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Abstract— Identification of protein complexes in 
protein-protein interaction (PPI) networks is important in 
understanding cellular processes. In this paper, we propose 
a computationally efficient algorithm, named by 
Overlapped Affinity Propagation (OAP), which is based on 
Affinity Propagation algorithm (AP) to detect protein 
complexes. First, AP algorithm is adopted to obtain a hard 
partition of the network. Then the candidate overlapping 
proteins for each community are identified. Finally, a 
strategy is constructed with an immediate purpose to filter 
noise in these detected protein complexes. We apply the 
OAP to the Saccharomyces cerevisiae PPI network, and the 
experimental results demonstrate that our algorithm can 
discover protein complexes with high precision by 
compared with the AP, MCL, CoAch and CPM algorithms. 
Our proposed method is validated as an effective algorithm 
in identifying protein complexes and can provide more 
insights for future biological study. 
 
Index Terms—protein-protein interaction networks, graph 
clustering, protein complexes, affinity propagation 
 

I. INTRODUCTION 
Protein complexes encompass groups of genes or 

proteins involved in common elementary biological 
processes [1]. They play a critical role in integrating 
multiple gene products to perform useful cellular 
functions. Identifying protein complexes is an important 
and challenging task in post genomic era. Generally, 
detecting protein complexes can be viewed as a graph 
clustering problem, for protein complexes generally 
correspond to highly connected sub-graphs in the protein 
interaction graphs [2][3]. 

Various graph clustering algorithms have been studied 
to identify protein complexes in PPI networks. Spirin and 
Mirny [4] proposed the maximum clique algorithm to 
detect fully connected complete sub-graphs (cliques). 
However, the basic property of clique is too restrictive 
since the current PPI data are incomplete and bear a high 
rate of false positive. To overcome this difficulty, 
researchers relax the restriction of protein complexes. 
Palla et al.[5] proposed the Clique Percolation Method 

(CPM), in which a community is defined as a union of 
all k-cliques (complete sub-graphs of size k) that can be 
reached from each other through a series of adjacent 
k-cliques (where adjacency means sharing k-1 nodes). 
Wu et al.[6] proposed the CoAch (Core-Attachment) 
algorithm. It defines a protein-complex core as a small 
group of proteins which show a high mRNA 
co-expression patterns and share high degree of 
functional similarity. The algorithm first detects 
protein-complex cores as the "hearts" of protein 
complexes then includes attachments into these cores to 
form biologically meaningful structures.  

These above methods mainly focus on extracting the 
dense sub-graphs and discarding relatively sparse ones. 
As a result, many complexes are missed. Partition based 
clustering algorithms can overcome this difficulty. For 
example, Girvan and Newman [7] developed the GN 
algorithm, which find community structures in networks 
by removing the edges of the highest betweenness one by 
one. Newman [8] also proposed a fast algorithm which 
getting the cluster result by maximize the modularity 
function Q . Arnau et al. [9] presented an agglomerative 
method UVCLUSTER. This method gives a novel 
strategy to convert the set of primary distances among 
them into secondary distances. 

However, the partition-based clustering algorithms can 
only discover the non-overlapping communities. 
Actually, a protein may belong to more than one 
complex since a protein may participate in several 
functions [5]. To detect these overlapping complexes, 
Dongen [10] presented the MCL (Markov CLustering) 
algorithm. MCL uses the properties of random walks and 
simulates random walks within a graph to get the cluster 
result. MCL can find only a few overlapping vertices. 
Steve [11] presented the CONGA (Cluster-Overlap 
Newman Girvan Algorithm) algorithm. This method first 
finds those vertices may be overlapped and splits them, 
and then uses GN to get the cluster result. A critical 
drawback of this method is its high time complexity. 
Shen et al.[12] developed the EAGLE (agglomerativE 
hierarchicAl clusterinG based on maximaL cliquE) 
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algorithm. This algorithm improves the cost-function Q  
presented by Newman. When applying EAGLE on PPI 
networks, the number of the overlapping protein 
complexes is limited. 

