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Abstract—Traditional rough set-based approaches to reduct 
have difficulties in constructing optimal decision tree, such 
as empty branches and over-fitting, selected attribute with 
more values, and increased expense of computational effort. 
It is necessary to investigate fast and effective search 
algorithms. In this paper, to address this issue, the 
limitations of current knowledge reduction for evaluating 
decision ability are analyzed deeply. A new uncertainty 
measure, called decision degree, is introduced. Then, the 
attribute selection standard of classical heuristic algorithm 
is modified, and the new improved significance measure of 
attribute is proposed. A heuristic algorithm for rule 
extraction from decision tree is designed. The advantages of 
this method for rule extraction are that it needn’t compute 
relative attribute reduction of decision tables, the 
computation is direct and efficient, and the time complexity 
is much lower than that of some existing algorithms. Finally, 
the experiment and comparison show that the algorithm 
provides more precise and simplified decision rules. So, the 
work of this paper will be very helpful for enlarging the 
application areas of rough set theory. 
 
Index Terms—granular computing, rough set, decision table, 
decision tree, decision degree, rule extraction 
 

I.  INTRODUCTION 

As a recently renewed research topic, granular 
computing is a new concept and computational model, 
and may be regarded as a label of family of theories, 
methodologies, and techniques [1-3]. Rough set theory 
[4-7], as a robust mathematical framework of granular 
computing, has been widely applied to extract rules from 
information tables or decision tables [8-12]. For example, 
An et al. [8] constructed the lower approximation 
operation and the upper approximation operation gener-
ated by a binary relation and its inverse relation in order 
to induce the minimal decision rules to support the 
decision task. Ziarko [12] proposed a method of rule 
extraction from decision tables by reducing boundary 
area in decision tables. There are at least three approaches 
to reducing boundary area. The first and simplest 
technique is to try to increase the decision table 
“resolution” by adding more attributes or by increasing 
the precision of existing ones. The second is to provide 
another layer of decision tables, by treating each sub-
domain of objects matching the description of an 
elementary set of the boundary area of the original 
decision tables as a domain (the universe) by itself. The 

third is based on the idea of treating the sub-domain of 
the original domain corresponding to the whole boundary 
area as the new domain by itself. However, in fact, the 
classification accuracy (the approximation measure) is 
constrained according to decision requirements or prefer-
ence of decision makers. An obvious question is how to 
extract much simpler decision rules on the basis of 
keeping an approximation measure [11]. That is to say, 
relative knowledge reduction must be obtained before 
rule extraction from decision tables. Many types of reduct 
were proposed in the area of rough set and each of the 
reductions aimed at some basic requirement. For example, 
by eliminating some rigorous conditions required by the 
distribution reduct, a maximum distribution reduct was 
introduced by Mi et al. in [13]. Unlike the possible reduct 
[14], the maximum distribution reduct can derive 
decision rules that are compatible with the original 
system. However, the complexity of these approaches 
above is much worse, which is inconvenient to extract 
decision rules from decision tables.  

In recent years, how to evaluate the decision perfor-
mance of a decision rule has become a very important 
issue in rough set theory. For example, Greco et al. [15] 
used some well-known confirmation measures within the 
rough set approach to discover relationships in data in 
terms of decision rules. For a decision rule set induced 
from a decision table, three parameters are traditionally 
associated as follows: the strength, the certainty factor 
and the coverage factor of the rule. In many practical 
decision problems, we always adopt several rule extra-
ction methods for the same decision table. In this case, it 
is very important to check whether or not each of the rule 
extraction approaches is suitable for the given decision 
table. In other words, it is desirable to evaluate the 
decision performance of the decision rule set extracted by 
each of the rule extraction approaches. This strategy can 
help a decision maker to determine which of rule 
extraction methods suits for a given decision table. To 
evaluate and compare different rule learning algorithms, 
many criteria, most notably predictive accuracy, simp-
licity and time complexity, have been employed [16]. 
Predictive accuracy aims at generating rule sets with a 
low misclassification error on unseen test data. Simplicity 
aims at finding rule sets that are as small as possible. This 
can be measured through the number of rules and literals 
in the rule set. Simplicity has served in the machine 
learning literature as the most prominent measure of 
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human comprehensibility as it is generally agreed that the 
smaller the rule set, the easier it is to understand. One 
would like to have low time complexity so that algori-
thms scale well on large data sets. 

A number of different classification techniques have 
been extensively studied [17, 18] and the induction of 
decision trees is a well-known approach for knowledge 
discovery in databases [18-25]. Decision trees can 
systematically analyze information contained in a large 
amount of data source to extract valuable rules and 
relationships. It is a representation of a decision proce-
dure for determining the class of a given instance. This 
process for systemizing complicated decision problems 
and turning them into manageable knowledge structures 
is to find the major appealing feature of decision tree 
induction learning. To construct a decision tree, we have 
to select appropriate attributes as the tree nodes. Many 
methods are available for attribute selection, such as the 
entropy-based methods, Bayesian networks, Gini index 
methods, etc [22]. Among the classification algorithms 
implemented with the decision tree induction, the ID3 [23] 
and its follow-up revisions are well recognized as the 
prime stream of research. For example, C4.5, ID4, and 
ID5 build the decision trees by the prepruning technology, 
while GID3 and DID3 focus more on fault tolerance and 
dealing with some specific attributes. Pang et al. [18] 
presented a constructive method for association rule 
extraction, where the knowledge of data was encoded into 
a Support Vector Machine classification tree (SVMT), 
and linguistic association rule was extracted by decoding 
of the trained SVMT. The method of rule extraction over 
the SVMT, in the spirit of decision-tree rule extraction, 
achieved rule extraction not only from SVM, but also 
over the decision-tree structure of SVMT. 

