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Abstract— In virtual machine system, different workloads
are consolidated into a single platform to fully utilize
the hardware resources. However, the diversity and strong
variation of applications always make it difficult to opti-
mize the resource allocation and thus reduce the system
performance and efficiency. Therefore, how to accurately
analyze and predict the runtime behavior of applications
has become an important basement for virtual machine
system optimization. In order to study the characteristic
and predictability of virtualization applications, this p aper
proposes a dynamic behavior characterizing and predicting
methodology under Xen virtual machine. We analyze the
characteristics of several typical virtualization workloads
with fine temporal granularity and apply several online
predictors to predict application’s runtime 1/O behavior.
Experiment results demonstrate that the I/O behavior of
virtualization workloads can be efficiently predicted by usng
proper predicting model and configuration. With this result,
we further investigate the possibility of virtual machine
scheduler optimizing based on I/0O behavior characteriz-
ing. Several important issues are discussed including /O
computing jobs isolation through asymmetric scheduling,
VM dynamic migration based on execution phase tracking
and co-scheduling of multiple cooperative virtual machins.
Preliminary test results demonstrate that this approach
could efficiently reduce the performance degradation causk
by scheduling competition in virtual machine system.

Index Terms— Virtualization, I/O, behavior analysis, predict,
scheduler

I. INTRODUCTION

In order to address this problem, previously proposed
works have tried to classify applications into different
categories(such as I/O-intensive and CPU-intensive ones)
and encapsuled them into individual virtual machines
[3], [4]. This approach attempts to employ the isolated
computing environment provided by VMM to reduce
the resource competition between different applications.
However, most virtualization workloads contain 1/0 and
computing operations simultaneously and their behavior
always vary over time while exhibit complex character-
istics. In this case, traditional workload classificatian a
virtual machine granularity would not be accurate and
flexible enough to reflect the actual resource requirement
of different applications promptly. It could make the re-
source allocation strategy become either over-provislone
or overloaded and thus cause performance regression.
Therefore, it would be challenging to properly optimize
the resource allocation at virtualization environment.

A possible solution for this issue is classifying appli-
cations at a finer temporal granularity (e.g. couples of
scheduling periods) and dynamically allocate computing
resources to specific workloads based on their current
running states. In this case, the scheduler must be able
to perceive the state variation of applications and adjust
its resource allocation strategy promptly. Thereforepacc
rately characterizing and predicting the runtime behavior
of applications would become a pivotal problem for
intelligent and self-adaptive virtual machine scheduler

Virtualization technology offers many advantages todesign. Most of current research works about virtualiza-

modern computing environment. By running multiple tion Workloa(_js concentrate on t_he _performance analysis
virtual machines (VMs) in a shared physical platform, vir-@d scheduling algorithm optimization [5], [6], [7], [8].
tualization enables high utilization of hardware resosrce The study of fine-granularity application behavior analysi
Many features such as live migration and easy restart gfas not been carried out thoroughly. At the same time,
VMs also significantly improve manageability of large- although application behawor .analy3|s anq prediction
scale computing system. In virtualization environment'aS been a common and efficient way to improve the
different traditional server applications are consokdat €fficiency of hardware system [9], [10] or to optimize
into a single physical platform to fully utilize the hardwar (e performance of traditional programs [11], [12], [13],
resources. These workloads always have different runtim@one of these presented works specifically dealt with
behavior and resource requirement. However, current vir¥irtualization environment. _ .
tual machine schedulers usually employ global-symmetric Therefore, in this paper we propose a runtime behavior
algorithms to force different workloads to compete for thecharacterizing and predicting methodology for virtual-
CPU resources disorderly and thus cause serious perfdfation environment. We first build a test bed based on

mance interference [1], [2] which significantly reduce theXen virtual maphine_and .coII_ect the r_unti.me information
system performance and efficiency. of several typical virtualization applications. Then we

characterize their time-varying behavior and explore the
predictability from several aspects including periodicit
state-transition trait and cooperative relationship €ros
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Based on these results, we further exploit the possibility

of virtual machine scheduling optimization using 1/O

behavior predicting and execution phase tracking. We

first construct a asymmetric scheduling framework under

Xen-4.1.0 virtual machine and deploy two individual cpu Figure 1. IDD Model of Xen Virtual Machine

subsets to undertake 1/0 and computing jobs respectively.

