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Abstract—For the purpose of meeting the requirement for
image chromatic information storage, data processm and
transmission in turbulence precise detection, thispaper

presents a new data optimization method of turbulece
image chromatic data based on energy optimizationusface

construction and multi-order Random Sample Consensal
(RANSAC) estimation. Though extracting turbulence image’s
chromatic data in color-space, we compute image [EXs

normal vector, multi-order derivative vector and partial

derivative vector, thus an energy optimization surice of
chromatic data can be structured; subsequently, by
expanding the multi-order RANSAC estimation, the multi-
order RANSAC illustration of the layered chromatic vector
surface can be realized, which contributes to thehcomatic

data optimization of turbulence image in different
dimensional RANSAC estimation levels. Optimization
experiment and performance comparison prove that an
effective and reliable optimization results of turtulence
image chromatic data can be obtained, an efficientnethod

for studying the chromatic data and vector surface of

turbulence image in different dimensional estimatia level is
also presented.

Index Terms—Turbulence image; Energy optimization
surface; Multi-order Random Sample Consensus Estimain
(RANSAC); Optimization of chromatic data

|. INTRODUCTION

With the application of three-dimensional
information recognition in turbulence image andsnamf
collaborative detecting technology, a great amoaht

be processed; simultaneously, many physical festure
such as complicated topography, chromatic vector
stepping and sharply concave-convex, result to the
increment of chromatic information complexity,
aggrandize of data quantity in vector model corsibn
and appearance of new difficulty in information ratge
and data transmission for turbulence image detectio
addition, for the sake of detecting the indispetesab
turbulence chromatic features, we must extract and
examine chromatic vector selectively. Therefore the
mechanism research of chromatic vector optimization
provides an effective approach to the analysis of
turbulence image detection in different angles lendls.
Study of vector optimization for images and surface
has been widely used in many scientific areas fimage
information compressing to surface fitting struaigr
Meng Han and Guangjun Zhong [1], Jun Liu and Qifu
Wang [2] studied on the compressing algorithm foeé-
dimensional (3D) B-spline mesh and compression dase
on local coordinate second-order prediction respeyt
Min Shi, Shengli Xie [3] proposed a prediction-bédse
vector quantization method for image coding; Chunli
Song, Rui Feng [4] proposed a fractal wavelet image
compression approach, obtained a competitive ratio
image compression; Mingli Zhang and Sanyuan Zhaéhg [
proposed a multi-layered geometry image denotatibn

(3D) point cloud surfaces, thus described the surfaceraio

points and edge vectors in different level; Xiuxiang,
Caiming Zhang [6] used the topology complexity-lthse

image chromatic vectors has been emerged and needsmethod to approximate the iso-surface with tridine
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interpolated triangular patch; I. Brilakis [7] hesnducted
the content-based integration of construction sriages
in AEC/FM model based systems, S. Lee and L. Ciighg
achieved the automated recognition of surface tefeg
processing the digital color images, which resuttsa
good experimental result; J. Neto and D. Arditi [8jed
the color information for detecting structural campnts
in digital pictures; S. Sadek and A. Al-Hamadi [10]
proposed a new method for image classification dbase

Email Multi-level neural networks...etc. Despite all thasbove
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mentioned achievements illustrated in referencel(]l~ the concept and necessity of turbulence image ctiom
have already been made in the field of data opétiin, data optimization method. Section Il describes rtlym
these findings can only be principally classifietbisuch analysis which involves structuring of energy ojtiation
areas as image compression or surface approximatiosurface, Multi-order RANSAC estimation. Section Il
with little attention has been paid on optimizatiof  presents the experimental process and resultsioSdst
image chromatic vector; study and research onatléa is evaluates the optimization results and Section Mhales
still in its infancy, few scholars have keep theyes open the paper.
on optimization mechanism of image chromatic vearut
intrinsic rule of image redundant vector. Il. ALGORITHM ANALYSIS

The optimization algorithm of image chromatic
vector involves many subjects such as image promgss A. Sructuring of Energy Optimization Surface
surface constructing and mathematical modeling; We Ejrsily we determine the spatial transition vectors
conceive that it will be a difficult problem forgposing a  patween IC topography control curves and their
suitable vector-optimization method of turbulenceage  eighhorhood surfaces around each image chromatic
chromatic information. The existing relevant algoms  ¢o51,re point by image light stream vector. Forghepose
(image compression, surface approximation, elM)& ot selecting the feature points, many particularteses
accurately provide the criterion of chromatic vecto i 4 symbolizing significance can be chosen as
optimization and the theory of surface model cargion, o omatic feature ones, such as the boundary points
meanwhile, they have certain essential shortages 88 .qntrql points, corner points or chromatic-vectémit
low optimization accuracy and remarkable Compu“”%oints in color continuous-variation area. By retiag
error., for instance, the compressi_on algorithm 3 _energy in a minimum physical deformation as the
mesh presented by ZHONG Guangjun [1] can not realiz.,my ting target, and applying constrained andreate
the complicated topography surface in a micrometate;  |4,4ing for controlling the surface shape, we abfal]:

the vector quantization method used by Min Shid&h ) )
not deal with the difficult problem which requirashuge _“ﬂ aW" +20 NN, +a N, }—ZM(U v)}jud\(l)
2 2 2 ’
AW +2BIN AW,

amount of mathematical calculation and ensuring a >
convergent coding error; a new experiment condubted i i ) T
g g P e WhereW is a surface outlined imand v direction,W,,
W, W,y are the first and second surface derivative