Since the prepruning approach of decision tree induc-
tion is disadvantageous in terms of scope, depth, and 
accuracy when compared with ID3, and the other 
approaches are still based on the algorithm of ID3, the 
structure of these induction learning approaches is the 
same [24]. The ID3 algorithm is well known to be more 
suitable to deal with nominal attributes, since its 
formation of decision branches depends on the discretized 
values of attributes, and nominal attributes usually 
provide a more convenient differentiability of classifi-
cation. However, in the process of inducing a decision 
tree [25], the rough set-based approach tends to partition 
instances too excessively, and thus will construct a large 
decision tree and reveal trivial details in the data. As a 
result, the comprehensive abilities of some leaf nodes will 
be decreased for that they contain too few instances. This 
is usually called over-fitting when inducing a classifier 
and consequently the constructed decision tree needs 
further pruning to enhance the generalization ability. In 
[22], the authors presented a new approach for inducing 
decision tree based on Variable Precision Rough Set 
Model. It aims to handle uncertain information during the 
process of inducing decision tree and generalizes the 
rough set-based approach to decision tree construction by 
allowing some extent misclassification when classifying 
objects. 

But until now, the research on constructing decision 
tree from decision tables, especially in large-scale data 
sets, has few literatures reported on simplified rule 
extraction in the view of rough set theory. Our research 
aims to find a method for decision tree-based rule 
extraction without computing relative attribute reduction 
of a decision table in rough set theory. To mitigate this 
problem, the decision tree is a good rule extraction 
example that is recommended here for decision rule 
extraction because every rule generated by a decision tree 
represents a certain decision path that has a compre-
hensible rule antecedent and rule consequence. Then, the 
main objectives of this paper are to establish the decision 
degree by introducing the notions of the certainty factor 
and the coverage factor of rule in [15], investigate some 
of its important properties and propositions, and apply 
them to decision tree for rule extraction from decision 
tables. This paper focuses on creating such a solution.  

The rest of this paper is organized as follows. In 
Section II, we review some basic concepts and propo-
sitions of rough set theory. The limitations of current 
knowledge acquisition approaches and the decision 
degree of a decision table are presented respectively, and 
some of useful propositions and properties are educed in 
Section III. In Section IV, the significance measure of 
attribute is improve, and a new method for decision tree-
based rule extraction is proposed, following that is a 
theoretical analysis of time complexity of this algorithm, 
and illustrated with an example. Section V provides a 
discussion of the experimental methods and results in 
detail. In Section VI, we draw conclusions and outline 
our main directions for future work.  

II.  PRELIMINARIES 

In this section, we will review several basic concepts 
such as information table, decision table and partial 
relation. Detailed description and formal definitions of 
the theory can be found in [1, 4-7]. Throughout this 
paper, we suppose that the universe U is a non-empty 
finite set. 

An information table (IT) is usually expressed in the 
following form: IT = (U, A, {Va}, fa)a∈A, where, 

(1) U is a non-empty finite set of objects, indicating 
a given universe; 

(2) A is a non-empty finite set of attributes; 
(3) Va is a value set (domain) of a∈A; 
(4) fa is a function from U to Va, denoted by a 

mapping fa: U → Va, called the information 
function of the IT. 

Also, (U, A, {Va}, fa)a∈A can be written more simply 
as (U, A), if Va and fa are understood. 

Let P ⊆ A determine a binary indistinguishable 
relation IND(P), given by  

IND(P) = {(u, v)∈U×U : f(a, u) = f(a, v), ∀ a∈P}. (1) 

Obviously, ( ) ({ }) .a PIND P IND a∈= ∩  It shows that 
IND(P) is an equivalence relation on the set U. For 
P⊆A, the relation IND(P) constitutes a partition of U, 
which is denoted by U/IND(P), or just U/P. That is, 
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U/P = {[ui]P : ui∈U} is called an information on U, 
where [ui]P = ∪ {uj∈U : (ui, uj)∈IND(P)} = ∪ {uj∈ 
U : f(a, ui) = f(a, uj), ∀ a∈P} is called an equivalence 
block (equivalence class) of ui with reference to P, and 
every equivalence block is called an information 
granule.  

In particular, if U/P = {X : X = {u}, u∈U} = ω, it is 
called an identity relation, and if U/P = {X : X = {U}} 
= δ, it is called a universal relation. 

Now, we define a partial order on all partition sets of U. 
Let U/P and U/Q be two partitions of a finite set U, then 
we define that the partition U/Q is coarser than the 
partition U/P (or the partition U/P is finer than the 
partition U/Q), denoted by P≺Q, between partitions by 
P≺Q ⇔ ∀ Pi∈U/P, ∃Qj∈U/Q → Pi⊆Qj. If P≺Q 
and P Q, then we say that P = Q. If P≺Q and P ≠ Q, 
then we say that Q is strictly coarser than P (or P is 
strictly finer than Q) and write P≺Q. 

Proposition 1. Let IT = (U, A) be an information table 
and Q⊆P⊂A. Then we have P≺Q. 

Proof. Suppose U/P = {P1, P2, …, Pt}, U/Q = {Q1, 
Q2, …, Qs}, for any Pi = [u]P∈U/P, since Q⊆P, then one 
has that Pi = [u]P = ∪ {v∈U : f(a, u) = f(a, v), ∀ a∈P} 
⊆ Qj = [u]Q = ∪ {v∈U : f(a, u) = f(a, v), ∀ a∈Q}. 
Hence, since each Pi is selected randomly, then we have 
proved that P≺Q always holds. 

A decision table (DT) is a special case of an 
information table. A DT can be generated by dividing 
the attribute set A into two disjoint subsets, or by 
adding some attributes to A. A decision table is a tetrad 
(U, A = C∪ D, G(Vd∈D), fC), where, 

(1) U is a non-empty, finite set of objects, indicating 
a given universe;  

(2) C is a non-empty, finite set of attributes, called 
condition attribute set;  

(3) D is a non-empty, finite set of attributes, called 
decision attribute set, and C∩D = Ø;  

(4) G(Vd) is the power set of Vd, and Vd is the value 
set (domain) of decision attribute d∈D;  

(5) fC is the function fC: U → G(Vd), called an 
information function of the DT.  

Obviously, the properties derived in previous 
sections also hold for (U, A = C∪ D, G(Vd∈D), fC). The 
tetrad (U, A = C∪ D, G(Vd∈D), fC) is usually denoted as 
a triple (U, C, D) for short, that is, DT = (U, C, D).  