Then we try to track different execution phases of ap-

plications based on their 1/0 behavior prediction resultsg:ﬁetarget domain when this domain is scheduled next

and migrate VMs cross different cpu subsets if we decide Therefore, in Xen virtual machine, the I/O event behav-

the system performance could benefit from this scheduk, " 1o bt the characteristic of /O jobs intuitiyel
ing adjustment. Several important issues are d|scusse§

including the method of execution phase tracking, topol- ome other virtual machine systems such as KVM [15]

A . .~ and VMWare ESX [16] also have similar 1/O structure
ogy optimization of cpupool allocation and co-scheduling . . . .
. . . L although their device models may have a little difference.
of cooperative virtual machines. Preliminary test result

demonstrate that this approach could efficiently e1‘facjz.or example, VMWare ESX server does not have an in-

the competition between /O and computing jobs ancgmdual driver domain and manages native device drivers

then promote the system performance, especially for som VMM itselt. However, they also apply similar soft
promote the system performe €SP y interrupt mechanism to notify the GuestOS about the 1/0
communication-intensive applications.

operation state. Therefore, characterizing the /O behmavi
. of applications through 1/0 event information could be an

. . o . Universal approach for most virtual machine systems. In
and predicting framework for virtualization environment. , . : L
this paper, we applied a monitoring tool [17] to collect the

Second, we discuss several important issues that aﬁeﬁ event information of virtual machines dynamically.

appllc_atlon be_hawor analysis and p_redwtmg. Fmally, W& This information is later used to characterize and predict
exploit a possible methodology of virtual machine sched-

uler optimization based on 1/O behavior predicting andthe runtime 1/O behavior of applications.
asymmetric scheduling.

The remainder of this paper is organized as follows. We
first describe our test environment and method of runtime
information collecting in section 2. Then we characterize®- Test Environment
the 1/0 behavior of several representative virtualization In this section, we will characterize the 1/0 behavior
applications and discuss their predictability in sectionof several representative virtualization applicationsét
3. After that, we compare several online predictors andhe stage for 1/O state predicting. Our test covers two
discuss the principal of predictor selecting in section 4typical industry-standard benchmarks includif§C W
We further investigate several important issues of virtuahnd NPB- MPl . We ran these two benchmarks under
machine scheduler optimization based on /O behavioXen virtual machine and recorded the 1/0 behavior of
predicting and provide some preliminary test results inapplications by collecting their I/O event information kit
section 5. We introduce some related work in section @ time granularity of 100ms. All of our experiments

I11. VIRTUALIZATION WORKLOADS BEHAVIOR
CHARACTERIZING

and finally conclude with a discussion in section 7. were performed in a x86 server which has an Intel
Q9550 quad-core processor, 4GB DDRII-800 memory,
II. RUNTIME I/O INFORMATION COLLECTING double RTL8169 1000Mbps Ethernet NIC and Seagate

o . . . 1TB SATA hard disk. We ran Xen-4.1.0 virtual machine
Our application behavior analysis work is based on

. . i . and used Domain0 as driver domain. Both DomainO and

Xen-4.1.0 virtual machine which applies an IDD(Isolated . . ) o ; .

. ) ) . . “DomainU ran Debian6.0 Linux distribution with Linux-
Device Domain) device model to manage its I/O dewces2 6.32 kernel
[14]. In this model, a virtualfrontend driver in a do- e '
mainU communicates with a corresponding virtbakk- . _ o
end driver residing in the isolated driver domain(alwaysB- /O Behavior of Typical Server Consolidation Work-
Domo0) and forwards 1/O requests to a native device drive0ads
The frontend driver and the backend driver notify each NPB-MPI: NPB- MPl is an MPI implementation of
other by an 1/O event througévent channeechanism the NASA Advanced Supercomputing (NAS) Parallel
which is a virtualization of hardware interrupt. Each time Benchmark (NPB) [18]. It is a small set of programs
an 1/O request or response is sent, an I/O event is pent idesigned to help evaluate the performance of parallel
the corresponding event channel and then delivered intsupercomputers. The benchmarks, which are derived from
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Figure 2. 1/0 behavior of NPB-MPI benchmark

computational fluid dynamics (CFD) applications, consistificantly different 1/O behaviors during their execution.
of five kernels and three pseudo-applications. In this tesor LU benchmark, I/O intensity keeps in lower level
we selected four benchmarks includihd), CG SP  in most time while high-intensity I/O operations appear
andEP. Test results of other three benchmarkts( BT  periodically. Conversely, the I/O intensity @G bench-
and FT) were excluded here because their have similamark always keeps in high level and only companied by
behavior. We used the Class C problem sizes to achieveteansient low-intensity I/O load states. F8iP benchmark,
proper data scale and total running time and tested eadtigh and low intensity I/O load states appear alternately
benchmark using 4 parallel computing nodes with each o&nd the variation does not exhibit noticeable periodicity.
them had one VCPU and 512MB memory. The 1/O eveniThe EP benchmark has little 1/O operations during its
frequency variation of each individual VM was recordedentire execution.

during the execution. We only demonstrate the result of This behavior distinction actually reflects the com-
primary node(Domainll) here because other computing - . . y
munication activity difference between these parallel

nodes have very similar 1/O behavior. We will discuss th : .
similarity and correlation between the 1/0 behaviors crosesbenChmarkSLU benchmark applies SSO.R algorithm to
solve regular-sparse lower and upper triangular systems.