Zhang Mingli and Zhang Sanyuan [3] which concerninqN
about the multi-layered geometry image represeantatf VI . . . . : .
vectors inu, v direction respectively, with\V,, is a mixed

point cloud surfaces imposes a strict limitation e o
regular shapes and continuous vector functionshoge ~derivative vector. o

target surface models. There are still many othedeals _Then surface equation in the form of energy
can be found when we studying those existingc’pt'm'zat'on estimation can be transformed intopBre

optimization algorithms, as demonstrated in [5], &nd estimation, with the details is shown as follows:

[8], and all those proposed traditional methodsehtheir w(u,v) = >V, B 4 (U)B (V) @)
own respective applicable conditions and obvious o

technical limitations as well. Thus further investiion Where V is the control vertex of B-spline surface
needs to be made on this field.

In this paper, we focus on a new data optimizationw(“"’); mu+1mv+1 are the amount of surface control

method of turbulence image chromatic data based offriexessuandsv are the surface power i v direction;
energy optimization surface construction and nuitier B . (W)B(v) aré the B-spline primary estimation, partial
Random Sample ConsensuBANSAC) estimation. As derivative vector of the first and second order
RANSAC is an abbreviation for "Random Sample w, (u) » w,,(u) can be determined by using Eqg. (2). All
Consensus". It is an iterative method to estimat
parameters of a mathematical model from a set O?;P
observed data which contains outliers. It is a non- ,

deterministic algorithm in the sense that it prashia _ Z ViiB'ia (U)B; 4 (V)
reasonable result only with a certain probabilitjth this PRt

probability increasing as more iterated computatiane

ese variables are classified intb and v directions
espectively.
w, (u,v)

allowed [5]. Though extracting turbulence image’s (u,v) = i:;muvi,j Bigw (U)B" 4 (V)

chromatic data in color-space, we compute imagel'six j=0.mv 3)

normal vector, multi-order derivative vector andrtiz w,, (u,v) = z Vi B" 4 (UW)B 4 (V)

derivative vector, thus an energy optimization acef of izomu ' '

chromatic data can be structured; subsequently, by 1=0,mv

expanding the multi-ordeRANSAC estimation, the multi- w,, (u,v) = Z VB4 (u)B Y (v)

orderRANSAC illustration of the layered chromatic vector =om

surface can be realized, which contributes to trernatic . .

data optimization of turbulence image in different Wuw (u,v) = _ ; Vi B (U)B" g (V)
1=0,mu

dimensionaRANSAC estimation levels. j=0.mv
The paper is structured as follows. Section | og8i  \when we substitute Eq. (3) into Eq. (1), then wiaisb
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11 0.0#, s9(1), -0.5, 0.0#)
E= II ZV,] ZVk’, * Part.ClearSelection2(True)
0 01=0,mu k=0,mu
j=0,mv 1=0,mv
a,B' 4 (U)B, ,, (V)B' o, (U)B, (V) B. Multi-order Ransac Estimation
+2a,,B' , (U)B, ,,(V)B, o,(U)B' , (V) @) We assumey(+) to be Random Sample Consensus
(RANSAC) estimation in an orthogonal complement

+ 0B g, (U) B« (V)B, o (U)B', ¢, (V)
+5,B" o (U) B« VB, o (U)B' 4 (V)
+20,B' o (U)B‘j,w (VB (W)B' ¢, (V)

dudv spacew; .

The RANSAC basid#-(Im2e.(inoZ} g, @ir o)
is a standard orthogonal basisW), thus we obtain that

| BB (U)B" 4, (V)B, o (U)B", 4, (V) | [14, 15]:
Thus this energy optimization surface denoted by Eq EH(X,y,2) = (x)8(y)d(2z)
(1) is transferred into a quadratic estimation eftex V 2y 7) = 6(x S5(z
[12, 13] ?3( Y )_5( )Z(y) (z)
It is noteworthy that the method of object energy (x,y,2) =0 (x)8(y)e(z) (5)
analysis has already become a classical meanssimete EN(X,y,2) = 6(x)(Y)e(2)
data processing denoted by different kinds of 5 (x 7) = X 7
mathematical signal or digital image. Adopting oty J 6( Y:2) = e()e(y)e(2)
image-energy methods and establishing energy psiges $°(x,y,2) =9d(x)o(y)o(z)
parameters, such as harmonic energy, chrominarexgyen For it is a multi-order RANSAC estimation, then we