Proposition 2. Let DT = (U, C, D) be a decision table. 
If there exists IND(C)⊆ IND(D), then the DT is referred 
to as a consistent decision table. Otherwise, the DT is 
referred to as an inconsistent decision table. 

Proof. It is straightforward. 
Let DT = (U, C, D) be a decision table. If P, 

Q⊂C∪ D are two equivalent relations belonging to U, 
then P positive region of Q is defined as  

( ) { : / } ,PPOS Q PY Y U Q= ∈∪                       (2) 

where { / : } ,PY X U P X Y= ∈ ⊆∪  and U/Q is a 
partition of U by Q.  

Thus, D depends on P in a degree. That is, the 
formulation of approximation quality of P is defined as 

 ( )
( ) P

P

POS D
D

U
γ = .                          (3) 

Let DT = (U, C, D) be a decision table and for any 
P⊆C, to make arbitrary r∈P, r in P is unnecessary for 
D, if POSP(D) = POSP–{r}(D). Otherwise, r is necessary. 
Then, P is independent relative to D, if every element in 
P is necessary for D.  

Proposition 3. Let DT = (U, C, D) be a decision table, 
then, the positive region of the partition U/D with respect 
to C, denoted by POSC(D) = {x∈U : x is a consistent 
instance}, that is, 

( ) { : / ,
( , ) ( , ) , } .

CPOS D X X U C x y X
f x d f y d d D

= ∈ ∧∀ ∈
⇒ = ∃ ∈

∪       (4) 

Proof. It is straightforward. 
Proposition 4. Let DT = (U, C, D) be a decision table 

and POSC(D) = {x∈U : x is a consistent instance}. If the 
DT is a consistent decision table, we have POSC(D) = U. 

Proof. It is straightforward. 
Definition 1. Let DT = (U, C, D) be a decision table 

and 1 2/ ( ) {[ ] ,[ ] , ,[ ] } ,C D C D n C DU C D U U U′ ′ ′= ∪ ∪ ∪∪ …  where 
U = {U1, U2, …, Um}, n ≤ m, and U′i∈U, then U′ = {U′1, 
U′2, …, U′n}. F′: U′×(C∪ D) → V′ is called a new inform-
ation function. It is said that the 6-tuple (U′, C, F′, D, G, 
V′) is a simplified decision table (SDT). The 6-tuple (U′, 
C, F′, D, G, V′) is usually denoted as (U′, C, D) for 
short, that is, SDT = (U′, C, D).  

Thus, from Definition 1, it is obvious that by virtue of 
this technology of simplicity lots of redundancy inform-
ation is deleted, and then the space complexity of the DT 
is decreased. The time-space complexity for computing 
core and attribute reduction is also cut down more 
efficiently. Therefore, the simplified decision table 
introduced is necessary. 

III.  DECISION DEGREE 

In this section, the limitations of current knowledge 
acquisition approaches are analyzed, to deal with this 
issue, and then we introduce a new uncertainty measure, 
called decision degree. Some of its important properties 
and propositions are discussed as well. 

A.  Limitations of Knowledge Acquisition Approaches 
In the following, we analyze the limitations of reduc-

tion algorithms based on the positive region [7, 26, 27] 
and the conditional information entropy [7, 27]. 

Firstly, in a DT, let P ⊆ C, and if the quality of 
approximation of P with respect to D is equal to the 
quality of approximation of C with respect to D, i.e. 

( ) ( )P CD Dγ γ= , and there doesn’t exist *P P⊂  such that 

*( ) ( )P CD Dγ γ= , then P is called the reduct of C with 
respect to D [26]. Therefore, whether or not any condition 
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attribute is redundant depends on whether or not the 
lower approximation quality corresponding to decision 
block is changed. Accordingly, if new inconsistent 
objects are added to the DT, it is not considered whether 
the probability distribution generated by the primary 
inconsistent objects is changed in their corresponding 
decision blocks. Hence, if the generated deterministic 
decision rules are the same, then, they will support the 
same important standards for evaluating decision ability. 
Suppose that the deterministic decision rules generated 
are the same, that is, the prediction of these rules has not 
change. Thus, these presented algorithms above only 
reflect whether or not the prediction of deterministic 
decision rules has change after reduction. 

Secondly, in a DT, let P⊆C, and if H(D|P) = H(D|C) 
and P is independent relative to D, then P is called the 
reduct of C with respect to D [7, 27]. Therefore, whether 
or not any condition attribute is redundant depends on 
whether or not the conditional information entropy value 
of decision table is changed. Furthermore, it is known 
that the value of conditional information entropy 
generated by POSC(D) is 0, thus U – POSC(D) may 
change the value of conditional information entropy of 
the DT. There must exist some new added and primary 
inconsistent objects in their corresponding decision 
blocks, hence, if their probability distribution is changed, 
then it will change the value of conditional information 
entropy of the DT. Therefore, we come to the conclusion 
that the main criterions of algorithms above in evaluating 
decision ability include two aspects as follows: the 
number of deterministic decision rules and the certainty 
factor of non-deterministic decision rules. 

Thus, the researchers above only think about the 
change of certainty factor for all decision rules after 
reduction. However, in decision application, besides the 
certainty factor of rule, the object coverage factor of rule 
is also one of the most important standards of evaluating 
decision ability. Then, we draw the conclusion that these 
current knowledge acquisition approaches above cannot 
reflect the change of decision ability objectively. There-
fore, it is necessary to investigate a new uncertainty 
measure and effective search algorithm. 

