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Abstract—For the purpose of meeting the requirement for 
image chromatic information storage, data processing and 
transmission in turbulence precise detection, this paper 
presents a new data optimization method of turbulence 
image chromatic data based on energy optimization surface 
construction and multi-order Random Sample Consensus 
(RANSAC) estimation. Though extracting turbulence image’s 
chromatic data in color-space, we compute image pixel’s 
normal vector, multi-order derivative vector and partial 
derivative vector, thus an energy optimization surface of 
chromatic data can be structured; subsequently, by 
expanding the multi-order RANSAC estimation, the multi-
order RANSAC illustration of the layered chromatic vector 
surface can be realized, which contributes to the chromatic 
data optimization of turbulence image in different 
dimensional RANSAC estimation levels. Optimization 
experiment and performance comparison prove that an 
effective and reliable optimization results of turbulence 
image chromatic data can be obtained, an efficient method 
for studying the chromatic data and vector surface of 
turbulence image in different dimensional estimation level is 
also presented. 
 
Index Terms—Turbulence image; Energy optimization 
surface; Multi-order Random Sample Consensus Estimation 
(RANSAC); Optimization of chromatic data 

I.  INTRODUCTION 

With the application of three-dimensional (3D) 
information recognition in turbulence image and those of 
collaborative detecting technology, a great amount of 
image chromatic vectors has been emerged and needs to 

be processed; simultaneously, many physical features, 
such as complicated topography, chromatic vector 
stepping and sharply concave-convex, result to the 
increment of chromatic information complexity, 
aggrandize of data quantity in vector model construction 
and appearance of new difficulty in information storage 
and data transmission for turbulence image detection; in 
addition, for the sake of detecting the indispensable 
turbulence chromatic features, we must extract and 
examine chromatic vector selectively. Therefore the 
mechanism research of chromatic vector optimization 
provides an effective approach to the analysis of 
turbulence image detection in different angles and levels. 

Study of vector optimization for images and surfaces 
has been widely used in many scientific areas from image 
information compressing to surface fitting structuring. 
Meng Han and Guangjun Zhong [1], Jun Liu and Qifu 
Wang [2] studied on the compressing algorithm for three-
dimensional (3D) B-spline mesh and compression based 
on local coordinate second-order prediction respectively; 
Min Shi, Shengli Xie [3] proposed a prediction-based 
vector quantization method for image coding; Chunlin 
Song, Rui Feng [4] proposed a fractal wavelet image 
compression approach, obtained a competitive ratio for 
image compression; Mingli Zhang and Sanyuan Zhang [5] 
proposed a multi-layered geometry image denotation of 
point cloud surfaces, thus described the surface control 
points and edge vectors in different level; Xiuxia Liang, 
Caiming Zhang [6] used the topology complexity-based 
method to approximate the iso-surface with tri-linear 
interpolated triangular patch; I. Brilakis [7] has conducted 
the content-based integration of construction site images 
in AEC/FM model based systems, S. Lee and L. Chang [8] 
achieved the automated recognition of surface defects by 
processing the digital color images, which results to a 
good experimental result; J. Neto and D. Arditi [9] used 
the color information for detecting structural components 
in digital pictures; S. Sadek and A. Al-Hamadi [10] 
proposed a new method for image classification based on 
multi-level neural networks...etc. Despite all those above 
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mentioned achievements illustrated in reference [1~10] 
have already been made in the field of data optimization, 
these findings can only be principally classified into such 
areas as image compression or surface approximation, 
with little attention has been paid on optimization of 
image chromatic vector; study and research on this area is 
still in its infancy, few scholars have keep their eyes open 
on optimization mechanism of image chromatic vector and 
intrinsic rule of image redundant vector.  