In this paper, we propose a new algorithm OAP 
(Overlapped Affinity Propagation) which is based on AP 
(Affinity Propagation) to detect the overlapping protein 
complexes. We first use AP to obtain a hard partition of 
the PPI network, and then we adopt the information AP 
gives us to judge whether a protein is a candidate 
overlapping protein or not. Finally we suggest a filter 
condition to distinguish the real overlapping proteins 
from the candidates. The experimental results improve 
that compared with other four competing algorithm, our 
method achieves a higher precision between the 
predicted protein modules and the known protein 
complexes. A rough introduction of this idea is published 
in conference proceedings before [13].  

II. METHODS 
In this section, we discuss how to use AP to cluster a 

graph and the details of improved method to detect 
protein complexes in PPI networks. 

A. AP algorithm 
AP is a clustering algorithm proposed by Frey and 

Dueck in 2007[14]. It takes similarities between data 
points as input and each similarity is set to a non-positive 
value. The ultimate goal of AP is to minimize an energy 
function 
 

1
( ) ( , ) ( , ) 0 (1)N

i ii
E c s i c s i c

=
= − ≤∑  

Here, N  represents the total number of data points. ic  
indicates the exemplar of the data point i ,  and 

),( icis  is the similarity between data point i  and its 

exemplar ic .  
Rather than requiring the number of clusters be 

pre-specified such as k-means, AP takes as input a 
non-positive real number ),( kks  for each data point 
k . Data points with larger values of ),( kks  are more 
likely to be chosen as exemplars. These values are 
referred to as the parameter of “preferences”. The 
number of clusters is influenced by the values of the 
input preferences. 

In order to minimize the energy function, AP 
exchanges real-valued messages between data points. 
There are two kinds of messages to be exchanged 
between data points during the iterative procedure. One 
is “responsibility” information, ( , )r i k , means how 
well-suited node k  will be chosen as the exemplar for 
node i , which is a message sending from node i  to 
node k . The other is “availability” information, 

( , )a i k , means how appropriate node i  will choose 
node k  as its exemplar, which is sent from node k  to 
node i . The algorithm is stated below: 
 

AP algorithm 
Input: Similarity matrix of N  data points, N NS

×
, 

where the diagonal of the matrix is the preferences. 
Output: A partition of the data points and each cluster 
has an exemplar. 
Initialization: Set availability matrix N NA

×
 to zero 

Steps: 
1. Updating all responsibilities ( , )r i k : 

{ }' '

' '

. .
( , ) ( , ) max ( , ) ( , ) (2)

k s t k k
r i k s i k a i k s i k

≠
← − +  

2. Updating all availabilities ( , )a i k : 

{ }
{ }' '

'

. . ,

( , ) min 0, ( , ) max 0, ( , ) (3)
i s t i i k

a i k r k k r i k
∉

⎧ ⎫⎪ ⎪← +⎨ ⎬
⎪ ⎪⎩ ⎭

∑  

{ }
' '

'

. .

( , ) max 0, ( , ) (4)
i s t i k

a k k r i k
≠

← ∑  

3. Combining availabilities and responsibilities. For 
point i , the point k  that maximizes  

( , ) ( , )r i k a i k+  is its exemplar; 
4. If decisions made in step 3 did not change for a certain 

times of iteration or a fixed number of iteration 
reaches, go to step 5. Otherwise, go to step 1.  

5. Each data point has its own exemplar, and the points 
with the same exemplar constitute a community. 

B. The similarity measure  
AP is used to cluster data points, taking similarities 

between data points as input. While using AP to cluster a 
graph, there should be a way to measure the similarities 
between the vertices of the graph. James [15] compared 
AP with MCL by using the adjacency matrix as the 
similarity directly. However, this similarity measure 
causes severe convergence problems on the majority of 
the unweighted graph. To overcome this difficulty, in this 
paper we use Jaccard similarity [16].  