different computing nodes in detail in section I1I.C. h . . } .
Computing nodes perform fine-granularity point-to-point
As illustrated in Figure 2, these programs exhibit sig-communication during each iteration and thus cause con-
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Figure 3. Periodograms of NPB-MPI and TPC-W benchmarks

tinuous but low-intensity 1/0 operations. The periodic programs. For example, the frequency spectrum peak of
high-intensity 1/0O states are caused by data transmissiob.2 cycle/sec fol,U and 0.29 cycle/sec fo€G exactly
at the joint of two iterations since result data need to bematch the iteration periods illustrated in figure 3(b)(abou
synchronized before starting the next step calculattiy. 5s, total 250 iterations during 1283s execution) and figure
benchmark uses a conjugate gradient method to compugff)(about 3s, total 75 iterations during 247s execution).
an approximation to the smallest eigenvalue of a largeThis strong structural regularity could significantly faci
sparse, symmetric positive definite matrix. Different fromitate the following 1/O state predicting. By contraSR’s
LU, it performs intensive irregular collective communica- periodogram is a little unexpected. There is a peak value
tion cross different nodes when executing sparse-matrithat reflects an implicit periodicity of 0.32 cycles/sec
vector multiplication during each loop. Therefore, con-which is difficult to perceive from temporal behavior
tinuous high-intensive 1/O operations are observed duringntuitively while could match the iteration period &P
the execution and periodic low-intensive I/O states alwayprogram (total 400 iterations during 1473s execution).
appear at the end of each iterati@® benchmark solves This implicit periodicity could also promote the precision
multiple independent systems of non diagonally dominandf history predictors. We will demonstrate the effect of
scalar pentadiagonal equations. This program is used tpplication’s periodicity for I/O state predicting thrdug
test the balance cross communication and computing. Itseveral experiments in section IV.
communication is mainly composed of irregular point-to-  TPC-w: TPC- Wbenchmark is a double-tier applica-
point long message transmission and each process cgBn based on the TPC-W standard [19] for an online
perform computing work as soon as it receives dataookstore. It is usually used to evaluate the performance
from other processes. Therefore, low-intensity 1/O loadof commercial servers. A TPC-W implementation always
states are always followed by irregular high-intensityrequires two software modules to support the test system
I/O operations which demonstrate the transmission oind drive the benchmark: an frontend application server
messages during the executideP benchmark, as the handling user sessions and a backend database server
acronym suggests, is an "embarrassingly parallel” kernekeeping merchandize information. In our test, we applied
It requires virtually no inter-processor communicatiodan 3 TPC- W NYU [20] test suit which is a fully J2EE
only coordination of pseudo-random number generatiogompliant application to setup our test environment. We
at the beginning and collection of results at the endysed JBoss 3.2.7 [21] as the frontend application
Therefore, it produces little I/O operations during itsserver andMySQL 4.1 [22] as the backend database
entire execution. server. We deployed these two tiers into individual vir-
We further apply fourier transform to analyze thetual machines which both have two VCPUs and 1GB
periodicity of different programs. Using 100ms samplingmemory allocation. Then we used the workload gener-
period, the range of frequency discernible is 0 to 5ator provided byTPC- W UVA [23] to simulate multiple
cycles/sec according to the Nyquist rate. As illustrated irconcurrent browser clients accessing the application from
Figure 3,LU and CG programs exhibit strong periodicity another physical client in the same local network. We
just as our intuitively observation. This periodicity canran shopping mix test for an hour with 100 parallel
be attributed to the execution iteration loops of these twsessions and recorded the 1/O event frequency variation of

©2012 ACADEMY PUBLISHER



1716 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

=
o
o
o
o
o
o

@
o
(=]
[o2]
o
(=]
T

(2]
o
o

4001

400 H

200 200r

h A Sl h A \““th‘l J ST \\HJI\HM Wi LT ‘\H\l‘lﬂwﬂ‘

1/0 event frequency (times/100ms)
1/0 event frequency (times/100ms)

) A iy
0 50 100 150 200 0 2 4 8 10
Time (s) Time (s)
(a) 1/0 event frequency of front-tier (b) Result zoomed into 10s
£ 1000 Z 800
8 8
o o
g 800 é 600-
< 600 N
— |
2 400 s
£ ‘” £ 200/
L, i 1 - I Ay
g Wil L ||‘uu.L|IIL|wL VAL Ml Ll M.m\m L‘ull“‘ Lt L \ih‘ll.‘\mhm Tt U M 8 A /\/\ | .
= 0 50 100 150 200 = 0 2 4 6 8 10
Time (s) Time (s)
(c) /0 event frequency of back-tier (d) Result zoomed into 10s