The optimization algorithm of image chromatic 
vector involves many subjects such as image processing, 
surface constructing and mathematical modeling; we 
conceive that it will be a difficult problem for proposing a 
suitable vector-optimization method of turbulence image 
chromatic information. The existing relevant algorithms 
(image compression, surface approximation, etc.) can not 
accurately provide the criterion of chromatic vector 
optimization and the theory of surface model construction, 
meanwhile, they have certain essential shortages such as 
low optimization accuracy and remarkable computing 
error., for instance, the compression algorithm for 3D 
mesh presented by ZHONG Guangjun [1] can not realize 
the complicated topography surface in a micrometer scale; 
the vector quantization method used by Min Shi [2] can 
not deal with the difficult problem which requires a huge 
amount of mathematical calculation and ensuring a 
convergent coding error; a new experiment conducted by 
Zhang Mingli and Zhang Sanyuan [3] which concerning 
about the multi-layered geometry image representation of 
point cloud surfaces imposes a strict limitation on the 
regular shapes and continuous vector functions of those 
target surface models. There are still many other defects 
can be found when we studying those existing 
optimization algorithms, as demonstrated in [5], [7] and 
[8], and all those proposed traditional methods have their 
own respective applicable conditions and obvious 
technical limitations as well. Thus further investigation 
needs to be made on this field. 

In this paper, we focus on a new data optimization 
method of turbulence image chromatic data based on 
energy optimization surface construction and multi-order 
Random Sample Consensus (RANSAC) estimation. As 
RANSAC is an abbreviation for "Random Sample 
Consensus". It is an iterative method to estimate 
parameters of a mathematical model from a set of 
observed data which contains outliers. It is a non-
deterministic algorithm in the sense that it produces a 
reasonable result only with a certain probability, with this 
probability increasing as more iterated computations are 
allowed [5]. Though extracting turbulence image’s 
chromatic data in color-space, we compute image pixel’s 
normal vector, multi-order derivative vector and partial 
derivative vector, thus an energy optimization surface of 
chromatic data can be structured; subsequently, by 
expanding the multi-order RANSAC estimation, the multi-
order RANSAC illustration of the layered chromatic vector 
surface can be realized, which contributes to the chromatic 
data optimization of turbulence image in different 
dimensional RANSAC estimation levels. 

The paper is structured as follows. Section I outlines 

the concept and necessity of turbulence image chromatic 
data optimization method. Section II describes algorithm 
analysis which involves structuring of energy optimization 
surface, Multi-order RANSAC estimation. Section III 
presents the experimental process and results. Section IV 
evaluates the optimization results and Section V concludes 
the paper. 

II.  ALGORITHM ANALYSIS 

A. Structuring of Energy Optimization Surface 

Firstly we determine the spatial transition vectors 
between IC topography control curves and their 
neighborhood surfaces around each image chromatic 
feature point by image light stream vector. For the purpose 
of selecting the feature points, many particular vertexes 
with a symbolizing significance can be chosen as 
chromatic feature ones, such as the boundary points, 
control points, corner points or chromatic-vector limit 
points in color continuous-variation area. By regarding 
energy in a minimum physical deformation as the 
computing target, and applying constrained and external 
loading for controlling the surface shape, we obtain [11]: 
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Where W is a surface outlined in u and v direction, Wu, 
Wv, Wuu, Wvv are the first and second surface derivative 
vectors in u, v direction respectively, with Wuv is a mixed 
derivative vector. 

Then surface equation in the form of energy 
optimization estimation can be transformed into B-spline 
estimation, with the details is shown as follows: 

∑
=

=

=
mvj

mui
svjsuiji vBuBVvuw

,0
,0

,,, )()(),(          (2) 

Where V is the control vertex of B-spline surface 
),( vuw ; 1,1 ++ mvmu  are the amount of surface control 

vertexes; su and sv are the surface power in u, v direction; 
)()( ,, vBuB svjsui
 are the B-spline primary estimation, partial 

derivative vector of the first and second order 
)(uwu

, )(uwuu
 can be determined by using Eq. (2). All 

these variables are classified into u and v directions 
respectively. 

∑

∑

∑

∑

∑

=
=

=
=

=
=

=
=

=
=

=

=

=

=

=

mvj
mui

svjsuijiuv

mvj
mui

svjsuijivv

mvj
mui

svjsuijiuu

mvj
mui

svjsuijiv

mvj
mui

svjsuijiu

vBuBVvuw

vBuBVvuw

vBuBVvuw

vBuBVvuw

vBuBVvuw

,0
,0

,,,

,0
,0

,,,

,0
,0

,,,

,0
,0

,,,

,0
,0

,,,

)(')('),(

)('')(),(

)()(''),(

)(')(),(

)()('),(

 (3) 

When we substitute Eq. (3) into Eq. (1), then we obtain: 
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Thus this energy optimization surface denoted by Eq. 
(1) is transferred into a quadratic estimation of vertex V 
[12, 13]. 