C. Our algorithm OAP 
1) Analysis of AP Algorithm 

When using AP to cluster a graph, we first identify all 
of the exemplars, and then assign each vertex i  to the 
exemplar  u  which maximizes ( , ) ( , )r i u a i u+ . 
Finally, the vertices with the same exemplar constitute a 
community. But in some special cases, there exists 
another exemplar v  making ( , ) ( , ) ( , ) ( , )r i u a i u r i v a i v+ = + . 
An illustration is shown in fig.1. The decision of 
assigning vertex i  to which exemplar is hard to make, 
because for vertex i , there is no difference of choosing 
u  or v  as its exemplar. AP wants a partition of the 
graph, so it avoids this situation by adding a tiny amount 
of noise to the input similarities. But in fact, the vertex 
i  should be an overlapping vertex. It belongs to the 
cluster whose exemplar is u   and the cluster whose 
exemplar is v simultaneously. 
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Fig. 1. Schematic example for overlapping vertex. 

In some cases, the overlapping vertices in a graph are 
not so clearly, such as the “karate club” network of 
Zachary [17] which is shown in Fig. 2. AP can find the 
correct result, and choose vertex 1 as well as vertex 33 to 
be the exemplars of two clusters. In this network, there is 
no vertex i  making ( ,1) ( ,1) ( , 33) ( , 33)r i a i r i a i+ = + . 
Then we look for the vertex i   which makes the 
difference between ( ,1) ( ,1)r i a i+  and 

( , 33) ( , 33)r i a i+  smallest. Finally, vertex 3 has been 
picked up. This implies that for vertex 3, compared with 
other vertices, the difference of choosing vertex 1 or 
vertex 33 as its exemplar is insignificant. So vertex 3 
may be an overlapping vertex. Choosing vertex 3 as an 
overlapping vertex is reasonable. In some algorithms, 
like GN and spectral partition, vertex 3 belongs to the 
cluster whose exemplar is vertex 33. While in MCL, with 
an appropriate parameter, vertex 3 is an overlapping 
vertex. We gain the conclusion that if only depend on the 
topology of the graph, it is difficult to decide which 
cluster vertex 3 belongs to. Vertex 3 could be an 
overlapping vertex.  

AP can not identify the overlapping communities. 
However, the overlapping communities are ubiquitous in 
many real networks such as PPI networks, social 
networks as well as others. We can't use AP algorithm 
directly, but we can use the information AP gives us to 
identify the possible overlapping vertices. In this paper, 
we propose a new algorithm OAP based on AP, and this 
method could be used to detect the overlapping 
communities. 

            
Fig. 2.  Zachary’s karate club network. Square nodes and circle nodes 
represent the instructor’s faction and the administrator’s faction, 
respectively. 

2) Identification of candidate overlapping vertices 
We use the information AP offered to detect the 

candidate overlapping vertices. If a vertex i  should be 
overlapped, then there must be several exemplars, and 
the difference of choosing which one as i ’s exemplar is 
slight. To characterize the distinction of choosing 
different exemplars, a simple expression is given, stated 

as ( , , ) ( , ) ( , ) ( ( , ) ( , ))i i idistance i c k r i c a i c r i k a i k= + − + . 

Here ic  represents the exemplar of vertex i  found by 

AP. k  is an exemplar of another cluster, and this cluster 
doesn’t include vertex i . ( , , )idistance i c k  represents 

that for a vertex i , the difference between choosing ic  

as its exemplar and choosing k  as its exemplar.  
We employ a parameter, threshold θ , in our OAP 

algorithm, which is a non-negative real number. If 
( , , )idistance i c k θ≤ , we consider that vertex i  can 

choose vertex k  as its candidate exemplar, which 
means vertex i  is chosen as a candidate overlapping 
vertex. We use θ  to control the number of candidate 
overlapping vertices. With θ ’s increasing, more and 
more candidate overlapping vertices will be found. The 
effect of parameter θ  will be validated in the later 
experiments. The process of identifying candidate 
overlapping vertices is shown in algorithm 1: 
Algorithm 1: Identifying candidate overlapping 
vertices algorithm 
Input:  
The adjacent matrix of graph ),( EVG = ; 
Output: 

