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Abstract—Soliton  equations are infinite-dimensional
integrable systems described by nonlinear evolution
equations. As one of the soliton equations, long wave
equation takes on profound significance of theory and
reality. By using the method of nonlinearization, the relation
between long wave equation and second-order eigenvalue
problem is generated. Based on the nonlinearized Lax pairs,
Euler-Lagrange function and Legendre transformations, a
reasonable Jacobi-Ostrogradsky coordinate system is
obtained. Moreover, by means of the Bargmann constrained
condition between the potential function and the
eigenfunction, the Lax pairs is equivalent to matrix spectral
problem. Furthermore, the involutive representations of the
solutions for long wave equation are generated.

Index Terms—spectral problem, Hamilton canonical system,
Bargmann constraint, integrable system, involutive solution

. INTRODUCTION

In 1895, Korteweg and de Vries [1-2] derived a
nonlinear evolution equation as follows:

2
on_3 F3(1,72+3m+106_n)

or 2\hac 2" "33 g
a=1h3_T_h
3  p9

By making the transformation

1 [g " 11
t== |9 x=—68, u=ip+ia
2\ ho S u=oty

the famous KdV equation
u, +6uu, +u,, =0

is obtained. It aroused an increasing interest among
scientific researchers in the field of mathematics and
physics, so more and more scientists have been interested
in searching various methods to obtain solutions of some
partial differential equation. Many effective methods
have been proposed, for example, Hirota method, the
inverse scattering, Darboux transformation, Painlevé
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expansion, Backlund transformation, algebraic method
and so on [1-7]. Using the inverse scattering method, we
could obtain the N-soliton solution of KdV equation (see
Fig. 1 and Fig. 2).

~
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R

Figurel. One-soliton solution of the KdV equation

In our paper, by nonlinearization [8-15] of spectral

problems, we considered the spectral
Lo = (0" +09+ p)g = A9,

The paper is structured as follows. In Sect.2, the adjoint
Lax pairs of the spectral problem is generalized. In Sect.3,
based on the Euler-Lagrange equations and Legendre
transformations, a suitable Jacobi-Ostrogradsky coordina-
te is been found. Section 4 and Sect.5 are devoted to
establishing the Liouville integrability of the resulting
Hamiltonian systems from the 2nd-order spectral
problems.
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Figure2. Two-soliton solution of the KdV equation

Il. LAX PAIRS AND EVOLUTION EQUATIONS

Let us take the 2nd-order problem
Ly = (0° +0q+ p)¢ = A9, (1)
where g=q(x,t)eR,p=p(x,t)eR , g,p=const are
potential functions, 4 is a complex eigenparameter,
o=0/ox, 00 =0"0=1.

Suppose Q is the basic interval of (1), for the sake of
simplicity, we assume that if the potentials g, p,¢ and all
their derivatives with respect to x tend to zero,
then Q = (—o0,+0) ; If they are all periodic T functions,
then Q=[0,2T].

Definition 2.1 Assume that our linear space is
equipped with a L, scalar product (-,-),, (q, :

(.00 = .Lz ph'dx < oo
symbol * denotes the complex conjugate.

Definition 2.2 Operator Aisan adjoint operator of A,

if (Ap, h)Lz(Q) =(p, Kh)LZ(Q) :
Using definition 2.2, we get
Ly = (8> —qo+ p)y =1y, 2
In order to derive the evolution equation related to the
spectral problem (1), we consider the stationary zero
curvature equation
Ao, +[o,L]= 1o, + oL - Lo 3)
Take
= Z[_aH -b,,, +b,,0147

i=0

o) e

therefore, we obtain the recursive relation
KG,,=JG,,j=012..., (5)

and set

where
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0 o
J= 6
( 5 oj (6)
20 o*+0q
= 2 O
qo—-0° po+op
a;
]
TABLE I.
THE LENARD SEQUENCE
Gj a, bj
i=-1 0 1
i=0 p q
j=1 -p, +20p 2p+0, +0°
Now, we consider the auxiliary spectral problem
(ptm :a)m¢ m:0,1,2,... (8)
with
Z +b,,01A™) (9)
=0

Then, the |sospectral (ie.4,_ = 0) compatible condition
L, =4o, +lo, L]=10, +o,L-Lo, (10)
of the Lax pairs

Lp=A4
P = APy (11)
¢ =, m=012..
determines a (m+1) -order long-wave equation
q
{p‘ J =JG, =KG , m=012.. (12
tm

For example, when m=1and m=2, we can get the
first and the second nonlinear systems, the results are
shown in TableIl. When m=1, it is the long-wave
equation. When m=2and q=0, it is exactly the famous

KdV equations.