It is noteworthy that the method of object energy 
analysis has already become a classical means for discrete 
data processing denoted by different kinds of 
mathematical signal or digital image. Adopting ordinary 
image-energy methods and establishing energy processing 
parameters, such as harmonic energy, chrominance energy 
and frequency-domain energy, are all only used for the 
single-feature recognition or signal classification in two-
dimensional image; simultaneously, the traditional energy 
methods are concentrating their focus on signal harmonic 
sampling or frequency-domain discrete transforming. 
Until recently, there are few researchers applying this 
method on the establishment of tensor space equations, the 
construction of image data and three dimensional 
mathematical models, and the optimization of their 
chromatic feature surface. Due to the development of 
computer processing capability on data storage and 
mathematical problems, surface modeling with energy 
optimization method breaks the traditional category of 
continuous spatial-domain geometry computation, and this 
method provides a new research means for chromatic data 
processing in a turbulence image. 

Through programming we demonstrate part of the 
constructing algorithm for energy optimization surface by 
solidworks development language as follows: 

   skSegment = Part.Manager.Create (0, -0.5, 0.0#, s4, 
-0.5, 0.0#) 

   skSegment = Part. Manager.Create (s9(0), -0.5, 
0.0#, s8(1), -0.05, 0.0#) 

   skSegment = Part. Manager.Create (s8(1), -0.05, 
0.0#, s9(1), -0.5, 0.0#) 

   Part.ClearSelection2(True) 
    skSegment = Part. Manager.Create (0, -0.5, 0.0#, 

s4, -0.5, 0.0#) 
    skSegment = Part. Manager.Create (s9(0), -0.5, 

0.0#, s10, -0.05, 0.0#) 
     skSegment = Part. Manager.Create (s10, -0.05, 

0.0#, s9(1), -0.5, 0.0#) 
      Part.ClearSelection2(True) 

Else 
      skSegment = Part. Manager.Create (0, -0.5, 0.0#, 

s4, -0.5, 0.0#) 
      skSegment = Part. Manager.Create (s9(0), -0.5, 

0.0#, s8(0), -0.05, 0.0#) 
      skSegment = Part. Manager.Create (s8(0), -0.05, 

0.0#, s9(1), -0.5, 0.0#) 
      Part.ClearSelection2(True) 
 

B．Multi-order Ransac Estimation 

We assume )(•φ  to be Random Sample Consensus 

(RANSAC) estimation in an orthogonal complement 
space 

iW . 

The RANSAC basis 
{ } { } { }ZrzZnyZmx rinimi ∈∈∈ )(,)(,)( ,,, φφφ

 
is a standard orthogonal basis in Wi, thus we obtain that 
[14, 15]: 
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For it is a multi-order RANSAC estimation, then we 
obtain： 
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     Then we assume }1'{ njmmD jj ≤≤↔=  be a 

corresponding set for the chromatic vector points of 
turbulence image, with the 7-point algorithms of 
elementary image-space matrix, we obtain the unification 

set of three constrain solution )3()2()1( ,, JJJ FFF  as 

follows: 
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We let )( 0JFS  be the maximum unification set, then 

0JF  is an elementary matrix determined by the minimum 

subset of )( 0JFS , thus the RANSAC estimation of 

turbulence image chromatic data can be expressed as: 
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Where 
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mm FFFF  are 

the standard RANSAC factors in orthogonal complement 
space 

iW , which denotes the corresponding cluster of 

turbulence image feature points. 
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Where 
j

rnma ,, , j
rnmb ,, , j

rnmc ,, ,
j

rnmd ,,  are the RANSAC 

expanding coefficients in orthogonal complement space 

iW  respectively. 

With the continuous development of energy surface 
multi-order analysis, we can see that a multitude number 
of analysis algorithms, such as the multi-order wavelet 
decomposing, Mallat frequency-domain layering, 
parametric decomposing…etc, have appeared and already 
been utilized in many fields.  