B.  Representation of Decision Degree 
Let SDT = (U′, C, D) be a simplified decision table. 

U′/C = {X1, X2, …, Xn} and U′/D = {Y1, Y2,…, Ym} denote 
the partitions on U′ induced by the equivalence relations 
IND(C) and IND(D), respectively. DesC(Xi) → DesD(Yj) is 
called the decision rule in SDT, where DesC(Xi) and 
DesD(Yj) are unique descriptions of the blocks Xi (i = 1, 
2, ..., n) and Yj (j = 1, 2, ..., m), respectively. The set of 
decision rules (rij) for each block Yj can be defined as 

{ri,j} = {DesC(Xi) → DesD(Yj) : Xi∩Yj ≠ Ø}.        (5) 
A decision rule rij is deterministic if and only if Yj∩Xi = 

Xi, and rij is non-deterministic otherwise. 
The certainty factor and coverage factor of decision 

rule rij are defined respectively as  

| |
( ) ,

| |i

j i
X j

i

Y X
Y

X
α =

∩                          (6) 

| |
( ) .

| |i

j i
X j

j

Y X
Y

Y
κ =

∩                          (7) 

It is notable that ( )
iX jYα  measures the degree of 

sufficiency of a proposition, DesC(Xi) → DesD(Yj), and 
that ( )

iX jYκ  measures the degree of its necessity.  
Proposition 5. Let IT = (U, A) be an information table 

and P, Q ⊆ A, then one has that IND(P)∩IND(Q) = 
IND(P∪ Q). 

Proof. Let ( ) ({ })a PIND P IND a∈= ∩  and IND(Q) = 

({ })a Q IND a∈∩ , then we find that  

( ) ( ) ( )

( ) ( )
( ({ })) ( ({ }))

( ({ })) ( ({ }))

( ({ })) ( ({ }))

( ({ })) ( ({ }))

( ({ }))

({

a P a Q

a P P Q a P Q

a Q P Q a P Q

a P P Q a Q P Q

a P Q

a P P Q Q P Q P Q

IND P IND Q
IND a IND a

IND a IND a

IND a IND a

IND a IND a

IND a

IND

∈ ∈

∈ − ∈

∈ − ∈

∈ − ∈ −

∈

∈ − −

=

=

=

=

∩ ∩

∩ ∩

∩ ∩

∩

∩ ∪ ∩ ∪ ∩

∩
∩ ∩ ∩
∩ ∩ ∩ ∩
∩ ∩ ∩
∩ ∩ ∩ ∩
∩
∩ })

({ })

( ).
a P Q

a

IND a

IND P Q
∈=

=
∪∩
∪

 

Hence the proposition holds. 
Proposition 6. Let U/P and U/Q be two classifications 

with the respective indistinguishable relations P and Q on 
U. The intersection “∩” between two classifications U/P 
and U/Q is denoted as follows: U/P∩U/Q = U/(P∪ Q) = 
U/(Q∪ P) (also called classification U/P AND U/Q). 

Proof. It is straightforward from Proposition 5. 
Thus, from Proposition 6, it is easy to obtain the 

following property in a simplified decision table. 
Property 1. Let SDT = (U′, C, D) be a simplified 

decision table and P⊆C, U′/P = {X1, X2, …, Xn}. Then 
for any a∈C – P, one has that U′/(P∪ {a}) = U′/P∩ 
U′/{a} = X1/{a}∪ X2/{a}∪ …∪ Xn/{a} = ∪ {Xi/{a} : i = 
1, 2, …, n}, i.e. U′/(P∪ {a}) = ∪ {X/{a} : X∈U′/P}. 

After arbitrary Xi∈U′/P is further partitioned on a, and 
U′ = U′ – Xi, the searched space of the SDT is gradually 
reduced. Therefore, the several simplifications above will 
be helpful to increase computational efficiency. Thus, 
using the idea of simplifications, we define the concept of 
decision degree as follows. 

Definition 2. Let SDT = (U′, C, D) be a simplified 
decision table and P⊆C, U′/P = {X1, X2, …, Xn}, U′/D = 
{Y1, Y2, …, Ym}.Then, S(D|P) denotes the decision 
degree of D with reference to P as follows 

1 1

2

1 1 1 1

| | | |
( | ) ( )

| | | |

| |
( ) ( ) ( ) .

| || |i i

n m
j i j i

i j i j

n m n m
j i

X j X j
i j i j i j

Y X Y X
S D P

X Y

Y X
Y Y

X Y
α κ

= =

= = = =

= ×

= =

∑∑

∑∑ ∑∑

∩ ∩

∩
(8) 

From the formulas (5)-(7), we know that S(D|P) 
includes the degree of sufficiency of a proposition and 
the degree of its necessity.  
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Thus, from the formula (8), we easily obtain the 
following properties in a simplified decision table. 

Property 2. 0 < S(D|P) ≤ |U′|. 
Property 3. If U′/P = ω and U′/D = ω, then the 

decision degree of D with reference to P achieves its 
maximum value |U′|. 

Property 4. If U′/P = ω and U′/D = δ, then the 
decision degree of D with reference to P achieves its 
minimum value 1.  

Property 5. If U′/P = δ and U′/D = δ, then the 
decision degree of D with reference to P achieves its 
minimum value 1.  

Proposition 7. Let SDT = (U′, C, D) be a simplified 
decision table and A1, A2⊆C, U′/A1 = {X1, X2, …, Xn}, 
U′/D = {Y1, Y2, …, Ym}. Assume that U′/A2 = {X1, X2, …, 
Xp-1, Xp+1, …, Xq-1, Xq+1, …, Xn, Xp ∪ Xq} is another 
partition generated through combining equivalence 
blocks Xp and Xq to Xp∪ Xq, where Xp and Xq are two 
equivalence blocks randomly selected from U′/A1,  

2

1
1 1

| |
( | ) ( )

| || |

n m
j i

i j i j

Y X
S D A

X Y= =

= ∑ ∑
∩

，and  

2

2 1
1

2 2

1 1

| |
( | ) ( | ) ( )

| || |

| | | ( ) |
( ) ( ) .

| || | | || |

m
j p

j p j

m m
j q j p q

j jq j p q j

Y X
S D A S D A

X Y

Y X Y X X
X Y X X Y

=

= =

= − −

+

∑

∑ ∑

∩

∩ ∩ ∪
∪

 

Then one has that S(D|A1) ≥ S(D|A2). 
Proof. From Definition 2, we find that 

1 2
2 2

1 1

2

1

2 2

1 1

2

1

2

( | ) ( | )

| | | |
( ) ( )

| || | | || |

| ( ) |
( )

| || |

| | | |
( ) ( )

| || | | || |

| ( ) ( ) |
( )

| || |

| |
(

| ||

m m
j p j q

j jp j q j

m
j p q

j p q j

m m
j p j q

j jp j q j

m
j p j q

j p q j

j p

p j

S S D A S D A

Y X Y X
X Y X Y

Y X X
X X Y

Y X Y X
X Y X Y

Y X Y X
X X Y

Y X
X Y

Δ

= =

=

= =

=

= −

= + −

= + −

=

∑ ∑

∑

∑ ∑

∑

∩ ∩

∩ ∪
∪

∩ ∩

∩ ∪ ∩
∪

∩ 2

1 1

2

1

| |
) ( )

| | || |

(| | | |)
( ) .