Figure 4. 1/0O behavior of TPC-W benchmark

both frontend and backend virtual machines with 100mg&ompare the variation detail of /0 behaviors of 4 com-
sample period. Test result is illustrated in Figure 4. puting nodes. As illustrated in Figure 5a, there are strong
Different from NPB benchmarks, the 1/0 event fre- similarity between them. The only noticeable difference
guency of TPC-W test servers exhibit strong variationis the peak value of nodel at 3.7 second is not as high
during the test. We analyze the periodograms of itsas three other ones and the intensity peak of nodel at 9th
I/O behavior and there are a cluster of peaks at higlsecond appears about one sample period(100ms) later than
frequencies depicted in figure 3(d) which demonstrate ghree others. Similar phenomenon can be observed from
strong aperiodicity. This phenomenon is mainly caused bpther NPB- MPl  benchmarks and front-tier and back-
the diversity of online transaction server's 1/0 operasion tier of TPC- Wbenchmark. In order to provide a more
which are composed of customer network access for thebjective measurement of this similarity, we compare the
web server, disk operations for the database server anD behavior periodograms of these cooperating VMs
inter-VMs communication between frontend and backendnd try to match the peak frequencies of each virtual
tiers. On the other hand, the access requests from parallglachine to indicate how strongly the periodicity is related
browser clients also have several different types inclydin across cooperating virtual machines. As exemplified from
browsing, ordering and shopping and the behavior ofigure 5b to figure 5e, although the relative amplitude
customers always have strong randomness. Thereforef the peaks vary across different VMs, the approximate
intuitively it would be difficult to distinguish the reguidy =~ match rate across all cooperative VMs is on average of
of 1/0 behavior of TPC-W severs. However, when wemore than 80%. We also calculate the cross-correlation
zoom our test result into a 10 second duration whicrcoefficient and get the similar result. This high matching
includes 100 samples, we find the 1/0 load intensityrate indicates that the periodicity of /O behavior is skdare
will always stay in a stable state for several continuousicross all VMs which cooperate together during their
sample periods. Therefore, although we may not be ablexecution.
to get as much benefit from the periodicity of TPC-W This phenomenon can be easily understood. For
application as we did from NPB programs, we could stillNPB- MPI test, several virtual machines were actually
predict the I/O load states of TPC-W severs correctly andonfigured as a virtual cluster to undertake different
differentiate different execution phases if using a propethreads of the same parallel program. These VMs commu-
configuration. nicate with each other to transfer intermediate data during
the execution. Therefore, the network 1/0O behaviors of
these VMs always exhibit strong dependency with each
other. Similar situation also exists ihPC- Wtest since
Besides the variation and periodicity distinction of the web server and database server need to coordinate to-
different benchmarks, we also observed some noticeablgether to accomplish a customer request. This conformity
relevance characteristic between multiple cooperatike vi could not only help us to enhance traditional predictors
tual machines. For instance, we zoom the test result of LWith precision and efficiency but also provide some pos-
program into 10 seconds which contains 100 samples arsibility to optimize the virtual machine scheduling based

C. I/0O behavior correlation cross virtual machines
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Figure 5. Correlation of I/O behavior of cooperating VMs

on the correlation cross multiple VMs. We will elaborate However, since the I/O intensity of disk access is much
our cross-VMspredicting mechanism in section IV.C and lower then the one of network communication in our
VM-Groupingscheduling optimization in section V.C. study cases, we did not treat them separately in this paper.
Actually, we think network I/O should have more influ-
D. Disk and network 1/0O ence to the performance of current virtualization-based
In above discussion, we did not explicitly distinct disk applications since most of them are deployed through
and network I/O. Actually, for NPB-MPI benchmark, only network. Most of current research works also proved that
a little disk 1/0 operations are performed since referencaetwork latency is a critical issue that limits the perform
data need to be loaded at the beginning of programf HPC applications under virtualized and cloud environ-
execution. Most I/O operations are caused by networknent [24], [25]. On the other hand, compared to network
communication which transforms intermediate data crosgransmission, the performance of disk access actually
cooperative virtual machines. This characteristic is verysuffers much less from scheduling competition because of
common in most network-based HPC applications. Comthe existence of disk cache. Current research works about
pared to NPB benchmarks, the component of I/O operdisk I/O mostly focused on the disk bandwidth allocation
ations for TPC benchmark is more complex. Since theand Qos mechanism providing [7], [26]. Therefore, in this
web sever and database sever are deployed in individuphper, we just concentrate our scheduling optimization on
VMs, the I/O operations of front-tier VM are almost the promotion of network capacity and we will discuss
completely caused by network communication while thethis issue in detail in section V.
back-tier VM needs to perform some disk I/O opera-
tions to load commodity and customer information from
database. However, with the test running, the frequenc
of disk 1/O operations of back-tier gradually reduced. In summary, our characterization finds that the I/O
This is because only a small quantity of commodity andoehavior of virtualization workloads have significant vari
customers information are deployed in database sevebility even at a coarse granularity. This variation adjual
during our test and thus most of them can be cachetkflects the running and communication characteristic
into the memory. In practical use, the system might havef different applications. Some workloads such as NPB
no enough memory to cache all these data and periodisenchmarks exhibit strong periodicity because of their
disk 1/0O operations would be unavoidable. In this casestructural parallel programming paradigm. Therefore, it
we should cautiously distinguish these two kinds of I/Owould be easy to accurately predict their /O states
operations since they have totally different characterist and then provide some optimization for virtual machine