andlfr?quency-domain energy, ar? a}II or:cly usedtfier  gptain
single-feature recognition or signal classificationtwo- _
dimensional image; simultaneously, the traditiosaérgy 51‘ mr (XY, 2) —W,m(x)gi,n()’)é-i,r (Z)|m’ nriz
methods are concentrating their focus on signainbaic 2, —
sampling or frequency-domain discrete transforming. 53"”""‘ (x,Y,2) =8 n(¥9.(¥)3, (Z)|m’n’r Uz
Until recently, there are few researchers applythig Eimnr (XY,2) =0,,(X8 ,,(V)g, (2mnr0Z
method on the establishment of tensor space eqsatioe 4 _
construction of image data and three dimensional $imnr (X,Y,2) =6 (X9, . (V)4, (Z)|m1n1r bz
mathematical models, and the optimization of their fﬂmn,r (X, Y, Z) :Wm(x)qn(y)wr(zxm,n,r my4
chromatic feature surface. Due to the developmént o| ' ' '
computer processing capability on data storage and$ imnr(X,¥,2) =0 (X3 ,(Y)3, (z)|m, nroZz
mathematical problems, surface modeling with energy
ST " Then
optimization method breaks the traditional categofy ) ] )
continuous spatial-domain geometry computation, taied ~ corresponding set for the chromatic vector poinfs o
method provides a new research means for chromatic ~ turbulence image, with the 7-point algorithms of
processing in a turbulence image. elementary image-space matrix, we obtain the watific
Through programming we demonstrate part of theset of three constrain solutiofr,™ F,® F /@ as
constructing algorithm for energy optimization swé by
solidworks development language as follows: G _ ,
skSegment = Part.Manager.Create (0, -0.5, 00#, s S(F, ) ={(m ~ m)TD (7

we  assume D={n) - m)

I<j<rp be a

follows:

-0.5, 0.0#) d2(m',F,"m) + d2(m, FJ(])Tm-) <t3)
skSegment = Part. Manager.Create (s9(0), -0.5,

0.0#, s8(1), -0.05, 0.0#) We let S(F,,) be the maximum unification set, then
skSegment = Part. Manager.Create (s8(1), -0.05~ . . . -

0.0#, s9(1), -0.5, 0.0#) 5FJO is an elementary matrix determined by the minimum
Part.ClearSelection2(True) subset of S(F,;) , thus the RANSAC estimation of

skSeg)ment = Part. Manager.Create (0, -0.5, 0.0#yrbulence image chromatic data can be expressed as
s4, -0.5, 0.0#

2 2
skSegment = Part. Manager.Create (s9(0), -0.5, :U((Frq)l +(Fn])2
0.0#, s10, -0.05, 0.0#) . T o\ 2 T N2
skSegment = Part. Manager.Create (s10, -0.05, ™M =m)SFo|+(F m )" +(F m),")
0.0#, s9(1), -0.5, 0.0#) 2 2 ;T \2 /=T 2
Part.ClearSelection2(True) where (F, )" (Fy ). (F m), " (Fm)),"  are
Else the standard RANSAC factors in orthogonal completmen
skSegment = Part. Manager.Create (0, -0.%, 0.0spacew , , which denotes the corresponding cluster of
s4, -0.5, 0.0#) - :
' ' rbulence image feature points.
skSegment = Part. Manager.Create (s9(0), Oéu ) 'mag ure pol
0.0#, s8(0), -0.05, 0.0#)
skSegment = Part. Manager.Create (s8(0), ~0.05

x(m'Fm)* (8)

©2012 ACADEMY PUBLISHER
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F )2= al I (XY, 2z Part.ClearSelection2(True)
(Fn, )12 2 s ";’”"[frg"”"( Y. 2) Part.SketchManager.InsertSketch(True)
(Fu)2" =2 xyocw B [ (Y, 2] (9) Part.ClearSelection2(True)
(F s, = Xy Onnclbnnr (43, 2) IIl. OPTIMIZATION EXPERIMENT
(FTmll)Zz = Z x,y,xDWdri\,n,r[Er#,n,r (X: y, Z)] )

