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Abstract— As one of the most promising nonlinear di-
mensionality reduction techniques, Isometric Mapping (I-
SOMAP) performs well only when the data belong to a
single well-sampled manifold, where geodesic distances can
be well approximated by the corresponding shortest path
distances in a suitable neighborhood graph. Unfortunate-
ly, the approximation gets less and less precise generally
as the number of edges of the corresponding shortest
path increases, which makes ISOMAP tend to overlap or
overcluster the data, especially for disjoint or imperfect
manifolds. To alleviate this problem, this paper presented a
variant of ISOMAP, i.e. Edge Number-based ISOMAP (EN-
ISOMAP), which uses a new variant of Multidimensional
Scaling (MDS), i.e. Edge Number-based Multidimensional
Scaling (EN-MDS), instead of the classical Multidimensional
Scaling (CMDS) to map the data into the low-dimensional
embedding space. As a nonlinear variant of MDS, EN-
MDS gives larger weight to the distances with fewer edges,
which are generally better approximated and then more
trustworthy than those with more edges, and thus can
preserve the more trustworthy distances more precisely.
Finally, experimental results verify that not only imperfect
manifolds but also intrinsically curved manifold can be
visualized by EN-ISOMAP well.

Index Terms— ISOMAP, EN-ISOMAP, EN-MDS, imperfect
manifolds, geodesic distance, shortest path distance

I. INTRODUCTION

Nowadays, the explosive growth in the amount of data
and its dimensionality makes data visualization more and
more important in the data mining process. According to
No Free Lunch (NFL) Theorem [1], the structure informa-
tion of the data should be taken into account to select the
more suitable algorithm for data analysis/processing. For
high-dimensional data, the useful structure information
cannot be seen by eyes directly, but can be obtained
by data visualization approaches easily. During the last
decades of years, lots of approaches have been presented
to visualize high-dimensional data, and most of them fall
into the following five categories:

1) Several sub-windows are used to visualize the data
in different subsets of dimensions respectively, such as
scatterplot matrices and pixel-oriented techniques [2];

2) All the dimension axes are rearranged non-
orthogonally in a low-dimensional space, such as parallel
coordinates [3] and star coordinates [4];

3) The dimensions of the data are embedded each other
to partition a low-dimensional space hierarchically, such
as dimensional stacking [5] and treemap [6];
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4) Certain objects (or icons) with several visual features
are used to represent the high-dimensional data, where
each visual feature stands for one dimension of the data,
such as stick figures [7] and star icons [8];

5) The dimensionality of the data is reduced to two
or three by dimensionality reduction techniques, such as
Principal Component Analysis (PCA), Multidimensional
Scaling [9], [10] (MDS), Self-Organizing Map [11], [12]
(SOM), Isometric Mapping [13]–[15] (ISOMAP), Locally
Linear Embedding [16], [17] (LLE), Laplacian Eigenmap
[18] and Hessian Eigenmap [19] etc.

Unlike the other approaches, dimensionality reduction
techniques try to preserve the high-dimensional rela-
tionship between the data in a low-dimensional space,
and thus can visually represent the structure information
of the data well. In addition, dimensionality reduction
techniques can also be used to avoid ”the curse of dimen-
sionality” and improve the performance and efficiency of
the subsequent data analysis/processing algorithms.

As one of nonlinear dimensionality reduction tech-
niques, ISOMAP extends the classical Multidimensional
Scaling (CMDS) by replacing the Euclidean distance with
the geodesic distance, and thus can visualize intrinsically
flat manifold such as Swiss roll [13] well. However,
ISOMAP requires certain assumptions about the data, one
of which is that the data must belong to a single well-
sampled manifold, not disjoint or imperfect manifolds
[14], [17], [20]. As we know, ISOMAP uses the shortest
path distances in a suitable neighborhood graph to ap-
proximate the corresponding geodesic distances between
the data. Unfortunately, the approximation gets less and
less precise generally as the number of edges of the corre-
sponding shortest path increases, especially for imperfect
manifolds. Generally speaking, the distances with many
edges are longer than those with few edges; however,
CMDS used in ISOMAP is linear and treats all the
distances equally, so the generally worse-approximated
distances with many edges often dominate the global
structure of the result map, and the more trustworthy
distances with few edges are often scarified, which makes
ISOMAP tend to overlap or overcluster of the data,
especially for imperfect manifolds [14], [17], [20]. To
alleviate this problem, a solution is presented in [14], but
the results still remain poor because some unsuitable or
untrustworthy long Euclidean distances are used directly
[17]. In this paper, we present a variant of ISOMAP,
i.e. Edge Number-based ISOMAP (EN-ISOMAP), which
improves ISOMAP by using the nonlinear Edge Number-
based MDS (EN-MDS) instead of the linear CMDS. As
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a new variant of MDS, EN-MDS can limit the effects
of the generally worse-approximated distances with many
edges to a certain extent, and thus the more trustworthy
distances with few edges can be better preserved. As a
result, besides the well-sampled intrinsically flat manifold
which ISOMAP can visualize well, not only imperfect
manifolds but also intrinsically curved manifold such as
uniform fishbowl [24] can be visualized by EN-ISOMAP
well.