(| | | |) | |

m m
j q

j j q j

m
j p j q

j p q j

Y X
X Y

Y X Y X
X X Y

= =

=

+ −

+

+

∑ ∑

∑

∩

∩ ∩
 

Let |Xp| = x, |Xq| = y, |Yj∩Xp| = ax, and |Yj∩Xq| = by. 
There must be x > 0, y > 0, 0 ≤ a ≤ 1, and 0 ≤ b ≤ 1 such 
that one has that 

1 2
2 2 2 2 2

1

2

1
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, for any j = 

1, 2, …, m. Above all, if a = b, i.e. | |
| |
j p

p

Y X
X

=
∩  

| |
| |
j q

q

Y X
X
∩  then one has that 1 2( | ) ( | )S S D A S D AΔ = −  

= 0. If a ≠ b, then one has that 1 2( | ) ( | )S S D A S D AΔ = −  
> 0. Hence, S(D|A1) ≥ S(D|A2) and the proposition holds. 

Proposition 7 states that Xp and Xq are randomly 
selected to construct equivalence block Xp∪ Xq combined 
from U′/A1, so as to obtain a new partition U′/A2. Further-
more, in the practical operation, there must exist a good 
many equivalence blocks, which also need to be 
combined. Therefore, the coalition of some equivalence 
blocks is regarded as an automatic, repeatable combin-
ation of two equivalence blocks. Thus, the new partition 
U′/A2 of U′, induced by the equivalent relation A2, is 
coarser than U′/A1.  

According to Proposition 7, we know that the combin-
ation of blocks induced by condition attributes will 
decrease the decision degree monotonously, and the 
decision degree will remain unchanged only if the 
memberships of the combined blocks for all decision 
blocks are the same. Thus, the memberships of all equiv-
alence blocks, induced by condition attributes for all 
decision blocks, will remain unchanged after the 
combination.  

Proposition 8. Let SDT = (U′, C, D) be a simplified 
decision table and for any Q ⊂ P ⊆ C, then S(D|P) > 
S(D|Q) holds. 

Proof. Let U′ be a given simplified universe and 
U′/P = {X1, X2, …, Xn}, U′/Q = {Z1, Z2, …, Zk}. 
Since Q⊂P, it follows from Proposition 1 that P≺ Q 
and n > k, and then there exists a partition {I1, I2, 
…, Ik} of {1, 2, …, n} such that Zi = ∪ {Xj : j∈Ii, i 
= 1, 2, …, k}. Thus, from Proposition 7, we easily 
find that the decision degree generated by Zi = ∪ {Xj : 
j∈Ii, i = 1, 2, …, k} is less than that generated by Xj. 
Hence, S(D|P) > S(D|Q) and the proposition holds.  

Proposition 8 states that in a simplified decision table 
decision degree of knowledge monotonically increases 
as the granularity of knowledge, produced by the equival-
ence relation, becomes small through finer classification 
with the increase of attributes in knowledge. 

Proposition 9. Let SDT = (U′, C, D) be a simplified 
decision table and for any P⊆C, then S(D|P) ≤ S(D|C) 
holds. 

Proof. The proof is similar to that of Proposition 8. 
Definition 3. Let SDT = (U′, C, D) be a simplified 

decision table. An attribute a in P is said to be relatively 
dispensable (relatively reducible or relatively super-
fluous) for D in P⊆C, if S(D|P) = S(D|P − {a}), and 
relatively indispensable in P otherwise. For any P⊆C, 
if each attribute in P is relatively indispensable in P, 
then P is called relatively orthogonal to D. 

Let SDT = (U′, C, D) be a simplified decision table 
and P⊂C, U′/P = {X1, X2, …, Xn}, U′/D = {Y1, Y2, …, 
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Ym}, then the conditional information entropy of D with 
reference to P is defined as 
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Proposition 10. Let SDT = (U′, C, D) be a simplified 

decision table and for any A2⊆A1⊆C. Then one has that 
H(D|A1) ≤ H(D|A2). The necessary and sufficient condi-
tion of equation is that for any Xi, Xj∈U′/A1, Xi ≠ Xj, if 
Xi ∪ Xj ⊆  U′/A2, then | || |

| | | |
j ri r

i j

X DX D
X X

=
∩∩  always 

holds, where Dr∈U′/D. 
Proof. The proof is similar to that of Lemma 4.1 in 

[7]. 
Proposition 11. Let SDT = (U′, C, D) be a simplified 

decision table and for any P⊆C. Then H(D|P) ≥ H(D|C) 
if and only if S(D|P) ≤ S(D|C). 

Proof. It is straightforward from Proposition 9 and 10. 
Hence, it is easy to obtain the following properties 

from Proposition 11. 
Property 6. Let U′ be a given simplified universe and 

for any a∈P⊆C. If S(D|P) = S(D|P–{a}), then POSP(D) 
= POSP–{a}(D). 

Property 7. Let U′ be a given simplified universe and 
for any a∈P⊆C. If H(D|P) = H(D|P–{a}), then POSP(D) 
= POSP–{a}(D). 

Property 8. Let U′ be a given simplified universe and 
for any a∈P⊆C, then S(D|P) = S(D|P–{a}) ⇔  H(D|P) 
= H(D|P–{a}). 