Different from other traditional multi-order analysis 
methods, this new Multi-order RANSAC estimation based 
algorithm acquires the matrix of corresponding restraint 
points from surface data which conform to the maximum 
consistent set, with this feature it realizes the expansion 
and analysis of chromatic surface data in a multi- 
dimensional space. Thus it is obviously that RANSAC 
estimation can eliminate many shortages generated from 
many ordinary surface analysis algorithms, e.g. 
mismatching, discretization of iterative calculation results, 
over-deviation of analysis results, etc, which ensures the 
accuracy and robustness of surface analysis processes. 

Then we show part of the multi-order RANSAC 
estimation which programmed by solidworks development 
language as follows: 

skSegment = Part.SketchManager.Create (s3 + c(i) + 
a(i) / 2, 0.0#, 0.0#, s3 + c(i) + a(i) / 2, -a(i) / 2, 0.0#, s3 + 
c(i) + a(i) / 2, a(i) / 2, 0.0#, -1) 

           Part.ClearSelection2(True) 

0-a(i)/2a(i)/2+c(i)+s3
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skSegment = Part.SketchManager.Create (s3 + c(i) + a(i) / 
2, -a(i) / 2, 0.0#, s3 + c(i) + b(i) - a(i) / 2, -a(i) / 2, 0.0#) 

           Part.ClearSelection2(True) 

00a(i)/2-b(i)+c(i)+s3 111 === ZYX ，，  

02 / -a(i)a(i)/2-b(i)+c(i)+s3 222 === ZYX ，，

02 / a(i)a(i)/2-b(i)+c(i)+s3 333 === ZYX ，，     

 skSegment = Part.SketchManager.Create (s3 + c(i) + b(i) 
- a(i) / 2, 0.0#, 0.0#, s3 + c(i) + b(i) - a(i) / 2, -a(i) / 2, 0.0#, 
s3 + c(i) + b(i) - a(i) / 2, a(i) / 2, 0.0#, 1) 

           Part.ClearSelection2(True) 

0   a(i)/2   a(i)/2-b(i)+c(i)+s3 111 === ZYX ，，               

0 2 / a(i)
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skSegment = Part.SketchManager.Create (s3 + c(i) + b(i) - 
a(i) / 2, a(i) / 2, 0.0#, s3 + c(i) + a(i) / 2, a(i) / 2, 0.0#) 

           Part.ClearSelection2(True) 
Part.SketchManager.InsertSketch(True) 
           Part.ClearSelection2(True) 
 

III.  OPTIMIZATION EXPERIMENT  

We start our analysis from the experiment of 
turbulence locus in the confined casing of a strengthen 
grinding machining structure, with the specific structure is 
shown in the afore-mentioned Fig 1. The three-dimension 
of this confined casing is 1m×0.8m×0.6 m, the depth of 
water-based enhanced fluid for experiment is 0.5m. We 
measure the Reynolds number vuh /Re=  is 4500. Thus 
the experiment process is shown in detail as follows: 

Figure 1 The machining structure of strengthen grinding, with the 
cylindrical space being denoted as the confined space for turbulence 
motion 

 

 
Inter ring 

 
Outer ring 

                Figure 2 turbulence images 

Figure 3 Distribution of 
turbulence chromatic vector 

Figure 4 Structuring of meshing grid 
in energy optimization surface 
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Firstly we let a roller using for strengthen grinding be 
auto-rotating at the high speed of 450r/min, 
simultaneously, it also revolving around its own central 
axis driven by the planetary gears at 45r/min in the 
confined space. Driven by centrifugal force and gravity 
force the water-base enhanced fluid is stirred and a high-
speed turbulence can be obtained.  

We used DMIRM microscopic system manufactured 
by German LEICA to capture three-dimensional locus 
information from given turbulence by digital micro-
images. The system consists of three essential components: 
a precise CCD head, a PC equipped with an image 
processing board, and 3D triangulation processing 
software. The CCD head consists of a light source and 
three CCD cameras (4088×1288 pixels). For the light 
source is a visible coaxial red LED (220V、20W, 700 nm) 
combined with a diffraction grating that generates a fixed 
number of stripes, it can also be called micro-imaging 
planes, which enable the system to acquire 450,000 pixels 
in a scene with a single image frame.  