A hard partition of V , labeled as { }
1

m

j j
V

=
, and m  is 

the number of the communities we found; 
A set of candidate overlapping vertices for each jV , 

labeled as jCandidateSet ;  
Steps: 
01 Calculate the similarity of every two vertices in G ; 
02 Run AP algorithm to get a hard partition of  

V . Exemplars are stored in set C . We use  

ic  to represent the exemplar of vertex i ; 

03 Return { }
1

m

j j
V

=
  

04  For each vertex Vi∈  do: 
05    For each exemplar j C∈  do:    

06  If ( , , )idistance i c j θ≤ and ij c≠  do: 

07   { }j jCandidateSet CandidateSet i= ∪ ; 
08  End If 
09  End For 
10  End For 

11 Return { }
1

m

j j
CandidateSet

=
 

Using algorithm 1, each cluster found by AP has its 
own candidate overlapping vertices.  
3) Filtering candidate overlapping vertices 

For a vertex i , having an exemplar c  satisfying 
( , , )idistance i c c θ≤  and ic c≠  is only a necessary 

condition of considering vertex i  as an overlapping 
vertex. We also need to filter those candidate vertices 
which making the induced sub-graph with them sparser 
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than the same induced sub-graph without them.  
In order to judge whether a graph is denser than 

another, we propose a density function of graph 

( , )G V E=  as | | (| | 1)

| | (| | 1) / 2G

E V
D

V V

− −
=

× −
. Here ||V  is 

the vertices number of G  and || E  is the edges 
number of G . The biggest and only difference between 
graph density and ours is the factor | | 1V −  in the 
numerator. The intuitive idea behind is that, similar to 
partition density given by Yong-Yeol Ann et al.[18], a 
tree is too sparse to be a significance function unit in PPI 
network becasue of the tree structure in ubiqutous in 
random graphs [19]. Another concept we introduce is 
vertex fitness. The fitness of an vertex A  with respect 
to a sub-graph G , A

Gf , is defined as the variation of 

the density of the sub-graph G  with and without vertex 
A, i.e. 

  { } { }.
A

G G A G Af D D+ −= −    (5) 

In equation (5), the symbol { } ( { })G A G A+ −  indicates 
the sub-graph with vertex A  inside (outside). 

A filter strategy is suggested. Suppose graph g  is a 
sub-graph and the candidate overlapping vertices of g  
is stored in a set CandidateSet . We find the vertex i  
in CandidateSet  with the largest fitness and this 
candidate will be considered as a real overlapping vertex 
if 0i

gf ≥ . The pseudo code of filter strategy is stated in 
algorithm 2. 
Algorithm 2: Filtering candidate overlapping vertices 
algorithm 
Input:  
The adjacent matrix of ),( EVG = ; 

A cluster found by AP, labeled as jV ; 

The set of candidate overlapping vertices for jV , 

labeled as jCandidateSet ;  
Output: 
A cluster with overlapping vertices in it if necessary, 
labeled as ( )s

jV . 
Steps: 
01 j

s
j VV =)( ; 

02  While φ≠jetCandidateS   do: 

03     Calculate gD .   

//Graph g  is the induced sub-graph of ( )s

jV ;  

04   find the vertex i  in jCandidateSet  with  
the largest fitness; 

05        If 0i
gf ≥  do 

06           ( ) ( ) { }s s
j jV V i= ∪ ; 

07        else 

08             Break;         
09        End If 
10    End While 
11 Return ( )s

jV  
Using sub-algorithm 2, every cluster found by AP has 

been expanded to be an overlapping community if it is 
necessary.  
4) Our algorithms OAP  

Based on the analysis above, we propose a new 
method OAP to identify protein complexes in PPI 
networks. Our algorithms OAP are shown as follows: 
OAP Algorithm 
Input:   
A PPI network 
Output: 
Protein complexes  
Steps: 
1. Represent the PPI network by a graph 

),( EVG = ; 
2. Run algorithm 1 to get a hard partition of the PPI 

network and identify candidate overlapping proteins 
for each module; 

3. For each cluster jV  found by AP, its induced 

sub-graph is labeled as graph g . If 0gD > , run 
algorithm 2 to filter candidate overlapping proteins.  