5. summary
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scheduling. However, some other applications such aBigure 2 and Figure 4, the amplitude of fluctuation al-
TPC-W servers have noticeable randomness for their I/@vays keeps under 50times/100ms when the 1/O frequency
behavior. This irregularity could induce serious diffiqult keeps in stable state. Therefore, in this paper, we encode
for our I/O state predicting and thus prevents furtherhistory I/O event frequency values at a precision of 50
scheduling optimization. In the next section ,we will times/100ms (i.e., a frequency value of 25times/100ms
propose our methodology of I/O behavior predicting andwill be converted to staté) while 125times/100ms will
introduce several typical predicting models and comparée converted to statg)). We have experimentally verified
their performance for different applications. that this configuration provides the best trade-off between
sensitivity of state transition and predictor efficiency.
IV. 1/O BEHAVIOR PREDICTING

Currently, there have been a large number of studB. Predictors comparison and selection

ies that attempt to predict program behavior based on gimple statistics predictor The most basic predictor
their execution information. Most of them classify the \ye considered is theast Valuepredictor. A Last Value
execution of the program into different states wheréyregictor assumes that the program executes in a stable
each state is defined as a region of a program Witiyhase and that the current behavior will repeat. The
relatively stable behavior [11], [27]. In this paper, wealS prediction for the next interval is simply the last measured
adopt this way to predict I/O behavior of virtualization yajye. More sophisticated predictors use histories of met-
applications. We try to dynamically identify different ¢ yajues to smooth out noise and isolated peaks. A typ-
/O load states of workloads based on their 1/O evenicq| and most common-used instance is the exponentially
frequency a.nd then provide some _gwde fp( executionyeighted moving averageEWMA predictor. Compared
phase tracking and further scheduling decision. In thigg normalaverage(Njpredictor which chooses the average
section, we first describe some important issues that affe¢} or the last N values. EWMA places more emphasis on

the 1/O behavior prediction and then introduce severalne most recent data. An EWMA prediction for the value
online predictors which are applied to our study casesg computed as:

We also discuss the behavior similarity between multiple
cooperative virtual machines and propose a cross-VMs (1 —a)zn + aZn

mechanism to enhance traditional predictors. wherez,, is the n-th metric value z,_; is the EWMA

over the firstn-1 values, andx < 1 is the filter constant

A. Configuration of temporal and spatial sampling that determines the relative weight of older values com-

There are two important factors that affect the I/Opared to more recent ones. Simple statistics predictors
behavior predicting: 1) the period of temporal samplingare always used in reactive systems and the time-delay
2) the precision of spatial sampling. Ordinarily, fine-is an inherent defect of them. Therefore, although they
granularity temporal sampling could provide more vari-can achieve well precision when applied to some little-
ation details while coarse-granularity temporal samplingsariation cases, they cannot perceive the state transition
could filter noise more efficiently and reduce the over-promptly.
head of information collecting and analyzing. In order to Markov predictor : Markov model is a classic predictor
achieve a optimal configuration, we changed the temporathich has been widely used in computer architecture to
sampling period from 50ms to 500ms and compared theredict both prefetch address and branch. The basic idea
visibility variation of program’s 1/O behavior. Test retl behind it is the next state of the system is only related
demonstrate that the detail of I/O state transition could béo the last set of states. A Markov chain is a sequence
sufficiently exposed with the sampling period of 100msof random variablesX;, X,, X3, ... with the Markov
while avoid inducing too much noise which could lead property, namely that, given the present state, the future
to some unnecessary state-transitions. Therefore, in thand past states are independent. The first step for inferring
paper, we select a temporal granularity of 100ms as ththe Markov model is to establish the state space which in
sampling period. this paper is determined based on the I/O event frequency.

Besides the temporal sampling period, the precision oThe second step is to construct the rate matrix - the
spatial sampling is another pivotal factor that affects thenatrix containing the rates for transition from one state
prediction accuracy. In our test, the I/O load intensityto another - which is calculated based on history state
is described by 1/0 event frequency value which issequence. This transition probability matrix is finally dse
continuous on real number scope. Although some simplé predict the state of coming duration.
statistic predictors(such dsast Valueand Average(N) An important defect of standard Markov model is that
can directly work on these value sequences, we need fbis not sensitive to abrupt state changing. Its prediction
convert them into discrete state sequences before applying based on the transition matrix which comes from
some history-based predictors such as discrete Markahe specific state sequence of last intervals. For some
model and run length encode(RLE) predictor. In this caseapplications such asU andCG, there are many sections
the converting precision should be sensitive enough tof stable behavior interspersed with periodic abrupt state
distinguish different I/O load states while avoid over-transitions. In this case, the Markov model could make
enlarging the capacity of state space. As illustrated inncorrect prediction.
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TABLE I.