The range measurements are computed using 
triangulation between the binary digital images and the 
calibrated image plane locations. The CCD is able to 
acquire image pixel data in 0.01 ms (enabling image 
acquisition from a continuously moving manipulator) and 
processes image data in 10 ms, and has a measurement 
standard deviation of 1/20000 of the field of view. The 
CCD image head is attached to a DMIRM 3-axis direct-
drive configuration manipulator for self-adaptive imaging, 
thus it can eliminate image distortion caused by 
inhomogeneous light, keep a rapid reaction and stable 
performance simultaneously. On the other hand, for the 
purpose of improving the detection precision of target 
turbulence to the micron scale (10～50µm), we adopt 200 
magnifying power in micro-image shooting and let digital 
image has the size of 4088×1288 with 256 gray level 
(0~255), with using the development language of 
Matlab7.0 and Solidworks to program the kernel analysis 
and computation module. Other experiment conditions are 
listed as follows: Celeron 2.26 microprocessor, 256M 
memory, operation system is Windows XP. With the 
obtained turbulence details shown in Fig 2, by RGB 
chromatic spectrum we denote pixel color by three 
components of primary color: ],,[),( ),(),(),( jijiji BGRjif = .  

Where njmi ,...,2,1,,...,2,1 == , with ),( jif  denotes 

the pixel locates in the coordinate position of ),( ji , the 

coordinate set of ],,[ ),(),(),( jijiji BGR  denotes the RGB 

primary color vectors of ),( jif . After obtaining the 

chromatic micro-image of turbulence detail, we extract the 
distribution of turbulence chromatic vector shown by Fig 
3, then compute the tangent vectors 

uvvu WWW ,,  of the 

given pixel n(i,j) in three dimensional directions as follows: 
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Then we compute the second-order partial 
derivative vectors in three directions as follows: 
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With part of the obtained chromatic vector results in 
the positions of several key pixels are shown in Table I, 
then we can obtain their chromatic normal vector 

],,[ 111),( rqpn ji = , their first-order and second-order partial 

derivative vectors ),,( 321 uuuWu = , ),,( 332211 uuuWuu = , 

),,( 321 vvvWv = , ),,( 332211 vvvWvv = , and their mixed partial 

derivative vector ),,( 321 uvuvuvWuv =  by the above-

mentioned equation.  
With Eq. (1) ~ Eq. (4) we can structure the energy 

optimization surface by Turbulence image RGB chromatic 
vectors. Firstly we establish the control grid of an energy 
optimization surface in the direction of u, v as shown in 
Fig 4, then energy optimization surface can be structured 
on this grid, with the constructed result illustrated by Fig 
5. In this figure, we can see that x and y axes in the 
horizontal plane denote the area size of target image 
block, and z axis in the vertical direction of these figures 
demonstrates the logical height of energy optimization 
surface, which reflects the structured turbulence 
topography in logical sense, and demonstrates the inter-
relationships between different parts of all these 
turbulence features in three dimensional directions as well. 

It can be seen that for the purpose of reflecting RGB 
chromatic vectors without any distortion, a rather 
complicated control grid in u and v directions must be 
established in advance, and a miscellaneous computational 
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process of envelope which fitting on the target surface 
should be achieved simultaneously, which results to the 
emergence of a tremendous computing amount and 
storage space of computer. 

For solving the above-mentioned problems, we 
expanding the multi-order scaling RANSAC estimation on 
the fitted topography surface with Eq. (5) ~ Eq. (9), thus 
illustrating the obtained RGB chromatic vector surfaces in 
different estimation level in Fig 6. Through interpreting 
the optimization process of image chromatic vector data 
by Table II, it can be seen that the topography complexity 
of RGB chromatic vector surface degrades gradually with 
the increasing order of RANSAC expanding level from 
the first order to the fourth one: the amount of surface 
control points decreases gradually while chromatic vector 
array keeps on a stable state of sparsely-located 
information distribution. When regarding to the mono-
control point with a floating coordinate value, it can be 
seen that the optimization error decreases with fewer bits 
after data quantization has been made. On the other hand, 
after expanding the multi-order scaling RANSAC 
estimation and quantifying the control vertex array, an 

obvious increment in the probability of identical data 
value can be made, on this basis we can realize the 
optimization of image chromatic vector by the non-
homogeneity and limiting tendency of surface vector 

RANSAC in the third order                RANSAC in the fourth order 
Figure 6 Multi-order RANSAC estimations of turbulence image 

chromatic data 

RANSAC in the first order          RANSAC in the second order   
 

 

first

order

second

order

third

order

fourth

order

fifth

order

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%
7.00%
8.00%
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Shannon-Fano coding New method

(a) Distortion rate 

Figure 5 Energy optimization surface of chromatic vector in 
turbulence image. With x and y axes in the horizontal plane denote 
the area size of target block, and z axis in these figures show the 
logical height of energy optimization surface. 
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distribution probability, and obtain a more-obviously 
optimization result as well. 