TABLE II.

THE FIRST AND THE SECOND NONLINEAR SYSTEM
Evolution _ _ —
equation m=1 m=2and q=0

q‘m 2 px + qxx + qux 0
2
me _pxx + 2(qp)x plz = pxxx +3( p )x

In order to give the constraints between the potentials
and the eigenfunctions, it is necessary to calculate the
functional gradient with respect to the potential functions.

Proposition 2.3: [11]

i) If Aisan eigenvalue of (1), then A is real.
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ii) If ¢ is an eigenfunction of (1) and y is an
eigenfunction of (2), then ¢ and w can be taken real

functions.
iii) If ¢ is an eigenfunction corresponding to the

eigenvalue 2 of (1) and w is an eigenfunction
corresponding to the eigenvalue 1 of (2), then

S
V= oq _ (J' " y/dx)l(_(”‘//xJ
oA ™ oy
sp
and
KVAi=4)VA (13)

Proof: In fact, from (1) and (2), we have
Af oprdx =] Loy") dx

= [, o(Cy") dx
= [, #(Cy) dx
=1 .[Q oy, dx

= l*jQ o, pdx
S0
A=A
If @ is a complex eigenfunction of (1) on A, and
@ =a+ib,a,b are real functions, from Lp =A¢, and A
is real, then
La = Aa,
{Lb =Ab,
so a,b are eigenfunction of (1) on A, ¢ can be taken real
function. Similarly, y can be taken real function.
Let

hu:i h(A+&04,q+&6q, p+&6p),
dE &=0
by
Lo = Ao,
(Lp) =(19,)
Lo+Le =1 +p
and
0 _ [
[, (Lo hwdx= ] o (Ly)dx
_ Hi_
= [,# Aw,)dx
_ 0
= [ Ao ix
SO

IQ Apydx = JQ Loy dx
= [ (5a9), + 5 pp)ydx

= [, (-90y, +5 Py )dx
then
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(3
V1= oq =(J' (ﬂl//dx)_l[_(m//xJ
A . oy
5p
by (6) and (7), (13) holds. O

I1l. BARGMANN SYSTEMS AND THE HAMILTON
CANONICAL FORMS

We suppose 4 <4, <...< A4, are the eigenvalues of
the eigenvalue problem (1) and (2), ¢;,y; are the
eigenfunction for 4, (j=1,2,---,N ). Let

A =diag(A, 4, Ay)
d = (¢1’¢2""'¢N)T )

W= ('//1IV/2I---’V/N)T
Now, we consider the Bargmann constraint [16-18]

g=<o,¥ >
(14)
p=-<0,Y¥, >
here
N
<®,¥Y >:Z¢th//j
k=1
namely
HEm
G, = =
q <D,¥ >
<-ANDY, >) |
GJ = . _12011!2'“ (15)
<A'O,V¥Y >

so the eigenvalue problem (1) and (2) are equivalent to
the systems
D, +(<D,Y¥Y>D),-<D,V¥, >D=AD,
{‘PXX—< O¥Y>Y,—-<d, ¥, >¥=-AY
and (16) are called the Bargmann systems for the

eigenvalue problem (1) and (2).
Let

(16)

X

I = IQ ldx (17)
where the Lagrange function | is defined as follows:
| =<®,,¥, >+%<<I>,‘P ><®,¥, >+%<A®X,‘P >

—%<A<1),‘Px >—%<®,‘P ><®,, ¥ >

Proposition 3.1: The Bargmann systems (16) of the
eigenvalue problem (1) and (2) are equivalent to the
Euler-Lagrange equation systems:

o _

0
&12 (18)
ol o
g
Proof: By (17), we have
i:z//.xx—<(l),‘Px >y —<O0,¥Y>y, +Ay,,
5(0] J ] J J

=Q,¥Y, >y ;+<0,¥Y¥ >y, -y,
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-<O¥, >y, -<O,¥Y >y, + Ay,
=0
similarly,
st

5 :_wjxx_(<cD1\P>§0j)x+<CD'\Px >¢jx+ﬁ’¢jx
174

j
:(< CDI\P >¢j)x_<q)’\ljx >¢jx _ﬂ’qojx
—(<D,¥>9)+<DV¥, >0, +10,
=0 0
Now, the Poisson bracket [19] of the real-valued
functions F and H in the symplectic [20] space

2
(w=>)dz; ndy;,R*") is defined as follows:
=
$3F M _OF oH
j=1 k=1 ayjk aij aij ayJ'k

2
:Z(< F;,H,>-<F

7j!