This paper is organized as follows: In Section 2,
we recall ISOMAP and the relevant variants briefly. In
Section 3, we present EN-ISOMAP in detail. Finally,
experimental results and conclusions are given in Section
4 and Section 5 respectively.

II. ISOMAP AND THE RELEVANT VARIANTS

When the global geometric structure of the data is
unknown, we are not sure that the Euclidean distance
can be used to measure the dissimilarity between the
data. Fortunately, the Euclidean distance is trustworthy
enough to measure the dissimilarity between the data
within a local neighborhood, which is also called the
locally Euclidean nature of the manifold. So the global
geometric structure of the data can be approximated by
these local Euclidean distances, as ISOMAP does.

If the data lies on a single well-sampled manifold,
it’s proved that the unknown global geodesic distances
between the data can be well approximated by the corre-
sponding graph distances, i.e. the shortest path distances,
in a suitable neighborhood graph which represents the
right neighborhood structure of the data [21]. After using
the geodesic distance instead of the Euclidean distance,
the linear CMDS can be used to map the data into the
low-dimensional embedding space successfully for intrin-
sically flat manifold, which is called ISOMAP described
briefly as follows [13]:
1) Select n representative data points randomly or us-

ing vector quantization (with better results [22]) for
very large data sets to keep subsequent computation
tractable;

2) Construct a suitable neighborhood graph (should be
connected for data visualization) using the k-nearest
neighbors method with a suitable neighborhood size k
(k is more natural to select than ϵ in the ϵ-ball method
[23]);

3) Compute all the shortest path distances in this neigh-
borhood graph;

4) Apply CMDS with these shortest path distances to
map the data into the low-dimensional embedding
space.

As described above, ISOMAP tends to overlap the
data for imperfect manifolds. This problem can be al-
leviated by constructing the neighborhood graph with
the edges between each data point and its k

2 farthest
data points besides its k

2 nearest data points, instead of
only its k nearest neighbors [14], which we call Global
ISOMAP (G-ISOMAP). This is likely to obtain enhanced
visualization results, since some of the original global

information of the data can also be preserved in the low-
dimensional embedding space; however, compared with
ISOMAP, G-ISOMAP is unsuitable to visualize highly
nonlinear data sets such as Swiss roll, because some
unsuitable or untrustworthy long Euclidean distances are
used directly and then the local feature is lost.

For intrinsically curved manifold such as fishbowl
[24], the linear CMDS used in ISOMAP is unsuitable
because the embedding is not isometric any more. In
order to still apply the linear CMDS to map the data
into the low-dimensional embedding space, each edge in
the neighborhood graph has to be scaled in length by
a scale factor, so that the corresponding angles can be
preserved in the low-dimensional embedding space. Un-
der the condition that the data be uniformly dense in the
low-dimensional embedding space, Conformal ISOMAP
[24] (C-ISOMAP) uses the mean distance of each data
point to its k nearest neighbors as the reasonable estimate
of the corresponding scale factor, that is, C-ISOMAP
replaces each edge weight in the neighborhood graph with
||Xi−Xj ||√

µ(i)µ(j)
, where ||Xi −Xj || represents the Euclidean

distance between the i-th and j-th data points, denoted
by Xi and Xj respectively, and µ(i) represents the mean
distance of Xi to its k nearest neighbors. Compared with
ISOMAP, C-ISOMAP can discover the intrinsical low-
dimensional manifold structure of the larger class of con-
formal embeddings, but requires an additional assumption
that the data be uniformly dense in the low-dimensional
embedding space.