Run Length Encode predictor. Run Length Encoding ENTIRE PREDICTING PRECISION OF STATE VALUE
(RLE) predictor [11] is another classic predictor used in
computer science field. It is commonly used to compres LU SP CG EP TPC1 | TPC2

: : : LastValue | 85.9% | 49.1% | 89.9% | 99.6% | 38.0% | 40.1%
continuous stable states and predict abrupt but periodiesa 88.0% 1 654% [ 84.5% 1 99.6% 72 6% | 75.1%

state-transitions. The basic idea behind this predictor i{sMarkov-S | 94.0% | 84.8% | 90.6% | 99.6% | 79.6% | 70.8%

using a run-length encoded version of the history to index '\RA'—Ek-S - ggég//o ;?g;’/ﬁ) gg-?g//o gg-gg//o gg-g;’/ﬁ’ ;2-%’
. A A ¢ Markov- .27/ .07 .17 .07 .07/0 17
into a prediction table. The table reference is a hash gtz 95.29% T 80.7% 1 90.6% | 99.6% | 69.6% | 73.3%

the state value and the number of times that this state has

occurred in a row. The lower bits of the hash function TABLE II.

provide an index into the table while the higher bits PREDICTING PRECISION OF STATETRANSITION
provide a tag. Each predicting period, the tag will be
checked. If there is a match, the value stored in the table LU SP cG EP_| TPC1 | TPC2

. . .. . LastValue [ N/A N/A N/A N/A | N/A N/A
entry will provide a prediction for the state of coming —=wwia d 8 1% 1 19.0% | 34.0% T N/A | 184% | 1659%

duration. If the tag match fail, the prior state is assumegi Markov-S | 48.0% | 48.2% | 49.6% | NIA | 46.6% | 46.7%

to be the prediction result for next execution period whic '\RALEK'S - gg-gzﬁ’ ggzz/; gg-izﬁ’ wﬁ gj-izﬁ’ g;gz’;"
~ et . 1 arkov- . 0 . (0] . 0 . 0 . (]
means no state-transition will happen. The hash tablegre= 7% 1 68.5% 1 78.7% T N/A | 61.0% | 61.2%

will be updated in two cases: (1)state value changes
which means state-transition happens; (2)tag match which

means a table entry need to be updated. In the f'rﬁﬁ (standard Markov and RLE predictors are referred to as

case, we directly insert a new entry into the hash tablg, '\ o 5 AndRLE- S while corss-VM enhanced ones

since we want to predict this state-transition before its, . tarred to adar kov- C and RLE- C respectively).

next.happening. Execut.ion intervals WhereT the same state As illustrated in Table | and Table II, different pre-
g%rgzlanrhoeuysi/)\lliIIogzucr:zrxlgtl;%tret:jeictsetgrsg ;gtsct) ;Ezséa:)gﬁdictors exhibit significantly performance distinctiqn. As
when the table lookup missed. In the second update Caeé(pecte(_j, Last Value prt_adlctor has the wortc,t_ precision for
where a tag match happens, we update the value of th Soth entire ;tate pre_dlctlng and state-transition predict
table entry because the obéerved run length may havl%eca_use of its react_|ve manngr._Compqred o Last Value
potentially changed predictor, another simple statistic predictor EWMA has
' better performance. However, its state-transition ptedic

Compared to standard Markov predictor, Run-lengthing accuracy is much worse then the ones of Markov
predictor yields more efficient history encoding for pro-and RLE predictors(about 23% and 36% lower respec-
grams with successive intervals of stable behavior. Ityely). This is because simple statistic predictors alsvay
could efficiently compress the data size of continuoug;se immediate past behavior as representative of future
stable state while keeping enough sensitivity to phas@ehavior and thus cause serious time delay. Therefore, this
transition. Therefore, it would be more appropriate forkind of predictors would not be suitable for virtualization
those applications which always stay in stable state whil@nyironment where programs’ hebavior always exhibit

companied by periodic but abrupt phase changing.  strong variability during their execution.