Where i b el i are the RANSAC We start our analysis from the experiment of
Bmnr + B s G qmr turbulence locus in the confined casing of a stilesy

expanding coefficients in orthogonal complementcepa grinding machining structure, with the specificusture is
W, respectively. shown in the afore-mentioned Fig 1. The three-disimn
With the continuous development of energy surfac®f this confined casing i4mx0.8mx0.6 m, the depth of
multi-order analysis, we can see that a multitudenimer ~ Water-based enhanced fluid for experiment is 0.9ve.
of analysis algorithms, such as the multi-order ey measure the Reynolds numbiee=uh/v is 4500. Thus
decomposing, Mallat frequency-domain layering,the experiment process is shown in detail as fatow
parametric decomposing...etc, have appeared anddglre:

been utilized in many fields. e "N outer fing
Different from other traditional multi-order analys _ : “
methods, this new Multi-ordéRANSAC estimation based H R E TR tﬂ/
algorithm acquires the matrix of corresponding regat 114 HE A R
. ; : 7z
points from surface data which conform to the maxim = /,/ S
consistent set, with this feature it realizes thpamsion SN “

and analysis of chromatic surface data in a mult Inter ring

dimensional space. Thus it is obviously that RANSAC
estimation can eliminate many shortages generatad f
many ordinary surface analysis algorithms, e.c
mismatching, discretization of iterative calculatiesults,
over-deviation of analysis results, etc, which easuhe i
aCC.lIJ_LaCy and I’OrEJUStnesst of ](Sl{[rrl‘ace aTtalyS(ljS pm:;:;sSAC Figure 1 The machining structure of strengthendinig, with the
. e_n we _s ow part o N m!J I-oraer cylindrical space being denoted as the confinedesfar turbulence
estimation which programmed by solidworks developme otion
language as follows:
skSegment = Part.SketchManager.Create (s3 + c(i)p=—
a(i) / 2, 0.0#, 0.0#, s3 + c(i) + a(i) / 2, -a(ip/0.0#, s3 + ki
c(i) +a(i)/ 2, a(i) /2, 0.04, -1)
Part.ClearSelection2(True)
X, =L(0) +...+ L(i -1) +c(i) +a(i)/2
=s3+c(i)+a(i)/2 Y, =-a()2 Z, =0
X, =X +b(i)-a(i)
=s3+c(i)+b(i)-a(i)/2

Y, =-a(i)/2 Z, =0 b T et T

g S e e N A T
skSegment = Part.SketchManager.Create (s3 + @)+ =%~ - - WISSEEEN Ml

2, -a(i) / 2, 0.0#, s3 + (i) + b(i) - a(i) / 2,(%&/ 2, 0.0#) Figure 2 turbulence images
Part.ClearSelection2(True)

X, =s3+c(i) +b(i)-a(i)/2 Y,=0, Z,=0

X, =s3+c(i) +b(i)-a(i)/2 Y,=-a)/2 Z,=0

X, =s3+c(i) +b(i)-a()/2 Y,=a(i)/2 Z,=0

skSegment = Part.SketchManager.Create (s3 + df{j)+

-a(i) /2, 0.0#, 0.0#, s3 + c(i) + b(i) - a(i) /-&(i) / 2, 0.0#,

s3 +c(i) + b(i) - a(i) / 2, a(i) / 2, 0.0#, 1)
Part.ClearSelection2(True)

X, =s3+c(i) +b()-a@)2 , Y,=a()2 , Z,=0

X, =X, = (b(i)-a(i))=s3+c(i) + a(i)/2,

Y,=a(i)/2, Z,=0

skSegment = Part.SketchManager.Create (s3 + d&(f))+

. . . . . Figure 3 Distribution of Figure 4 Structuring of meshing grid
a(i) /2, a(i) / 2, 0.0#, s3 + c(i) + a(i) / 2, (2, 0.0#) turbulence chromatic vector in energy optimization surface

©2012 ACADEMY PUBLISHER
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Firstly we let a roller using for strengthen gringibe
auto-rotating at the high speed of 450r/min,
simultaneously, it also revolving around its owmtal
axis driven by the planetary gears at 45r/min ie th
confined space. Driven by centrifugal force andviya
force the water-base enhanced fluid is stirred aniigh-
speed turbulence can be obtained.

We usedDMIRM microscopic system manufactured

by German LEICA to capture three-dimensional locus

information from given turbulence by digital micro-
images. The system consists of three essential coems:

a precise CCD head, a PC equipped with an image
triangulation processing

processing board, and 3D
software. The CCD head consists of a light soumeé a

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

i ik
W, =N XNG gy S|P G 1
P; Q3 I3
rl|r
= ql ' ! ' pl ! pl q2 = (V11V2!V3)
d; I3 |fs Psf|Ps O
i i k
Wiy =Ny XNy =[Pz A T,
P; O; I3
Oz Tl Pof P2 O
= ) , = (uvy,uv,,uv;)
|:q3 f31fs P3| |Ps qa} v
Then we compute the second-order partial

three CCD cameras (4088x1288 pixels). For the “ghgerivative vectors in three directions as follows:

source is a visible coaxial red LER2QV. 20W, 700 nm)
combined with a diffraction grating that generagefixed
number of stripes, it can also be called micro-imgg
planes, which enable the system to acquire 450p068s
in a scene with a single image frame.