{F,H}=

ij >)

]

Based on the the Euler-Lagrange equation (18), the
Jacobi-Ostrogradsky coordinates can be found, and the
Bargmann systems (16) can be written in the Hamilton
canonical equation systems [21].

Let

2
u=>® u,=% g=><u,v,>-I

j=1
Our aim is to find that the coordinates {v,,v,}and g
satisfy the following Hamilton canonical equations:

: j=12

By directly computing, we have

v, =¥, —%q‘l‘+%A‘I’

v, =0, +lqc1>—lAcD
2 2
1 1
Vi, =E<CI),‘I’X >‘I’+E<CD,‘I’>‘I’X
—1<CDX,‘I’>‘I’—£A‘I’X
2 2

v“=%<©&g>®—%<®wW>®

—1< DY >D, +1Ad)X
2 2

So, if we take the Jacobi-Ostrogradsky coordinates as
follows:

u =
u, =%
w:qg—qu+1AW (19)
2 2
v, =0, +£q<1)—1ACD
2 2
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Then the Bargmann systems (16) are equivalent to the
following Hamilton canonical systems:

]
ov, )
5 j=12
V., =— 9
! ou,

J
where

1 1
g=<v,V, >+5< u,u, ><U,,V, >—E<ﬁ,u2,v2 >
1 1 1
—Z<U,U, ><ULVY, > == <UL, Uy ST+ < AU, >
2 4 2

1 1
+=<U,U, >< Au,u, >—=< AU, u, >
2 4

By (19), the Jacobi-Ostrogradsky coordinates can be
written in the following form:
Y, =,

1 1
=D, +-qD-—AD
yz X 2q 2

o (20)

z, ==Y, +%q‘}’—%/\‘{’

then, we have:

Theorem 3.2: The Bargmann systems (16) of the
eigenvalue problem (1) and (2) are equivalent to the
following Hamilton canonical systems:

,
jx_@zj
j=12
oh
Zy=——
%Y;

where

1 1
h=<y,,z, >_E< YirZ, >< Y,,2, >+E<Ay2,z2 >
1 1 3 1
_E< Vi Z, >< Y, 7, >+Z< Vi1 Z, > +E<Ay1,zl>

—%< AY,, 2, ><Y,,Z, > +%< A%y, z, >

and h=-g.

IV. NONLINEARIZATION OF THE LAX PAIRS

Form (20) and Theorem 3.2, the Bargmann systems
(16) have the equivalence form
Y, = MY
Z,=-M"Z

where

Y
O +—qd-—AD
Y2 g Zq 2

1 1
z ¥ +—q¥--AY
Z:( l]: X 2q 2

Y
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where

1 1
M, =——gE+=A
" 2q 2

1, 1 1 1,
M, ==q’°E-pE-=qE-=Aq+=A
21 4q p 2qx 2 q 4
1 1
MZZ :—EqE"FEA
E=E,,, =diaglL...,1)

Proposition 4.1: The Lax pairs (11) for the (m+1) -
order evolution equation (12) is equivalent to

Y, = MY, ZX:—MTZ; 21)
th =W.Y, Ztm =—WmTZ, m=0,12...,
where
Wm :Z A’n m Amfj
j=0 Cm Dm
1 1
An =-a;, _Equ—l bj—lx +_Abj—1
Bm - bj 1
1 1 1 1
C, = _EbHXX —Eq b, —pb;, +Zqzb;4 _EAqu
1
+ZA2bj71

1 1
D = —aj71 _Equl +5Abj—l

By (14) and (20), we have the Bargmann constraint
q=<Y5Z, >

1 , 1
p=< yl,zl>—§< Vi, Z, > +E<Ay1,z2 >

(22)
a, G
o2, Jioaz
i <Ay, z,>

1 1
G, =<A'y,z >—§< ¥, 2, >< Ay, 7, >+E<A’”yl,z2 >

(23)
where

Substituting the Bargmann constraint (22) and (23) into
(21), the Lax pairs (24) for the (m+1) -order evolution

equation (12) is equivalent to the following forms:
Y, =MY, Z,=-M'Z
Y, =W,Y Z =-W;Z m=012,..