4. Return protein complexes. 
The algorithm 1 consists of two parts. One part is AP, 

which is used to partition the PPI network, and the time 
complexity of it is ( )2NΟ . N  is the vertices number 

of G . Another part is used to identify candidate 
overlapping proteins for each community, and the time 
complexity of it is ( )NmΟ . Here m  is the number of 
communities found by AP. Suppose each community has 
n  candidate overlapping proteins on average. The time 
complexity of algorithm 2 is ( )2n mΟ . Since n N� , 
the time complexity of algorithm 2 is lower than 
( )2NΟ . Therefore, the overall complexity of OAP is 

2 2( ) ( ) ( )O N O Nm O n m+ +  which could be considered 

as ( )2NΟ .  
We consider the protein complexes detected by OAP 

are more biological significant than those detected by AP. 
When using AP algorithm to clustering PPI network, we 
get a hard partition, and we regard each community in 
this partition as a complex. But in fact, a protein may 
belong to more than one complex, and those very sparse 
sub-graphs found by AP may biological insignificant. 
OAP get over these difficulties. It can filter those 
insignificant communities by comparing them with 
random graphs and identify overlapping communities by 
using the information AP gives us.  

It is reasonable to say that OAP can perform better 
than AP algorithm in detecting protein complexes 
without increasing time complexity. 
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III. EXPERIMENTS AND RESULTS 
In this section, we do some experiments to validate the 

efficiency of our method in identifying protein 
complexes in PPI networks.  

A.  Experimental data 
In our experiments, we perform our OAP method on 

the yeast (S. cerevisiae) PPI network. The PPI network 
of budding yeast has been studied earlier in several 
works [6][9][20]. This data set is available in December 
2007 release of the Database of Interaction Protein (DIP: 
http://dip.doe-mbi.ucla.edu/), which consists of 17,201 
interactions between 4928 proteins (we delete isolated 
proteins and loops).  

In order to evaluate our identified modules, a set of 
real complexes is selected as the benchmark [21]. This 
benchmark set consists of 428 protein complexes, from 
three sources: (I) MIPS [22], (II) Aloy et al. [23] and (III) 
SGD database [24] based on Gene Ontology (GO) 
annotations.  

B. Evaluation criteria 
Different criteria proposed by previous studies are 

used to evaluate clustering results for PPI networks 
([25]Sylvain et al., 2006; [26]Chua et al., 2007; [27]Song 
et al., 2009). We use some of them to evaluate our 
experiment results.  
1) Precision, Recall and F-measure 

Before giving the definition of precision, recall and 
F-measure, we should define some other concepts first. 
The neighborhood affinity score between a real complex 
b  in the benchmark and a predicted complex p  is 
used to determine whether they match with each other or 
not, and is defined as  

( )
2

, b p

b p

V V
NA p b

V V
=

×

∩
.  

 
The neighborhood affinity score of a predicted complex 
vs. a benchmark complex is a measure of biological 
significance of the prediction. If ( ) ω≥bpNA , , then 
they are considered to be matching. In order to choose an 
appropriate ω  that maximizes biological relevance of 
the predicted complexes without filtering away too many 
predictions, MCODE algorithm tested this parameter 
from 0 to 0.9 (in 0.1 increments). The experimental 
results demonstrate that a ω  threshold of 0.2 to 0.3 can 
filter out most predicted complexes that have 
insignificant overlap with known complexes.  