The
triangulation between the binary digital images ahd
calibrated image plane locations. The CCD is alle t

acquire image pixel data in 0.01 ms (enabling image

acquisition from a continuously moving manipulataryd

processes image data in 10 ms, and has a measdremen

standard deviation of 1/20000 of the field of viewhe
CCD image head is attached tdDMIRM 3-axis direct-
drive configuration manipulator for self-adaptiveaging,
thus it can eliminate
inhomogeneous light, keep a rapid reaction andlestab
performance simultaneously. On the other hand,ttier

purpose of improving the detection precision ofgédr

turbulence to the micron scale (x®0um), we adopt 200
magnifying power in micro-image shooting and legitil

image has the size of 4088x1288 with 256 gray lev

(0~255), with using the development language ofn =[Pu G fi] -

range measurements are computed using

image distortion caused by

W, = (Uuy, uu,, ug) oy =W, -W,,

= (U1,U21U3)(i+],j) '(u11U21u3)(i,j)
W, = (uulluuzluus)(iﬂ,j) =W,;-W,

= (Uy,U,,Uy) (+2,j) ~ (U, Uy, Uy) (+L])

Wi = (UU, Ul UG ) 4y iy =W, ey =W
= (ul'u2'u3)(i+k+Lj) - (u11u2'u3)(i+k,j)
W, = (Wl’WZ'WS)(i,j) =W, —W,,

= (V},V, Va) (.j+) ~ (Vl’VZ'VS)(i,j)
W,z = (W, Wy, W) iy = Wz =W,

= (Vy, Vo V,) Q.j+2 = (V3 V5 V) )

W,

W, = (Wl'WZ'WS)(i,jH) =W,y —W,

= (V,V,Vs) G+ (Vl’VZ’VB)(i,jH)

With part of the obtained chromatic vector resints
the positions of several key pixels are shown ibl&d,

etlhen we can obtain their chromatic normal vector

their first-order and second-order partial

Matlab7.0 and Solidworks to program the kernel analysisderivative vectors W =(u,,u,,u;) » W, =U,U,U)

and computation module. Other experiment conditines
listed as follows: Celeron 2.26 microprocessor, 56

W =W, V5, V), W, =V, V5,0V . @nd their mixed partial

memory, operation system is Windows XP. With thederivative vectorW,, = (uv,,uv,,uv,) by the above-
obtained turbulence details shown in Fig 2, by RGBmnentioned equation.

chromatic spectrum we denote pixel color by three

components of primary colott (i, j) =[R, ;.G ;. B j,]-
Wherei = 12...,m, j = 12...,n, with f(j, j) denotes
the pixel locates in the coordinate position(pfj), the
coordinate set OtRa,j),G(i,j),B(i,j)] denotes the RGB
primary color vectors off (i, ). After obtaining the

chromatic micro-image of turbulence detail, we agtrthe
distribution of turbulence chromatic vector shown Fig
3, then compute the tangent vectogvs ,W,,W,, of the

given pixelng;, in three dimensional directions as follows:

i ]k
W, =65 XNy [P0 G 1
p, 9, 1,
G hih PP 9
= ’ ’ = (u ,U ,U)
|:Q2 Ll Pl {p, qj nee

©2012 ACADEMY PUBLISHER

With Eq. (1) ~ Eq. (4) we can structure the energy
optimization surface by Turbulence image RGB chriiecna
vectors. Firstly we establish the control grid of energy
optimization surface in the direction of u, v a®wh in

Fig 4, then energy optimization surface can becstined

on this grid, with the constructed result illuséchtby Fig

5. In this figure, we can see thatandy axes in the
horizontal plane denote the area size of targetgéma
block, andz axis in the vertical direction of these figures
demonstrates the logical height of energy optindrat
surface, which reflects the structured turbulence
topography in logical sense, and demonstrates rtez-i
relationships between different parts of all these
turbulence features in three dimensional directassvell.

It can be seen that for the purpose of reflecti@BR
chromatic vectors without any distortion, a rather
complicated control grid in u and v directions miogt
established in advance, and a miscellaneous cotignaa
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process of envelope which fitting on the targetfeme
should be achieved simultaneously, which resultsho
emergence of a tremendous computing amount ar
storage space of computer. ‘
For solving the above-mentioned problems, we":
expanding the multi-order scaling RANSAC estimation )%
the fitted topography surface with Eq. (5) ~ Eq), thus
illustrating the obtained RGB chromatic vector aggs in
different estimation level in Fig 6. Through intezfing
the optimization process of image chromatic vectata
by Table Il, it can be seen that the topography merity
of RGB chromatic vector surface degrades graduailly
the increasing order of RANSAC expanding level from
the first order to the fourth one: the amount offate i
control points decreases gradually while chromegictor v
array keeps on a stable state of sparsely-locate
'nformatlor_] d'SF”bUt'on' When regard'”g to th_e roen RANSAC in the first order RANSAC in the second order
control point with a floating coordinate value,ciéan be i
seen that the optimization error decreases wittefdvits
after data quantization has been made. On the bta,
after expanding the multi-order scaling RANSAC(
estimation and quantifying the control vertex arrap