Predictors ComparisonIn order to evaluate the appli-  Standard Markov predictor has better entire-state pre-
cability of different predictors for virtualized applidgahs, dicting precision then RLE predictor since the latter
we test the precision of four different predictors incluglin  one has stronger history persistence which could cause
1)Last Value; 2)EWMA(10) filter ¢ = 0.3); 3)Order(1) some erroneous prediction of state-transition. However,
Markov predictor; 4)Run-length encoded predictor. Forits sensitivity of state changing also leads to a bet-
both Markov and RLE predictors, we apply a historyter accuracy of state-transition predicting. The average
size of 100. We test the precision of predictors with bothprecision of standard RLE predictor for state-transition
entire state predicting and state-transition predictiffite  predicting is 60.8%, about 13 percents higher than the
entire precision is tested through the predicting hit rateone of standard Markov predictor(47.4%). This difference
which demonstrates the matching degree between predits more noticeable in those cases where programs have
tion results and the actual ones. The precision of statstronger periodicity and more long-term stable phases
transition depicts the sensitivity and temporal accuracyvhich followed by abrupt I/O-intensity changing such
of predictors for state changing. A prediction of stateas LU and CG benchmarks. Since our purpose of /O
transition is thought to be correct only when both originbehavior predicting is tacking different execution phases
and coming state match the actual ones. We apply abf applications and providing direction for virtual macain
these predictors on five different workloads includirig scheduler, incorrect state-transition prediction coaldse
CG SP, EP programs fromN\PB- MPl benchmark and false phase tracking result and then leads to irrational
TPC- Wbenchmark. FoNPB- MPI benchmarks, we only scheduling adjustment. Therefore, the precision of state-
test the 1/0 behavior of primary node because all othetransition predicting is actually more important than the
nodes have similar results. FGPC- Wbenchmark, we one of entire state predicting. In this paper, we apply RLE
test the I/O state variation of front-tier and back-tier VMs model as our predictor since it has the best precision of
respectively. All results are illustrated in Table | and [Bab state-transition predicting in our study cases.

©2012 ACADEMY PUBLISHER



1720 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

C. Cross-VMs predicting D. summary

In this section, we introduce several typical online
In section I1I.C, we have exploited the fact that period-predictors and discuss several important issues about 1/0
icity tends to be shared across multiple cooperative Virtuahehavior predicting. Our tests proved that the /O load
machines. These VMs always take /O state transitiotate of applications could be efficiently predicted if gsin
Simultaneously although theil’ I/O intenSitieS m|ght haVeproper predicting modei and Configuration_ With these
some difference. Therefore, in this paper, we construchrediction results, we could perceive coming 1/O load
a cross-VMs mechanism through integrating the historyariation promptly and then provide some directions for
information among multiple virtual machines to promoteyirtyal machine scheduling to reduce the performance
the precision and efficiency of traditional predictors. Ingegradation caused by disordered scheduling competition.
our deSign, we gather a." pl’ediCtion reSUltS from multlplein the next Section, we will propOSe our Conception
cooperative virtual machines at each predicting periodef virtual machine scheduling optimization based on
If most of them predict a coming state-transition, we will gsymmetric virtual machine scheduler and 1/0 behavior
revise the pl‘ediCtion results of those VMs which predict tOpredicting and describe Severai important mechanisms
keep in a stable state and update their prediction values t@at support our design.
the last state-transition result that actually happengd(e
a prediction result of state-keeping around current 2ate(
will be revised to a state-transition to state(3) if lastesta
transition happened at state(2) is targeting to state(3)).
If there are only two cooperative virtual machines, we Current researches have proved that the scheduling
will trace their predicting accuracy for state-transitamd ~ cOmpetition cross 1/0 and computing jobs is an important
make prediction decision according to the one that halsue that causes the performance degradation of virtual
better precision history. mac_hine system. In order to addre_s_s this problem, we have
We evaluate this cross-VM mechanism by applying itf"IIOIOIIecj a multl—_core dy”a'?"“c partitioning method to real-
to Markov and RLE predictors. Test result demonstrate& & asymmetnc sghedulmg fram.ework.under Xen-3.1.0
- o o virtual machine. This approach tried to isolate the nega-
that the precision of state-transition predicting got an. . o :
obvious promotion. The average precision improvemen?t've m_fluence to the computing jobs by schedulmg l/o-
intensive VCPUs on separate processor core which em-

of all five benchmarks with two predictors is about 9.2%. . . :
. loys frequent context switch and event-prior preemptive
On the other hand, we also observe some differenc ; . !
S . Sscheduling algorithm. Although this method could address
between the precision improvements cross different appliz . . : .
: N the performance interference issue in some degree, it also
cations. The average precision improvements of I\/I"j‘rkovFeduced the efficiency of scheduler because it just applied
C and RLE-C are 10.9% and 12.8% when they were y J PP

applied toNPB- VPl benchmark, while the same ones & simple reactive way to handle the 1/O load variation of
of TPC- Whenchmark are only é.8% and 3.0%. This iSvirtual machines: a VCPU migration is always instantly

because the cooperative virtual machines running NPQe.rfO”.T|ed when an /O eve_nt arriving. Since frequent M
. ., migration could cause serious overhead especially when
programs almost have no other 1/O operations besid

e :
their inter-VM communications through network. In this l% happens cross different sockets, we should schedule

case, virtual machine’s 1/0 behavior significantly dependsVM.S more .cautlously to pro_tgc;t the schedu_ler_ efficiency
while keeping enough sensitivity to the variation of 1/0