We set ω  as 0.2 in this paper, which was the same 
threshold used in MCODE [28] and CoAch. Let B  be 
the set of real complexes, it is the benchmark, and P  
be the set of clustering results. cpN is the number of 
predicted complexes which match at least a real complex, 
the mathematic expression is 

{ }| , , ( , )cpN p p P b B NA p b ω= ∈ ∃ ∈ ≥ . cbN  is the 
number of real complexes which match at least a 

predicted one, the mathematic expression 
is { }| , , ( , )cbN b b B p P NA p b ω= ∈ ∃ ∈ ≥ . Precision 

and recall are defined as [26]:    
| |

cpN
Precision

P
=      

| |
cbN

Recall
B

=                          

F-measure which is the harmonic mean of precision 
and recall, defined as:  

2 / ( )F measure Precision Recall Precision Recall− = × × + I
t is used to evaluate the overall performance of the 
different techniques. 
2) P-value 

The P-value is often used to calculate the statistical 
and biological significance of a protein clusters, 
following the hyper-geometric distribution. It is the 
probability that a given set of proteins is enriched by a 
given functional group merely by chance [29]. Assume a 
cluster C of size || C , with k  proteins in a functional 
group F  of size || F . Also, assume the PPI network 
contains ||V  proteins entirely. Then, the P-value is: 

1

0

| | | | | |

| |
1

| |

| |

k

i

F V F

i C i
P value

V

C

−

=

−

−
− = −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

Known protein complexes have low P-value, because 
smaller P-value implies that the clustering is not random 
and is more biologically significant than the cluster with 
a higher P-value. In our experiments, those clusters 
whose P-value is bigger than 0.001 are considered to be 
insignificant.  

C. Effect of the parameters 
Our algorithm employs two parameters. The 

preference is the parameter we inherit from AP algorithm. 
It affects the number of modules. Here we only discuss 
how the parameter θ  affects the results. The threshold 
θ  is a parameter which is used to control the number of 
candidate overlapping protein complexes. When θ  is 
smaller than the exact value it should be, the 
clustering result is sensitive to θ , because we lose 
proteins that should be overlapped. When θ  is larger 
than the exact value, the clustering result is not 
sensitive to θ , because we find enough candidate 
overlapping proteins  and those not eligible were 
thrown off by the next step of our algorithm. But that 
doesn't mean we can set θ  very big. Big θ  will 
cause more candidates, and the more candidates we 
have, the more computing time we need. 

In our experiments, we increase θ  step by step. Here 
is the way we set θ : we construct two 1 N×  vectors, 

1V  and 2V . N  is the number of vertices. Here, 
The thi  element in vector 1V  is ),(),( ii ciacir + . 

The thi  element in vector 2V   is ),(),( jiajir + . 
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j  is the vertex which minimize 

)),(),((),(),( jiajirciacir ii +−+  and icj ≠ . 

Then we calculate 
1

1
( 1( ) 2( ))

N

i

base line V i V i
N =

= −∑ . We 

consider that θ  won’t be bigger than the base line, 
otherwise there will be too much proteins chosen as 
candidate overlapping proteins.  

We increase θ  from zero to this base line by using 
0.1×base line as the step length to study how threshold 
θ  affects our results. The experimental results displayed 
in Fig. 3 and Fig. 4.    
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Fig. 3.  The relationship of threshold θ  and the number of 
overlapping proteins 
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Fig. 4.  The relationship of threshold θ  and the number of 
overlapping protein complexes 

When θ  is smaller than 0.6×base line, increasing θ  
a little will cause an obvious increasement of the number 
of overlapping modules and the number of overlapping 
vertices. When threshold θ  is bigger than 0.6×base line, 
these two numbers both increase slowly, until they keep 
stable finally. These experiments exactly validate our 
analysis of θ  above. In the later experiments, the 
threshold θ  we use is 0.6 times as big as the base line. 

D. Comparisons with other algorithms 
In this section, we compare the performance of our 

OAP with AP, MCL, CPM and CoAch. We apply the 
MCL algorithm to find protein complexes from the same 
DIP data. We set the inflation parameter in MCL to be 
1.8, which makes the result have a best F-measure [25]. 
The performance of CPM, CoAch and AP is evaluated, 
too. We use the default setting of CoAch. While using 
CPM algorithm, we detect 3-cliques.  