 

IV.   EVALUATION  OF OPTIMIZATION RESULTS 

For the sake of accuracy and validity, we assess the 
optimization performance of turbulence image chromatic 
vector by selecting such following indexes as distortion 
rate, optimization space ratio, algorithm complexity, bit 
error rate, similarity rate, image energy, peak signal to 
noise ratio (PSNR), etc. where distortion rate provides the 
theoretical foundations for lossy data compression; it 

addresses the problem of determining the minimal amount 
of image entropy (or image information) that should be 
communicated over a channel, so that the input signal can 
be approximately reconstructed at the output signal 
without exceeding a given information distortion level; 
optimization space ratio denotes the comparative ratio 
between the optimized information amount space with 
those information amount to be optimized yet, by this 
index can we learn more about the progress situation of 
optimization experiment; algorithm complexity focuses on 
classifying computational problems according to their 
inherent difficulty, and relating those classes to each other; 
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Figure 7 Performance comparisons with other typical methods of image vector optimization 
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bit error rate and similarity rate are two indexes reflecting 
the number of received bits of an image data stream over a 
communication channel that have been altered due to 
noise, interference, distortion or bit synchronization errors, 
and it is divided by the total number of transferred bits 
during a studied time interval as well; image energy 
quantitative measures the strength caused by different 
pixel element in one image plane in its light scale, which 
helps us to establish a new quantitative index illustrating 
image characteristics; peak signal to noise ratio (PSNR) is 
an theoretical term for the number ratio between the 
maximum possible power of an image signal and the 
power of corrupting noise that affects the fidelity of its 
representation. Because many image signals have a very 
wide dynamic range, PSNR is usually expressed in terms 
of the logarithmic decibel scale, it also most commonly 
used as a measure of quality of reconstruction of loss 
image compression codecs in mathematical sense [11-13]. 

Simultaneously, for the purpose of performance 
comparison several typical data optimization methods 
were also be selected in this paper, such as LZW coding, 
fractal compression, entropy coding, chromaticity 
sampling, Shannon-Fano coding…… and so on. Where 
LZW coding is an entropy encoding algorithm used for 
lossless data compression which refers to the use of a 
variable-length code table for encoding a source symbol 
where the variable-length code table has been derived in a 
particular way based on the estimated probability of 
occurrence for each possible value of the source symbol; 
Fractal compression is a lossy compression method for 
digital images based on fractals. It is best suited for 
textures and natural images, relying on the fact that parts 
of an image often resemble other parts of the same image, 
it also convert these parts into mathematical data called 

"fractal codes" which are used to recreate the encoded 
image; entropy encoding is a lossless data compression 
scheme that is independent of the specific characteristics 
of the medium, it creates and assigns a unique prefix-free 
code to each unique symbol that occurs in the input; 
chromaticity sampling realize the information 
compression by extracting those key chromaticity signal 
from a huge amount of image data, and then 
reconstructing a simplified image signal plane reflecting 
those important information by a limited amount of 
chromatic element data as predetermined; Shannon–Fano 
coding is a technique for constructing a prefix code based 
on a set of symbols and their probabilities. In Shannon–
Fano coding, the symbols are arranged in order from most 
probable stage to least probable one, and then divided into 
two sets whose total probabilities are as close as possible 
to being equal as required [13-15]. 

During the evaluation process, we expand the 
turbulence image chromatic vector from the 1st to the 4th 
order in an identical external technical environment, with 
40 times of iterated computation for the optimization 
performance index in each order level, the obtained results 
and data comparisons of image optimization are shown in 
Table III after data de-noising, equalizing and 
normalizing, and Fig 7 illustrates the performance 
comparison between this new algorithm and other typical 
image data optimization methods, with each method is 
denoted by one colored-line. 