RANSAC in the third order RANSAC in the fourth order
Figure 6 Multi-order RANSAC estimations of turbuéenimage
chromatic data

obvious increment in the probability of identicahtd
value can be made, on this basis we can realize the
optimization of image chromatic vector by the non-
homogeneity and limiting tendency of surface vector

—=— AN coding —— fracta conpression
entropy codng chrometicity sanpling
—%— ShanmonFano coding —e— Newmethod

8.00%
1 7.00%
1 6000
1 5.00%
1 400%
1 300
1 200%
1 L00%

' ' ' ' 0.0
Figure 5 Energy optimization surface of chromatiecter in . . .
turbulence image. With x and y axes in the horiabplane denote first second third fourth fifth

the area size of target block, and z axis in tHiggges show the rder rder rder rder rder
logical height of energy optimization surface. orde orde © _e . orde orde
(a) Distortion rate

©2012 ACADEMY PUBLISHER
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50 160000

1 20 4 140000

4 120000

4 30 2- 4 100000

4 80000

120 1{ 60000

110 -4 40000

4 20000

1 1 1 1 0 1 1 1 1 0
first secong third fourth fifth firstsecondthirdfourth fifth
order order order order order order order order order order
(b) Optimization space ratio (c) Algorithm complexity
7.00%0 100.00%

o o —o— 9

N~ x| 600k K A—= 1 80.00%
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Figure 7 Performance comparisons with other typizethods of image vector optimization

distribution probability, and obtain a more-obvibus addresses the problem of determining the minimadwarn
optimization result as well. of image entropy (or image information) that shoblel
communicated over a channel, so that the inputasigan

be approximately reconstructed at the output signal
IV. EVALUATION OFOPTIMIZATION RESULTS without exceeding a given information distortiorveé

For th ke of d validit toptimization space ratio denotes the comparatiu® ra
or the sake of accuracy and vaildity, we assess IQbetween the optimized information amount space with

optimization perf_ormance of tur.bule.nce Image chﬂMna those information amount to be optimized yet, bis th
vector by ;eleptmg such foI.Iowmg 'F‘dexes as dth index can we learn more about the progress situaiio
rate, optimization space ratio, algorithm complgxibit optimization experiment; algorithm complexity foegson

error rate, similarity rate, image energy, peaknaigto e ; 4 -
. .' ’ ! el . classifying computational problems according toirthe
noise ratio (PSNR), etc. where distortion rate ey the inherent difficulty, and relating those classegaah other;

theoretical foundations for lossy data compressiin;
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Table |
Part of the key points’ chromatic vectors
No f(l!J) n(><,y) Wu Wv Wuu WW Wuv
1 (164,478) (-24,55,89) (45,77,-102) (33,85,-25) 34(53,-25) (24,18,21) (43,25,-33)
2 (559,342) (45,67-22) (35,42,660 (64,32,17) (1239 (-23,40,17) (19,-33,24)
3 (684,227) (35,55,-35) (-33,29,57) (-22,-35,76) 22(35,-64) (22,-34,-6) (22,31,25)
4 (388,449) (-24,56,-47) (55,40,22) (-35,52,-25) 4,{22,43) (33,-24,46) (-13,24,-5)
Table Il
Optimization Process of chromatic vector of tudmge image
Number of surface control  Data amount of control Effect of vector
Surface : . S
points points(byte) optimization
Before optimization 39040%26880 1025k 4589k
First order RANSAC expansion 19520x13440 330k 1980k
Second order RANSAC expansion 9760%6720 267k 976k
Third order RANSAC expansion 4880%3360 134k 478k
Fourth order RANSAC expansion 2440x1680 64k 246k