For a general information table, the definition of 
reducts in the algebra view is equivalent to its definition 
in the information view [7]. Thus, it is stated from these 
representations above, we find that the definition of the 
relative reducts of a consistent decision table (i.e., there 
are no conflicts or inconsistent objects in decision tables) 
in the algebra view is also equivalent to its definition in 
the information view. However, inconsistent decision 
tables often occur in real life. We need to calculate the 
reducts of inconsistent decision tables. Then, the decision 
degree of a relative reduct defined above does not remain 
unchanged. On the other hand, according to Proposition 
11 and Property 6-8, if an attribute cannot provide any 
additional information for an existing attribute set to 
make a decision table, then it is reducible. That is, the 
definition of relative reducts of a decision table in the 
information view includes its definition in the algebra 
view. Any relative reduct of a decision table in the 
decision degree view must be its relative reduct in the 
algebra view. Furthermore, for decision degree of 
knowledge in decision tables, it not only decreases the 
complexity of arithmetic, especially in the logarithmic 
calculation, and saves the accounting time, but also is 
easy to program and calculate simply. Therefore, this 
paper focuses on creating such a heuristic algorithm 
developed further on this result. 

IV.  DECISION TREE APPROACH TO RULE EXTRACTION 

In this section, based on decision degree, we propose a 
new significance measure of attribute. Then, as an 
application of decision tree, we apply this measure to 
decision rule extraction in decision tables.  

A.  Representation of improved significance measure  
It is known that decision tree is one of the most 

effective solutions to classification tasks [18-24]. This 
technique sets up classification models by constructing 
trees. How to construct a robust and efficient tree is still a 
challenge met in the research and application of decision 
tree.  

Generally speaking, decision tree can be compared and 
evaluated according to predictive accuracy, speed, 
robustness, scalability and interpretability. It has been 
approved that ID3 and C4.5, introduced by Quinlan [23], 
satisfies with the above criteria. It also provides high 
predictive accuracy and efficiency among the compared 
main memory algorithms for classification. It is affirmed 
by experts in data mining and is always taken as the 
benchmark for researches of classifiers. Among decision 
tree with univariant splits, ID3 and C4.5 have the 
advantages in predictive accuracy and speed, however, 
they have the disadvantage in constructing a smaller tree, 
because ID3 and C4.5 have connatural limitations, such 
as the problem of empty branches and over-fitting.  

To solve the problems, a new uncertainty measure as 
heuristic information is introduced, and this measure 
improves on attribute selection and partition methods. 
Such that the improved approach can reflect not only the 
importance of the entire training sample set, but also that 
of the related training sample sets of branch nodes. It 
combines branches, which have high attribute signifi-
cance in divide and conquer process. According to the 
definition of attribute significance, the higher it is, the 
lower the purity of partition is. The significance measure 
of attribute considers the branches contributing nothing to 
classification as one branch, so it can reduce insignificant 
branches, avoid the problem of fragmentation, control the 
size of trees, and have high predictive accuracy. There-
fore, the significance measure of attribute avoids auto-
matically the tendency to select attributes with more 
values as test attributes.  

Proposition 12. Let SDT = (U′, C, D) be a simplified 
decision table and P⊆C, U′/P = {X1, X2, …, Xn}, U′/D = 
{Y1, Y2, …, Ym}, then U′/(P∪ D) = U′/P∩U′/D = {Z1, 
Z2, …, Zk}. That is, for any Zt∈U′/(P∪ D), there exist 
Xi∈U′/P and Yj∈U′/D such that Zt = Xi∩Yj. 

Proof. It is straightforward from Proposition 6 and 
Property 1. 

Definition 4. Let SDT = (U′, C, D) be a simplified 
decision table, where U′ is called the whole training 
sample sets. If P⊆C, for any testing attribute a∈C – P, 
U′/{a} = {U′1, U′2, …, U′t}, and U′/({a} ∪ D) = {Z1, 
Z2, …, Zk}, then the significance measure of a on U′i with 
reference to D is defined as 

( | { }) ( | )( , , , ) ,i
S D P a S D PSig a P U D

k
−′ =

∪      (10) 
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 Input Training Data Set

Construct Decision Tree

Rule Extraction over 
Depth-first Spanning 

Rule Extraction from 
Tree Structure 

Rule Extraction over 
One-class Node 

Delete Dispensable 
Nodes from Rule 

Output Simplified 
Decision Rule Set 

Figure 1.   Steps of decision tree-based rule extraction algorithm. 

where U′i∈U′/{a} (i = 1, 2, …, t) is a related training 
sample set on a from the branch node of sub-tree. For 
example, if the testing attribute a is the root node, its 
related training sample set is U′. k is the number of 
equivalence blocks from the partition {Z1, Z2, …, Zk}, 
and it shows the amount of decision rules created by the 
root or sub-root node a. 

It shows from Definition 4 that the significance 
measure Sig(a, P, U′i, D) indicates the importance of 
attribute a added to P with reference to D in decision 
tables, offering the powerful reference to the decision. 
The bigger the significance measure of attribute is, the 
higher its position in the decision table is, and otherwise 
the lower its position is. Therefore, if each of the 
significance measure of attribute is calculated, then the 
attribute with the zero or lower significance measure is 
removed, and the knowledge reduction can be finished.  

In the process of calculating Sig(a, P, U′i, D), it can be 
easily seen that every time to calculate any testing 
attribute a with the maximum of Sig(a, P, U′i, D) is in 
fact to calculate ( | { })S D P a

k
∪  with the maximum. 

Because S(D|P) is a constant when we calculate Sig(a, P, 
U′i, D). Meanwhile, to improve the limitations of ID3 and 
C4.5, when the branch nodes of sub-tree are generated by 
the testing attributes, all of their parent nodes and the 
corresponding attributes are no longer involved with the 
nodes of their sub-trees.  

Therefore, the factors, which include their parent nodes, 
the corresponding attribute set P, and the related training 
sample sets, should not be considered. Thus, to calculate 

( | { })S D P a
k
∪  is in fact to calculate the corresponding 

( | { })S D a
k

, that is, to calculate the corresponding 

equivalence blocks. When we introduce the technology 
of radix sorting in [26] to calculate equivalence blocks 
effectively, thus, all of the policies above will be helpful 
to reduce the quantity of computation and the time-space 
complexity of search. 