III. EN-ISOMAP

ISOMAP is suitable for the data lying on a single well-
sampled intrinsically flat manifold such as Swiss roll,
because geodesic distances can be well approximated and
the linear CMDS can also perform well. Unfortunately,
the data often lie on disjoint or imperfect manifolds,
where the approximation of the shortest path distances
to the corresponding geodesic distances is less precise,
especially for the shortest paths with many edges. Gener-
ally speaking, the distances with many edges are longer
but worse approximated and then less trustworthy than
those with few edges, which makes the linear CMDS
unsuitable. Therefore, it’s reasonable to replace the linear
CMDS with a nonlinear variant of MDS, which can limit
the effects of the generally worse-approximated distances
with many edges and emphasize the preservation of the
more trustworthy distances with few edges more. This is
the thinking of our method.

The error function of the linear CMDS can be described
in (1), where δij and dij represent the distances between
Xi and Xj in the high-dimensional data space and in
the low-dimensional embedding space respectively. In
ISOMAP, δij is the geodesic distance between Xi and
Xj , approximated by the corresponding shortest path
distance in a suitable neighborhood graph, and dij is the
corresponding Euclidean distance between their mappings
in the low-dimensional embedding space, denoted by Yi
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and Yj respectively, described in (2).

ECMDS =
1

2

∑

i

∑

j<i

(dij − δij)
2 (1)

dij = ||Yi − Yj || =
√∑

l

(Yil − Yjl)2 (2)

From (1), we can see that the linear CMDS treats
all the distances equally, and thus the generally worse-
approximated distances with many edges often dominate
the global structure of the result map, and the more
trustworthy distances with few edges are often scarified.
To emphasize the preservation of the more trustworthy
distances with few edges more, the preservation of these
distances should be given larger weight than those with
many edges, for example, the error function can be
described in (3), where eij represents the number of
edges of the shortest path between Xi and Xj in the
neighborhood graph.

EEN−MDS =
1

2

∑

i

∑

j<i

(dij − δij)
2

eij
(3)

EEN−MDS can usually be minimized by the gradient
descent method iteratively, in which the choice of the
learning rate is very important. To avoid the problems
generated by an unsuitable learning rate, such as oscil-
lation, we use the variable alternation method [25] to
minimize EEN−MDS iteratively.

Let ∂EEN−MDS

∂Yi
= 0, then we have:

∂EEN−MDS

∂Yi
=

∑

j ̸=i

∂EEN−MDS

∂dij
· ∂dij
∂Yi

=
∑

j ̸=i

dij − δij
eij

· Yi − Yj

dij

= Yi

∑

j ̸=i

1

eij
−
∑

j ̸=i

[
1

eij
Yj +

δij
eij · dij

(Yi − Yj)]

= 0

So the adjustment rule of Yi, i.e. the mapping of Xi in
the low-dimensional embedding space, can be described
in (4) according to the variable alternation method, which
we call EN-MDS.

Yi =

∑
j ̸=i[

1
eij

Yj +
δij

eij ·dij
(Yi − Yj)]

∑
j ̸=i

1
eij

(4)

The minimization of EEN−MDS using (4) doesn’t
require the learning rate, while converging to a local min-
imum like the gradient descent method. The feasibility of
the adjustment rule in (4) can be verified by experimental
results on Swiss roll and fishbowl, seen in Fig. 1.

So our EN-ISOMAP can be described as follows:
1) Select n representative data points using vector quan-

tization for very large data sets to keep subsequent
computation tractable;

2) Construct a suitable neighborhood graph (should be
connected for data visualization) using the k-nearest
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Figure 1. Convergence processes of the variable alternation method
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Figure 2. The results of different algorithms with k=5 on Swiss roll

neighbors method with a suitable neighborhood size
k;

3) Compute all the shortest path distances in this neigh-
borhood graph;

4) Apply EN-MDS to map the data into the low-
dimensional embedding space.

IV. EXPERIMENTAL RESULTS

As a variant of ISOMAP, EN-ISOMAP can visualize
the well-sampled intrinsically flat manifold such as Swiss
roll (with 400 representatives selected from 2000 data
points [13], seen in Fig. 2(a)) as nicely as ISOMAP (seen
in Fig. 2(d) and Fig. 2(b) respectively), because both of
them can preserve the neighborhood structure of Swiss
roll well; however, G-ISOMAP can’t visualize Swiss roll
well (seen in Fig. 2(c)), because it uses some unsuitable
or untrustworthy long Euclidean distances directly.