bit error rate and similarity rate are two indexeBecting  "fractal codes" which are used to recreate the @edo
the number of received bits of an image data streaena image; entropy encoding is a lossless data comipress
communication channel that have been altered due wcheme that is independent of the specific chanatites
noise, interference, distortion or bit synchronimaterrors, of the medium, it creates and assigns a uniquexgireie
and it is divided by the total number of transfdrigits code to each unique symbol that occurs in the jnput
during a studied time interval as well; image emgerg chromaticity = sampling realize the information
guantitative measures the strength caused by eiffer compression by extracting those key chromaticignal
pixel element in one image plane in its light scalbich from a huge amount of image data, and then
helps us to establish a new quantitative indesstitating  reconstructing a simplified image signal plane eetihg
image characteristics; peak signal to noise r&®NR) is those important information by a limited amount of
an theoretical term for the number ratio betweea thchromatic element data as predetermined; Shannoo-Fa
maximum possible power of an image signal and theoding is a technique for constructing a prefix €dsed
power of corrupting noise that affects the fidelaf/ its on a set of symbols and their probabilities. In rBiwan—
representation. Because many image signals hawrya v Fano coding, the symbols are arranged in order frasat
wide dynamic range, PSNR is usually expressedringe probable stage to least probable one, and thedetivinto
of the logarithmic decibel scale, it also most camnfy  two sets whose total probabilities are as clospasible
used as a measure of quality of reconstructionosk | to being equal as required [13-15].
image compression codecs in mathematical sensg3JL1- During the evaluation process, we expand the
Simultaneously, for the purpose of performanceturbulence image chromatic vector from the 1sthio 4th
comparison several typical data optimization meshodorder in an identical external technical environinavith
were also be selected in this paper, such as LZdihgp 40 times of iterated computation for the optimiaati
fractal compression, entropy coding, chromaticityperformance index in each order level, the obtanesdlts
sampling, Shannon-Fano coding...... and so on. Wherand data comparisons of image optimization are shiow
LZW coding is an entropy encoding algorithm used fo Table 1ll after data de-noising, equalizing and
lossless data compression which refers to the dise o normalizing, and Fig 7 illustrates the performance
variable-length code table for encoding a souramb®} comparison between this new algorithm and otheicép
where the variable-length code table has beenektiiva image data optimization methods, with each metteod i
particular way based on the estimated probabilify odenoted by one colored-line.
occurrence for each possible value of the sourcebsy; From these figures we can see that with the
Fractal compression is a lossy compression metlood fdecrement of expanding order, the optimization spac
digital images based on fractals. It is best suifed ratio of the new method keeps in a relative-stdélel,
textures and natural images, relying on the faat ffarts which contributes to an eligible optimized imageult
of an image often resemble other parts of the Samge, Simultaneously, from the view of chromatic vector
it also convert these parts into mathematical daféed variation principle and developing tendency of eliént

Table Il
Effect comparison of chromatic data encoding dfulence image

distortion optimization algorithm bit error similarity Image

Method rate space ratio complexity rate rate energy PSNR

New method 2% 1:44.1 O(3+2logn) 3.1% 89% 45690 0.9
LZW coding 3.3% 1:35.2 0O(3lvg4n+3n) 4.4% 88. 7% 55493 0.8
fractal compression 2.9% 1:42.1 ofear’+1) 5.1% 84% 27855 0.8
entropy coding 4% 1:37.8 O(8rtlogn) 4.1% 90% 34891 0.7
chromaticity sampling 3.7% 1:45 Grdogr) 3.4% 84% 44783 0.6
Shannon-Fano coding 3.3% 1:46 Clagn+6ri) 4.4% 74% 55042 0.8
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colored-line, we can concluded that this new atbaomi
maintains a stable-degrading tendency in such atialu
indexes as algorithm complexity, bit error rate, dairor
rate etc, while it keeps an excellent performanne i
similarity rate, image energy, peak signal to naiggo
(PSNR), which further provides a direct support foe
fact that this new algorithm not only has an appare
optimization superiority over other traditional thetls,
but also keeps a close gap with them in such irglese
optimization space ratio, distortion rate, simikarrate,
image energy, peak signal to noise ratio (PSNRyvelt
Thus a clear and stable optimized illustration wiage
chromatic information can be ensured for the folloyv
Turbulence image detection.

(1]
(2]
(3]

(4]

V. CONCLUSIONS

This paper sought to establish a new data optiiizat [5]
method of turbulence image chromatic data based on
energy optimization surface construction and moidtler
Random Sample ConsensusRANSAC) estimation.
Following major contributions are included in ouonk to
meet the requirements: We extract the turbulencagém
chromatic data in color-space, and then computeitked
normal vector, multi-order derivative vector andrtjzéd
derivative vector, etc, which results to the camgion of  [7]
energy optimization surface of image chromatic data
Through  expanding multi-dimensional RANSAC
estimation, the multi-dimension&ANSAC illustration of
layered chromatic vector surface can be ensured. W,
assess the optimization performance by mathematic«lﬁ]
indexes with several typical methods; through asialgnd
comparison it can be further proved that a clear stable
optimization illustration of turbulence image chratic  [9]
data is obtained by this new method. These prosesse
could be successive stages of computational expetim
with the second operating on the output of the.fifdius
the requirement of chromatic vector optimizatiom dze
met, and an efficient method for extracting the toec

(6]

surface features and chromatic information in défe 11

estimation level can also be provided. Optimization
experiment and performance comparison prove that an
effective and stable optimization result of imageoenatic

information can be obtained by this new method,

meanwhile a superior performance in data optimizati [12] Liang Zhongwei,

can also be ensured, thus it provides a new idedhto
research in turbulence image chromatic information
optimization, storage and transmission.

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

REFERENCES

HAN Meng, ZHONG Guangjun. “A Compression
Algorithm for 3D Mesh to Use in Network”Computer
Technology and Development, Vol. 17, No. 12, pp. 8-11,
2007.