B.  Decision Tree-based Rule Extraction Algorithm 
Towards dealing with both the above some difficulties 

of rule extraction, based on the improved significance 
measure of attribute, our idea is to put a method without 
computing relative attribute reduction of a decision table 
in rough set theory into a decision-tree structure. 
Motivated by this, based on decision degree, we propose 
the method over depth-first spanning for rule extraction 
from decision tree. The following is a summary of the 
steps of decision tree-based rule extraction algorithm, 
which consists of classification decision tree construction, 
and followed by three steps of rule extraction over depth-
first spanning, including rule extraction over the tree 
structure, the one-class node, and deleting dispensable 
nodes from rule, respectively. Individual steps of the rule 
extraction are detailed in the subsections below and 
shown schematically in Fig. 1. 

It is well known that rough set theory is always used to 
mine some patterns in the form of “if …, then …” 

decision rules from decision tables. More exactly, the 
decision rules say that if some condition attributes have 
given values, then some decision attributes have other 
given values. Then, we will not only consider how to 
discretize numerical attributes and construct a decision 
tree for rule extraction, but also focus on how to improve 
computational efficiency in the context of large-scale data 
sets. The rule extraction algorithm using decision tree, 
called RE-DT, is designed in a decision table, its time 
complexity is analyzed, and an illustrative example is 
employed to show the mechanism of algorithm RE-DT as 
follows. 

Algorithm RE-DT 
Input: U (Training sample set), C (Condition attribute 

set), D (Decision attribute set). 
Output: T (a decision tree), decision rule set. 
(1) Initialize T as the root node, and current training 

sample set U. 
(2) Perform U/(C∪ D) with radix sorting, and obtain 

related training sample set U′. 
(3) If U′/D = {U′}, then append Vd to T.  
(4) If |C| = 1, then append U′i∈U′/C to T as terminal 

nodes, depth-first span path (rule) from terminal 
node to root down-up (or root to terminal node up-
down), and start the following loop operations:  
(4.1) If the current node of T is an internal node, 

then delete it. 
(4.2) If the path is only, then go to the next node, 

and return to (4.1). 
(4.3) Otherwise, add it to the path, go to the next 

node, and return to (4.1). 
(4.4) Mark the path as a simplified decision rule. 

(5) Perform Eq. (8) to obtain ( | { })S D a
k

 (a∈C, k = 

|U′i/({a} ∪ D)|, and U′i∈U′/{a} = {U′1, U′2, …, 
U′t}) with radix sorting, and select the testing 
attribute a with the maximum ( | { })S D a

k
 as the 

branch node. 
(5.1) If the testing attribute is not only, then select 

one with the minimum k. 
(5.2) If the selected is not only, then select the front. 

(6) For every related training sample set U′i∈U′/{a}, 
do the following operations: 
(6.1) If U′i belongs to one-class, then train a one-
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Figure 2.   A decision tree. 

class node to T, and append Va to the 
corresponding arcs. 

(6.2) Set the sub-tree Ti as (U′i, C = C – {a}, D), 
where i = 1, 2, …, t. 

(7) If no new node is added to T, then output T and 
simplified decision rule set, otherwise, adjust 
current partitioning scale, and go to (4). 

Obviously, the generation of decision rules is not 
based on a reduct of a decision table but the 
equivalence blocks and depth-first traversal in 
Algorithm RE-DT. Furthermore, in order to extract 
decision rules efficiently, we use the technology of 
twice-hash [26] to calculate all of the equivalence 
blocks, whose time complexity will be cut down to 
O(|U|).  

By using algorithm RE-DT, the time complexity to 
extract decision rules from a decision table is 
polynomial.  

At step (2), the time complexity of computing the 
partition U/(C∪ D) is O(|U′|). 

At step (4), since |C| − 1 is the maximum value for 
the circle times, the time complexity for depth-first 
traversal is 

O((|C|−1)|U′1|) + O((|C|−2)|U′2|) + ...+ O(|U′|U′/C||) ≤ 
O(|C|2 |U′|). 

At step (5), since |C| is the maximum value for the 
circle times, the time complexity of selecting the 
testing attribute is  

O(|C||U′|) + O((|C|−1)|U′|) + O((|C|−2)|U′|) + ...+ 
| || 1 |(| |) ( | |) .

2
C CO U O U+′ ′=  

At step (6), the time complexity is also O(|U′|).  
Thus, in the worst case the time complexity of 

Algorithm RE-DT is 
2

2
2

| || 1 |(| |) (| | | |) ( | |)
2

3 | | | | 2( | |) (| | | |) .
2

C CO U O C U O U
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Therefore, Algorithm RE-DT is different from existing 
algorithms based on attribute reduct for extracting 
decision rules from decision tables. The time complexity 
of a rule-extracting algorithm based on attribute reduct is 
O(|C|3|U|2). Obviously, the time complexity of algorithm 
RE-DT is much lower than those of the existing algori-
thms in [8, 11, 12, 15, 22-25, 27]. Furthermore, its worst 
space complexity is O(|C||U′|). 

Thus, the time complexity of algorithm RE-DT is 
largely reduced relative to those of the existing algori-
thms based on attribute reduct for extracting decision 
rules from decision tables. Therefore, this means that 
the proposed algorithm for finding the simplified 
decision rule set requires less computation and memory.  

Example 1. SDT = (U′, C, D) is a simplified decision 
table in [27], described in Table I, where U′ = {1, 2, …, 
14}, C = {a, b, c, d}. 

From Table I, by using algorithm RE-DT, we construct 
a decision tree, shown in Fig. 2, and extract its corres-
ponding simplified decision rules. 

By computing, it follows that U′/D = {{1, 2, 6, 8, 14}, 
{3, 4, 5, 7, 9, 10, 11, 12, 13}} = {D0, D1}. Therefore, five 
deterministic decision rules can be extracted as follows: 
DesC({1, 2, 8})→DesD(D0), i.e., (a = 1, c = 1)→(D = 0); 
DesC({9, 11})→DesD(D1), i.e., (a = 1, c = 0)→(D = 1);  
DesC({3, 7, 12, 13})→DesD(D1), i.e., (a = 2)→(D = 1); 
DesC({4, 5, 10})→DesD(D1), i.e., (a = 3, d = 0)→(D = 1); 
DesC({6, 14})→DesD(D0), i.e., (a = 3, d = 1)→(D = 0).  