To test if EN-ISOMAP can effectively alleviate the
overlapping problem presented in [14], [17], [20] and
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Figure 3. The results of different algorithms with k=28 on IRIS
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Figure 4. The results of different algorithms with k=36 on Gaussian5d

then obtain enhanced visualization results for the data
lying on imperfect manifolds, we also run ISOMAP,
G-ISOMAP, EN-ISOMAP and another typical manifold
learning algorithm–LLE on the following several data
sets, the results are given in Fig. 3-6 respectively.

1) IRIS: a well-known four-dimensional data set with
150 data points, which are divided into three groups
equally but two of them are overlapping.

2) Gaussian5d: a five-dimensional data set with 180 data
points, which are divided into six groups equally and
each of them follows the normal distribution with the
covariance matrix of I (I is a 5 × 5 identity matrix).
These normal distributions are independent of one
another and the means are specified as (0,0,0,0,0),
(10,0,0,0,0), (0,10,0,0,0), (0,0,10,0,0), (0,0,0,10,0) and
(0,0,0,0,10) respectively.

3) MC-Swiss roll: Swiss roll with a small gap, seen in
Fig. 5(a).

4) O-Swiss roll: the noisy Swiss roll [26] with one hole
in it, seen in Fig. 6(a).

From Fig. 3-6, we can see that the data lying on
imperfect manifolds such as IRIS, Gaussian5d, MC-Swiss
roll and O-Swiss roll can be visualized much better by
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Figure 5. The results of different algorithms with k=7 on MC-Swiss
roll
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Figure 6. The results of different algorithms with k=5 on O-Swiss roll
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Figure 7. The results of different algorithms with k=10 on fishbowl

EN-ISOMAP (seen in Fig. 3(c), 4(c), 5(d), 6(d)) than
ISOMAP (seen in Fig. 3(a), 4(a), 5(b), 6(b)), G-ISOMAP
(seen in Fig. 3(b), 4(b), 5(c), 6(c)) and LLE (seen in
Fig. 3(d), 4(d), 5(e), 6(e)). EN-ISOMAP emphasizes the
preservation of the distances with few edges more, and
thus can greatly alleviate the overlapping problem existed
in Fig. 3(a), 4(a), 5(b), 6(b) and Fig. 3(d), 4(d), 5(e), 6(e).
In addition, as we expected, LLE can preserve the global
structure of these data sets less precisely than ISOMAP
and EN-ISOMAP. G-ISOMAP can visualize IRIS nicely
(seen in 3(b)), but can’t visualize Gaussian5d, MC-Swiss
roll and O-Swiss roll well (seen in 4(b), 5(c), 6(c)),
because G-ISOMAP is unsuitable for highly nonlinear
data sets.

By using the powerful nonlinear EN-MDS instead of
the linear CMDS, EN-ISOMAP is expected to visualize
more manifolds nicely. To validate this point, we also
run ISOMAP, C-ISOMAP, EN-ISOMAP and LLE on
an intrinsically curved manifold–uniform fishbowl [24]
(seen in Fig. 7(a)), the results are given in Fig. 7. As
we expected, ISOMAP and LLE can’t visualize uniform
fishbowl well (seen in Fig. 7(b), 7(e)), C-ISOMAP can’t
visualize uniform fishbowl well too (seen in Fig. 7(c)),
because uniform fishbowl isn’t uniformly dense in the
low-dimensional embedding space. Unlike ISOMAP and
C-ISOMAP, EN-ISOMAP can visualize uniform fishbowl
well (seen in Fig. 7(d)), because EN-ISOMAP can better
preserve the more trustworthy distances with few edges.

V. CONCLUSION

In this paper, we improve data visualization based
on ISOMAP especially for the data lying on imper-
fect manifolds by replacing the linear CMDS with the
powerful nonlinear EN-MDS, which can better preserve
the more trustworthy distances with few edges and thus
can alleviate the overlapping problem greatly. To avoid
the problems generated by an unsuitable learning rate,
we minimize the error function of EN-MDS iteratively
by using the variable alternation method instead of the
gradient descent method.

Similar to ISOMAP, the success of EN-ISOMAP de-
pends greatly on selecting a suitable neighborhood size,
and EN-ISOMAP is sensitive to the noise, which is the
future subject.
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