From these figures we can see that with the 
decrement of expanding order, the optimization space 
ratio of the new method keeps in a relative-stable level, 
which contributes to an eligible optimized image result; 
Simultaneously, from the view of chromatic vector 
variation principle and developing tendency of different 

Table I 
 Part of the key points’ chromatic vectors 

No ),( jif  ),( yxn  
uW  vW  uuW  vvW  uvW  

1 (164,478) (-24,55,89) (45,77,-102) (33,85,-25) (-34,53,-25) (24,18,21) (43,25,-33) 
2 (559,342) (45,67-22) (35,42,660 (64,32,17) (12,44,-34) (-23,40,17) (19,-33,24) 
3 (684,227) (35,55,-35) (-33,29,57) (-22,-35,76) (-22,35,-64) (22,-34,-6) (22,31,25) 
4 (388,449) (-24,56,-47) (55,40,22) (-35,52,-25) (24,-12,43) (33,-24,46) (-13,24,-5) 

 
Table II 

 Optimization Process of chromatic vector of turbulence image 

Surface 
Number of surface control 

points 
Data amount of control 

points(byte) 
Effect of vector 

optimization 
Before optimization 39040×26880 1025k 4589k 

First order RANSAC expansion 19520×13440 330k 1980k 
Second order RANSAC expansion 9760×6720 267k 976k 
Third order RANSAC expansion 4880×3360 134k 478k 
Fourth order RANSAC expansion 2440×1680 64k 246k 

 

Method 
distortion 

rate 
optimization 
space ratio 

algorithm 
complexity 

bit error 
rate 

similarity 
rate 

Image 
energy 

PSNR 

New method 2 % 1:44.1 O(3 n2+2logn) 3.1% 89% 45690 0.9 
LZW coding 3.3% 1:35.2 O(3n3log4n+3n) 4.4% 88. 7% 55493 0.8 

fractal compression 2.9% 1:42.1 O(2n4+4n3+1) 5.1% 84% 27855 0.8 
entropy coding 4% 1:37.8 O(3n4+4logn) 4.1% 90% 34891 0.7 

chromaticity sampling 3.7% 1:45 O(n5+logn3) 3.4% 84% 44783 0.6 
Shannon-Fano coding 3.3% 1:46 O(2n3logn+6n3) 4.4% 74% 55042 0.8 

 

Table III 
 Effect comparison of chromatic data encoding of turbulence image 
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colored-line, we can concluded that this new algorithm 
maintains a stable-degrading tendency in such evaluation 
indexes as algorithm complexity, bit error rate, bit error 
rate etc, while it keeps an excellent performance in 
similarity rate, image energy, peak signal to noise ratio 
(PSNR), which further provides a direct support for the 
fact that this new algorithm not only has an apparent 
optimization superiority over other traditional methods, 
but also keeps a close gap with them in such indexes as 
optimization space ratio, distortion rate, similarity rate, 
image energy, peak signal to noise ratio (PSNR) as well. 
Thus a clear and stable optimized illustration of image 
chromatic information can be ensured for the following 
Turbulence image detection. 
 

V. CONCLUSIONS 
This paper sought to establish a new data optimization 

method of turbulence image chromatic data based on 
energy optimization surface construction and multi-order 
Random Sample Consensus (RANSAC) estimation. 
Following major contributions are included in our work to 
meet the requirements: We extract the turbulence image 
chromatic data in color-space, and then compute the pixel 
normal vector, multi-order derivative vector and partial 
derivative vector, etc, which results to the construction of 
energy optimization surface of image chromatic data. 
Through expanding multi-dimensional RANSAC 
estimation, the multi-dimensional RANSAC illustration of 
layered chromatic vector surface can be ensured. We 
assess the optimization performance by mathematical 
indexes with several typical methods; through analysis and 
comparison it can be further proved that a clear and stable 
optimization illustration of turbulence image chromatic 
data is obtained by this new method. These processes 
could be successive stages of computational experiment, 
with the second operating on the output of the first. Thus 
the requirement of chromatic vector optimization can be 
met, and an efficient method for extracting the vector 
surface features and chromatic information in different 
estimation level can also be provided. Optimization 
experiment and performance comparison prove that an 
effective and stable optimization result of image chromatic 
information can be obtained by this new method, 
meanwhile a superior performance in data optimization 
can also be ensured, thus it provides a new idea for the 
research in turbulence image chromatic information 
optimization, storage and transmission. 
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