V.  EXPERIMENTAL METHODS AND RESULTS 

In this section, we give a real world example used to 
explain the validity of the proposed rule extraction 
algorithm, and apply the proposed approach and other 
decision tree approaches to several data sets from the UCI 
Machine Learning Repository (http://www.ics.uci.edu),  
so as to evaluate the proposed approach. 

Example 2. Consider descriptions of the career work 
in university. This is a decision table, described in Table 
II, where U = {1, 2, ..., 24}. The condition attributes A, B, 
C, and D stand for Political Landscape, Major Score, 
Practical Ability, and English Proficiency, respectively. E 
stands for Job Hunting. The values 1, 2, and 3 of Political 
Landscape stand for People, Member, and Party Member, 
respectively. The values 1 and 2 of other attributes stand 
for General and Good, respectively. 

TABLE I. 
A SIMPLIFIED DECISION TABLE 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
a 1 1 2 3 3 3 2 1 1 3 1 2 2 3 
b 1 1 1 2 3 3 3 2 3 2 2 2 1 2 
c 1 1 1 1 0 0 0 1 0 0 0 1 0 1 
d 0 1 0 0 0 1 1 0 0 0 1 1 0 1 
D 0 0 1 1 1 0 1 0 1 1 1 1 1 0 
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Figure 3.   Decision degree-based decision tree.  

Figure 3.   Decision degree-based decision tree. 

 
Figure 4.  ID3-based decision tree. 

From Table II, based on the above measure of 
significance, we can construct two decision trees, based 
on decision degree and ID3, shown in Fig. 3 and 4, 
respectively. It can be seen from Fig. 3 and 4 that nine 
decision rules are generated from each of the two 
decision trees. In Fig. 3, B and C, earlier than A, are 
selected. In Fig. 4, D is firstly selected, following that, A 
is selected secondly. However, through analyzing 
knowledge-based systems of employment expert, it is 
known that the significance of B and C is greater than that 
of A with more values. Therefore, the proposed algorithm 
avoids automatically the tendency to select attributes with 
more values as test attributes. 

In the following, we run our experiments on four data 
sets from the UCI Machine Learning Repository [28], 
which represent a wide range of domains and data 
characteristics. The description of the four data sets is 
shown in Table III. We use C 4.5-based algorithm in [23], 
rough set-based approach in [25], and Algorithm RE-DT 
to design C4.5, RS, and RE-DT, respectively. Then, we 
conduct empirical experiments to compare in terms of 
number of rules, running time and classification accuracy. 
In all experiments, 10-fold cross validation is conducted 
on all data sets to calculate the classification accuracy of 
the three methods. That is to say, we can obtain ten 
results with respect to each data set. Our experiments are 
performed on AMD Quad-core 3.1 GHz CPU, 4GB RAM, 
Windows XP, and program in Visual C++ 6.0. The 

detailed experimental results are summarized in Table IV. 
In the table, “NR” indicates the average number of rules, 
the running time of each algorithm, indicated by “RT”, is 
the averaged CPU time in millisecond, and “Accu” 
indicates the average accuracy of the ten values of 
accuracy with respect to a data set and is assigned as the 
accuracy of the corresponding decision tree. Furthermore, 
this difference can be illustrated by plotting the ratios of 
their running time, C4.5/RS and C4.5/RE-DT, shown in 
Fig. 5. 

According to Fig. 5, it is observed that the slope of the 
curve shown tends to increase with size of data sets, so 
that just shows the proposed method are thus much more 
suitable for large data sets, but the curve fluctuates 
distinctly. In fact, the main reason is that the attribute 
number of data sets is different.  

From all of the experimental results, we can see that 
the decision trees constructed by the presented method 
tend to have simplified decision rule set, smaller running 
time and higher classification accuracy than that const-
ructed by the methods in [23, 25] on most of the four 
datasets. It should be mentioned here that the number of 
condition attributes and the number of values one 
attribute can have can vary arbitrarily without limit, the 
tendency of all results is similar. 

TABLE II. 
 DECISION TABLE DESCRIPTIONS OF THE CAREER WORK IN UNIVERSITY 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
A 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
B 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2
C 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
D 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
E 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 2

TABLE III. 
DESCRIPTION OF DATA SETS 

No. Data sets Size Attributes (C/D) Classes
1 Iris 150 4/1 3 
2 Soybean 683 35/1 19 
3 Breast Cancer Wisconsin 699 9/1 2 
4 Tic-tac-toe 958 9/1 2 
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Figure 5.  Ratio of the running time (C4.5/RS, C4.5/RE-DT). 
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VI.  CONCLUSIONS AND FUTURE WORK 

In recent years, the rough set-based approaches to 
inducing decision tree are testified to be a simplified and 
feasible way for constructing decision tree. These current 
approaches also have some disadvantages, however, they 
can do well only in accurate classification where objects 
are strictly classified according to equivalence blocks. 
Therefore, the induced classifiers lack the ability to 
tolerate possible noises in real world data sets. This is an 
important problem to be handled in applications. In this 
paper, to offset and improve the limitations of current 
knowledge acquisition approaches, we introduce a new 
uncertainty measure, called decision degree, and a new 
significance measure for rules extraction of decision tree 
is designed. As an application of rough set, an algorithm, 
called RE-DT, has been proposed for extracting decision 
rules in decision tables. Two illustrative examples and 
four data sets from the UCI Machine Learning Repository 
have been employed to show the validity of this 
algorithm. Moreover, the time complexity of algorithm 
RE-DT is much lower than that of the existing appro-
aches to decision tree. Thus, we believe that the use of 
more sophisticated methods, such as the accuracy 
estimates based on k-fold cross-validation or leave-one-
out, could improve the performance of the proposed 
method and make its advantage stronger in efficiently 
extracting rules from practical large-scale data sets. This 
is the main research direction for our future work.  
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