Precision Recall F-measure
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

OAP
CoAch
AP
CPM
MCL

 
Fig. 5.  The comparisons between MCL, CPM, AP, and CoAch on 
precision, recall and f-measure  

Fig. 5 displays the comparison result of OAP, CoAch, 
CPM, MCL and AP on evaluation criteria precision, 
recall and F-measure. The precision of our OAP is 50.4%, 
which is 200.7%, 44%, 109.3% and 32.0% higher than 
MCL, CPM, AP and CoAch respectively. This means our 
method can predict functional modules very accurately. 
The recall of our method is 44.4%, which is 26.7% and 
17.3% lower than CoAch and AP. Because the number 
of protein complexes predicted by our algorithm is 232, 
which is far more less than that of CoAch and AP. The 
F-measure of our OAP is 47.2, which is 91.9%, 57.9%, 
41.7% and 2.4% higher than MCL, CPM, AP and CoAch 
respectively. Our OAP still performs the best.  

Fig. 6 illustrates an example, in which our predicted 
SAGA complex [30] can cover more proteins in the real 
SAGA complex. In this example, the real SAGA 
complex in the benchmark consists of 20 proteins. The 
complex predicted by our OAP method has 14 proteins 
and 13 of them are involved in the benchmark (in red 
color). The P-value is 1.95e-23. Meanwhile, CoAch 
method detect 13 proteins and manages to cover 11 
proteins. The P-value is 4.49e-15. AP covers only 8 
proteins of the real SAGA complex. The P-value is 
1.33e-13. The complex predicted by MCL has 15 
proteins and manages to cover 10 proteins. The P-value 
is 3.24e-15. MCODE algorithm can’t find a complex 
matches with SAGA complex, so it is not displayed in 
Fig. 6. 

 
 
 

(A) Benchmark 
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Fig. 6.  The SAGA complex predicted by different methods. In fig.6, 
(A) shows the real SAGA complex in the benchmark, and (B-E) are the 
SAGA complex predicted by CoAch, MCL, AP and OAP respectively. 
For each predicted complex, the proteins in red color are involved in 
the real SAGA complex and those in blue color are not. 

In table 1, the statistical significance of protein 
complexes predicted by various methods is displayed. A 
predicted complex is considered to be significant if its 
P-value is less than 0.001. The proportion of significant 
complexes over all predicted ones can be used to 

evaluate the overall performance of various methods. 
Table 1 shows the comparison results based on this 
measure. From Table 1, it is easy to find out that our 
algorithm achieve the best performance.The proportion 
of our OAP is 93%, which is 146.0%, 36.2%, 69.1% and 
11.5% higher than MCL, CPM, AP and CoAch 
respectively.  

TABLE I.   
 STATISTICAL SIGNIFICANCE OF COMPLEXES PREDICTED BY VARIOUS 

METHODS 

algorithm
Number of 

predicted protein 
complexes 

Number of  
Significant protein 

complexes 

Proportion
 (%) 

OAP 232 216 93% 
MCL 835 316 37.8% 
AP 631 348 55% 

CoAch 746 622 83.4% 
CPM 240 164 68.3% 

IV. CONCLUSION AND DISCUSSION 
Identifying protein complexes within biological 

systems is necessary for comprehending the high-level 
organization of the cell. Some different protein 
complexes are overlapping because they have proteins in 
common. In this study, we develop a new algorithm 
based on AP algorithm to find overlapping protein 
complexes in PPI networks. This algorithm can be used 
for clustering undirected and weighted graphs. We 
identify 232 protein complexes in the yeast 
protein-protein interaction network. We validate these 
detected protein complexes by comparing them with the 
GO annotations and find out that most of the predict 
complexes are significant.  

OAP inherits the good features of AP, that is, not 
have to know the number of the clusters in advance. It 
uses the iterative matrix of AP to search candidate 
overlapping vertices, and filter theses candidate vertices 
by a new graph density we suggested. These methods 
ensure that OAP can detect overlapping protein 
complexes and the results are all dense regions. OAP has 
achieved significantly higher F-measure than the 
competitive algorithms: AP, MCL, CPM and CoAch. 
Although We didn’t identify many protein complexes, 
our predicted complexes match very well with 
benchmark complexes. We believe our proposed method 
can provide more insights for future biological study. 
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