where
M 21 M 22

4

(24)

3OI >l
O Wi
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1 1
Mu :_E< Y2, >+EA
1 3 1 1
MZl:ZA2+Z< Y. 2, >? _E< y1’21>_5< Y212, >

—1<Ayl,z2 >—%A <Y,Z,>

<

1 1
2 :_E< Y, Z, >+EA

1 1

A =Z[—<A"‘1yz,zz >]A™ +5Am”—§<Amyl,z2 >

B, =Y [<Ay,z, S]JA™ T + A"

m
-1

Co =D [<A'ty,, 2 >5]A™! —%(< V4, >+<Y,,2,>) A"

I
N

1 m+ 1 m 1 m+
_Z<yl,zz>A l—Z<Ayl,zz>A +ZA 2

1 m+ 1 m
_Z<A 'y, 2, >_Z<A ¥V, 2, > A

+%< ¥, 2, ><A"y,,z, > +%< ¥, Z, 2 A"

1 1

D, =Y [-<Alty,z, >]A™ +§AM -3 < A"y, z, >
=1

Theorem 4.2: On the Bargmann constraint (22), the
nonlinearized Lax pairs (24) for the (m+1) -order long

wave equation (12) can be written as the following
Hamilton systems [11-12]:

YX :a—h, Zx :_a_hy
oz oY
Y[ Zahmy Zt :_ahm’ m:0!1’2""’
" 0z " oY

(25)
where

h, :1<A’“*1y1,z1 >+1<Am”y2,z2 >+1<A””2y1,z2 >
2 2 4
1 2 m 1 m
+Z< Vi Z, > <Ay, Z, >_Z<A Y, Z, ><AY,,Z, >
—%<A””1yl,z2 ><VY,,2,>+<A"y,,z, >

—%<A”‘y1,zz >(<Y,2,>+<Y,,2, >)

. mil< Ay, z, > <A™y, z, >
al<Aty,z > <A™y, 7>
andh, =h.
Proof: s_zhl: Y, —%< Vi, Z, > yl+%Ay1
=Y,
oh 1

1 1
a_ZZZEAyZ—E< Vi, 2, > y2—5< Y212, > Yy
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1 3 1
_E< Vi 2, > y1+z< Yi: 2, >2 y1+ZA2y1

1 1
—E<Ayl,z2 > y1—5< Vi, Z, > Ay,

= Yox
oh, 1
oz, 2

m+: 1 m m
A 1y1_E<A ¥, Z, > Y, + A"y,

m . . .
+ [< ATy, z, >y~ <A™y, 7, > Y JA™

i=1

=Y,
oh 1 .0 1 ..., 1
=AY, =A™y =<y, z, > A"
oz, 2 ety hT <A %

1 on 1 m
_E<A y1,22>y2—5<y2,22>A Y,

+%< Y, 2, > Amyl+%< ¥, 2, ><A™y,,z, > Y,

_%<Amy1,z2 >Ayl—%< Ay, z, > A"y,

1

<A™,z >y - 1<y1,z > A"y,

m

+Y [<Ahy,, 7, >y -

=

=Y

<Ay,z >y, ]A™)

SO

ydh o
oL ™ 0oZ

Similarly, we have

oh 1 1 3 )
a:EAZl_E< Yor 2y > 22+Z< Y2, >0 7,
1 1 1
+ZA222 <ML >Lo<nan >z

—%<Ay1,z2 > 17, —%< Y, 2, > Az,

=1y
6_h: 2, -—<VY,2,>1, +lAz2
5)’2 2
ZZX
ahm YRR —1<Amyl,z > 7, e ¥, 2, > A"z,
oy, 2 2 2

1 1
R AL > A"z, o <Nz >< A"y, 2,> 2,

1 m+1
-——<A"y,2,>1,

1 5
1 R > A"z,

—£<Amy1,z2 > Az, —1<Ayl,z2 >A"z,
4 4
1 1 .