Liu Jun Wang Qifu Chen Liping. “Compression of B-ispl
Based on Local Coordinate Second- order Prediction”.
China Mechanical Engineering, Vol.19 No.3, pp.304-307,
2008.

Min Shi, Shengli Xie. “A prediction based vector
gquantization method for image codinglournal of South
China University of Technology: Natural Science Edition,
Vol.34 No.1, pp.18-23, 2006.

Chun-lin Song, Rui Feng, Fu-giang Liu. “A novel fralc
wavelet image compression approacBdurnal of China
University of Mining & Technology: English edition, Vol.

17, No.3, pp.121-125, 2007.

Zhang Mingli, Zhang Sanyuan, Ye Xiuzi. “Multi-layst
Geometry Image Representation of Point Cloud Surfaces
Journal of Computer- aided Design and Computer
Graphics, Vol. 16, No.12, pp.1662-1667, 2009.

Liang Xiuxia, Zhang Caiming, Liu Yi. “A Topology
Complexity Based Method to Approximate Isosurfacehwi
Trilinear Interpolated Triangular Patch”Journal of
Computer Research and Development, Vol. 43, No.3, pp.
828-535, 2006.

I. Brilakis, Content Based Integration of Constructiite
Images in AEC/FM Model Based Systems, Ph.D.
Dissertation, Civil and Environmental Engineering,
University of lllinois, Urbana-Champaign, IL, 365ges,
2005.

S. Lee, L. Chang, P. Chen, “Automated recognition of
surface defects using digital color image procepsin
Automation in Construction. Vol.15, No.4, pp.540-549,
2006.

J. Neto, D. Arditi, “Using colors to detect struecth
components in digital picturesComputer Aided Civil and
Infrastructure Engineering. Vol. 17, No.5, pp.61-76, 2002.

[10] S. Sadek, A. Al Hamadi, B. Michaelis, U. Sayed, “éwn

method for image classification based on multi-leveural
networks”, World Academy of Science, Engineering and
Technology, Vol. 57, No.1, pp.139-142, 2009.

Yang Chun-ling, Kuang Kai-zhi, Chen Guan-hao.
“Gradient-based structural similarity for image bfya
assessment”. Journal of South China University of
Technology: Natural Science Edition, Vol. 34, No.9, pp.22-
25, 2008.

Zhang Chunliang, Ye Bangyan.
“Turbulence image Noise Reverse Determination Based
Three-dimensional Information Energy Optimization
Modeling and BP Network”.Mechanical Science and
Technology for Aerospace Engineering, Vol. 29, No.4, pp.
428-434, 2010.

[13] ZHU Hong, Digital image processing. Beijing: Press of

ACKNOWLEDGMENT

The author acknowledge the funding of National
Natural Science Foundation of China (50875089),
National Natural Science Foundation of
(50875052), Foundation for Distinguished Young Thide
in Higher Education of Guangdong, China (LYM09110),
and the Research Project of Guangzhou University
(10A068) and Xinmiao Project of Guangzhou Universit
(LZW2-2091) are also appreciated for supporting the
work.

©2012 ACADEMY PUBLISHER

Science, 2005 pp. 246 - 267.

[14] ZHENG NanningComputer vision and pattern recognition.

Beijing: Press of National Defense Industry, 1998186-
157.

China[15] JIA Yunde.Machine vision. Beijing: Press of Science, 2003,

pp. 75-84.



JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1795

Zhongwei Liang (1979.1~). He is a Machinery (ACM).
Ph D and Associate Professdie Email:lzwstalin@126.com OR lIzwstalin@163.com
received the M.S. and Ph.D. degree in  Corresponding Address:
mechanical engineering in 2005 and 2008, (1) School of Mechanical & Automotive Engineerirgputh
from South China University of China University of Technology. 510640, GuangzhouR.P
Technology, Guangzhou, China. China; (2) School of mechanical and electrical eegiing at
Currently, he is an Associate Professor Guangzhou University, 510006, Guangzhou, P.R. China
and Master's Supervisor of School of

mechanical and electrical engineering at
Guangzhou University, P.R. China. His Bangyan Ye.(1949-) Ph D. Professor. His major research

major research interests include imageinterests include advanced manufacturing technolGgynputer
processing, reverse engineering, turbulence asalgad free  science and Engineering.
curves and surfaces reconstruction, etc. He is wthorn and
coauthor of more than 20 international journal papend 20
papers published in proceedings of internationaferences. Dr. Xiaochu Liu. (1964-) Ph D. ProfessoHis major research
Liang is a senior member of Chinese Mechanical Eaging  interests include advanced manufacturing technolagiulence
Society (CMES), Chinese Institute of Electronics (GIEphina  modeling and strengthen grinding.
Computer Federation (CCF) and Association for Computin

©2012 ACADEMY PUBLISHER





