) 
face images are randomly selected for training and the 
rest are used for testing. To reduce the variation in the 
recognition results, for each given p, we computed the 
average recognition accuracy of 10 random splits. In 
general, the performance of the four recognition 
algorithms varies with the number of dimensions. We 
only report the best recognition accuracy and the optimal 
dimensionality obtained by KPCA, KLDA, KLPP, and 
OKMFA in Table I. As can be seen, our proposed 
OKMFA algorithm outperforms all the other algorithms 
with fewer features, and the KPCA algorithm gives 
relatively poor recognition accuracy. 

The Yale face database contains 165 images of 15 
individuals (each person has 11 different images) under 
various facial expressions and lighting conditions. In this 
experiment, preprocessing to locate the faces was applied. 
The images were aligned semi-automatically according to 
the eyes position of each facial image using the eye 
coordinates. The facial images were cropped, and then re-
sized to a resolution of 32 32×  pixels. Some cropped 
sample face images from the face database Yale are 
displayed in Figure 3. Histogram equalization was used 
for the normalization of the facial image luminance. A 
random subset with p(=5,6,7,8) face images per 
individual was taken with labels to form the training set, 
and the rest of the database was regarded as the testing set. 
For each given p, we average the results over 10 random 
splits. We only report the best recognition accuracy and 
the optimal dimensionality obtained by KPCA, KLDA, 
KLPP, and OKMFA in Table II. We can see that our 
proposed OKMFA algorithm achieves the best 
recognition accuracy. 

In addition, to verify the efficiency of our proposed 
OKMFA algorithms, we record the computational time in 
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the experiments. The running times of the four algorithms 
on the FERET and Yale face database are listed in Table 
III and Table IV respectively. As can be seen, the time 
ration for the FERET face database used by the four 
algorithms are approximately KPCA: KLDA: KLPP: 
OKMFA = 29:31:26:21.The time ration for the Yale face 
database used by the four algorithms are approximately 
KPCA: KLDA: KLPP: OKMFA = 17:19:23:15. These 
results show that the proposed OKMFA algorithms are 
much more efficient than the traditional kernel-based 
dimensionality reduction algorithms. The main reason 
could be attributed to the fact that the feature vector 
selection strategy accelerates the running speed of KMFA, 
and the multiplicative update rule-based method further 
improve the training speed of  SVM classifier. Therefore, 
our proposed OKMFA algorithm could dramatically 
reduce the computational time when compared to other 
three algorithms on large scale face recognition problem. 

TABLE I.   
RECOGNITION ACCURACY COMPARISONS ON THE FERET 

DATABASE 

Algorithms 2 images 3 images 4 images 5 images 

KPCA 74.6%(79) 82.7%(81) 88.6%(56) 91.8%(48)

KLDA 76.5%(42) 84.6%(46) 90.3%(40) 93.4%(69)

KLPP 79.1%(45) 87.9%(50) 91.5%(42) 94.2%(60)

OKMFA 84.7%(40) 92.8%(44) 93.2%(40) 96.7%(46)

TABLE II.   
RECOGNITION ACCURACY COMPARISONS ON THE YALE 

DATABASE 

Algorithms 5 images 6 images 7 images 8 images 

KPCA 56.3%(72) 64.7%(78) 70.5%(70) 78.2%(74)

KLDA 68.5%(14) 72.6%(14) 81.3%(14) 89.7%(14)

KLPP 79.8%(12) 84.1%(14) 91.6%(14) 95.8%(13)

OKMFA 85.6%(10) 92.5%(12) 95.7%(14) 98.3%(14)

TABLE III.   
RUNNING TIME COMPARISONS ON THE FERET DATABASE 

Algorithms Training time(s) Testing time(s) 

KPCA 26.1 3.2 

KLDA 28.7 2.5 

KLPP 23.8 2.1 

OKMFA 19.6 1.4 

TABLE IV.   
RUNNING TIME COMPARISONS ON THE YALE DATABASE 

Algorithms Training time(s) Testing time(s) 

KPCA 14.9 2.2 

KLDA 17.5 1.6 

KLPP 21.4 1.8 

OKMFA 13.8 1.3 

In summary, the main observations from the above 
performance comparisons include: 

(1) Our proposed OKMFA algorithm consistently 
outperforms KPCA, KLDA, and KLPP algorithms in 
terms of recognition accuracy and computational time. 
The superiority of OKMFA stems from two aspects: on 
the one hand, the kernel MFA explicitly considers the 
local manifold structure and class label information with 
margin criterion in the process of nonlinear 
dimensionality reduction, thus achieving maximum 
discrimination and improving the computation efficiency 
of face classifier; one the other hand, the multiplicative 
updates rule-based optimal SVM can achieve better 
classification  performance and lower computational 
requirements simultaneously. Hence, the proposed 
OKMFA algorithm achieved much better performance 
than other three algorithms. 

(2) The manifold learning-based (such as KLPP and 
OKMFA) algorithms achieve much better performance 
than KPCA and KLDA, which demonstrates the 
importance of utilizing local manifold structure. The 
reason is that KPCA and KLDA are designed for 
discovering only the global Euclidean structure, whereas 
the local manifold structure is ignored. 

(3) Although OKMFA and KLPP algorithms belong to 
manifold learning algorithms, our proposed OKMFA 
algorithm performs better than KLPP. One possible 
explanation is as follows: although KLPP seeks to 
preserve local neighbor structure, it does not explicitly 
exploit the class information for classification. By jointly 
considering the local manifold structure and the class 
label information with two graphs, OKMFA achieves 
much better performance than KLPP in face recognition. 

(4) The KPCA algorithm gives the worst recognition 
accuracy. One possible explanation is as follows: KPCA 
is an unsupervised algorithm that ignores the valuable 
label information for classification. Hence, the features 
extracted by KPCA are optimal for representation, but not 
optimal for classification. 

VI.  CONCLUSIONS 

In this paper, we have proposed an enhanced face 
recognition algorithm called OKMFA that combines the 
advantages of optimal kernel MFA and SVM. The 
effectiveness and efficiency of this algorithm is 
evidenced in experimental comparisons on two 
benchmark face databases with other well-known kernel-
based dimensionality reduction algorithms. In the future, 
we would like to apply our algorithm to many tasks in 
pattern recognition, data mining, and high-dimensional 
data processing. 
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