—5 < Va2 > A"z, +ZAm ’z,

m . . .
+) [< Ay, 7 > 2,-< Ay, 7, > Z]A™

i=1
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_thm

oh
m =£Am“z2 +A"z, D A"y, 7, > 1,

%, 2

+Y [< ATy, 7, > - < Ay, 7> 7, ]A™

=
=_221m
S0
h oh
Z = —a— , Z = — m

ooy T oY

V. LIOUVILLE COMPLETELY INTEGRABLE SYSTEMS

Now we discuss the completely integrability for the
Bargmann systems (25).
Let

1 1
Elﬁl) = Eﬂy Ya Zu +Elk Yar Zak
E(z):—iy 2, (KY,2, >+<VY,,Z, >)+ Y, 2
k 2 1k =2k 1771 2172 2k “1k

1 1 2
_Zﬂkylkzzk <Yz, > +Zylk22k <VYi.Z; >

+%/1k2 Yy Zoy —%ylkz2k <Ay, z,>-T*?
where
Fﬁl’z) _ 1Yk Ya |2k Zy
ek A=A Yo Yarl|Za Za

Proposition 5.1:
) {E" E’}=0{E" E}=0{E E}=0
vj,k=12,...N (26)

i) {dE{", j =1,2,...N;1 =1,2} are the linear independ-

ence.
N

i) H, =3 ——
j=1 J
N

Z E(l) E(Z))

=1
Theorem 5 2: The Bargmann [8] systems (25) are the
completely integrable systems in the Liouville sense. i.e.

(E(l) +E@)= z u "t (27)

m=0,12,. (28)

{h,E}')}=0, 1=1,2;j=12,...,N (29)
{hm,E“)}:O 1=12;j=12,...,N (30)
{h,.h,}=0, mn=0,12,. (31)

{h,h,}=0, m=0,1,2,... (32)

Proof: By (26) and (28), we have
{h,,h.}=0, mn=0,12,...

from (27), then
{H;,H,}=0
using h =h,, we have
{h,EP}=0, 1=1,2j=12..,N
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According to the above Theorem, the Hamiltonian
phase flows g and g are commutable.

Now, we arbitrarily choose an initial value
(¥:(0,0),2,(0,0))" i =12,
let

yi(tm’tn) [P S A y|(010) [ AR A yI(O’O)
2tt)) 0 20,0) 7 99| 2 (0,0)

From (8), (9) and Theorem 4.2, the following theorem
holds.

Theorem 5.3: Suppose (Y,,Y,.2,,2,) is an involutive

solution of the Hamiltonian [11] canonical equation
systems (25), then

q=<V,,2, >
1 . 1
p=< y1,21>—5< Y, Z, > +E<Ay1,z2 >

satisfies the (m+1)-order long-wave equation (12).

Remark: By Theorem 5.2, soliton waves have the
following properties: when two of them interact, the
larger soliton has been shifted to the right of where it
would have been no interaction, and the smaller shifted to
the left by the same time (see Fig. 3) [22-24].

a ‘ t=0
? ‘
. 1.5 ‘
3 f
= , | ||
]
0.5 | | || {
| II | II
o e L. ¥ i .
=20 Qo 20 a0 B0 80 100 120 140

w

Figure3. Interaction of two solitary waves at different times

b 25 .
=275
z [l 1
15 |||'|
- I
3 | |
05 f [ A
I| i
. P
ok am mom #
20 0 20 40 B0 BO 100 12D 140

Figure3. Interaction of two solitary waves at different times
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25 -
C 1 1=50
: |
| |
1
i N f| ||
5 f |
Ll [l 1]
e |I \ | |
L]
2 ~ ]

Figure3. Interaction of two solitary waves at different times

Especially, if (y,,V,.2,,2,) satisfies

where
1
Az E
M = 11
le EA_2<y1!Zz>
_21_ A2+—<y1,22>2 <Yz > <Y 2>

[y

Z&ZEAZ—%<A)’1722 >—<Y,,Z,>
B, =A+<Y,,2,>

C, =< y2,21>—%(< V2 >+<Y,,2,>) A
1 1 1
R AL >A2—Z<Ay1,z2 >A+ZA3
1 1
_Z<A2y1,z2 >—Z<Ayl,z2 > A
1 1 2
+§< Vi, Z, ><AY,, 7, > +Z< Vi Z, > A

Dl:%AZ—%<Ay1,zz>—< ¥, 2, >

then
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q=<¥1.2, >
1 , 1
p=< y1,21>—5< Y, 2, > +E<Ayl,z2 >

satisfies long-wave equation
9 | [2 P, +0, + 2qqxj
p'[1 - pxx + z(qp)x
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