on each others. By comparison, the I/O behavior OfIoad intensity. In this case, accurate /O state predictin
TPC- Wvirtual machines are much more complex. Besides Y- ' P 9

the network communication between two VMs, the weband execution phase tracking would k_)e very.hlelpful for
. . . . the scheduler to make correct scheduling decision. In last
server also needs to interact with clients while the back-

tier sever needs to access database. This I/O operatigﬁcuon’ we have described our methodology of I/O state

variety increases the randomness of 1/0O behavior anBrEdICtIng and proposed several principles of predictor

thus reduces the consistency between WAC- Wvirtual gvaluanon and selecting. In this section, we W'” further

. . . . introduce the framework of our asymmetric virtual ma-

machines. In this case, the precision promotion benefits, . . .

oo . chine scheduler based on Xen-4.1.0 virtual machine and

from cross-VM optimization is much less noticeable thandiscuss how to perform an optimal scheduling decision
the one ofNPB tests. P P 9

) o ) based on the result of I/O behavior predicting.
We also tried to use the prediction result of one virtual

machine to predict the 1/0 states of other cooperative ] ] )
VMs. However, for some applications, the I/0O load in-A- ASymmetric scheduler based on Xen virtual machine

V. SCHEDULING OPTIMIZATION BASED ONI/O
BEHAVIOR CHARACTERIZING

tensity could vary over different VMs although they have 4.0 and earlier versions of Xen virtual machine sys-
similar periodicity and state-transition characteristit  tem employed traditional global-symmetric scheduler to
this case, simply using the I/O intensity of one virtualmanage VMs. Both the main scheduler framework and
machine to predict other one’s could cause serious measpecific scheduling algorithm (such as Credit or SEDF)
error. Therefore, in this paper, we only apply the crossheed to be modified to realize the asymmetric scheduling.
VMs mechanism to enhance the predicting of stateCurrently, the latest Xen-4.1 system provideSRUPOOL

transition. feature which allows several individual cpupools coexist
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Low I/O-intensity 1O intensity increasing High I/O-intensity
Group 1(EP) GroupN (LU) Group (N+1)(CG)

in the system. Each cpupool has specific quantity of CPU
resources which are managed by its own scheduler an
virtual machines can be migrated cross different cpupools.

VM | VM ireached threshold|| VM || VM
{1IVM | VM | VM || VM
Although only Credit scheduler completely supports the ’

CPUPOOL mechanism currently, most important man- Socket0 Socketl Socket? Socket3

agement functions have been realized in Xen-4.1.0 sy E E E E

tem, including cpupool creating and destroying, processo
resource adding and removing, VM migrating and etc. E E
Based on this framework, asymmetric scheduling can b computing epupool (Credit) 1/0 cpupool (RR)
achieved in a more modular and graceful way.

As illustrated in Figure 10, we increase a event-prior
round-robin(RR) scheduler to Xen virtual machine and Figure 6. Asymmetric scheduling model of Xen virtual maehin
use it to manage a specificO cpupool This sched-
uler applies frequent context switch to speed up 1/O
operations and schedules VMs in sequence according @stinguish the object from background based on their
their orders in scheduling queue. Beside 1/0O cpupoolcharacteristic difference such as gray scale. In our study,
there is anothecomputing cpupoolvhich applies default transient I/O state transitions could also be considered
Xen-Credit scheduler to undertake virtual machines tha@s isolated objects that spread cross the whole execution
perform less 1/O Operations_ During system running, weProcess which could be considered as the background.
trace the 1/0 load states of each virtual machine dynam?he difference is the characteristic distinction is refeict
ically and consider to migrate them between 1/O andPy the I/O load intensity rather than gray value in digital
computing cpupools if we predict their I/O load intensity Image processing.
will significantly change. Different from our past research In our study, we applie@TSU (Maximization of inter-
work [17], the VM migration will only be performed class variance) algorithm [28] to calculate the threshold
when we believe the entire system performance coul@ynamically. Compared to other common-used segmenta-
benefit from this scheduling adjustment rather than dion algorithms such as adaptive iteration and morphology
single 1/0 operation could be accelerated. Therefore, thig1ethod, this algorithm has the best adaptability and can
decision will be made based on the history analysis an@€t best results for most of our study cases. The original
prediction of application’s 1/0 behavior. We will detail OTSU algorithm tries to select an optimum threshold

our methodology of VM migration decision making in by maximizing the interclass variance in a digital image
next section. based on the histogram and probability of pixel's gray

value. In our study, we replace the gray value of pixels by
I/0 event frequency and calculate the interclass variance
based on the histogram of 1/O intensity history. The
applications always keep on stable state while transieftmulated as follow:

variations only happen occasionally. If we can distinguish | gt the samples of a given I/O intensity history be
different execution phases of applications based on thefpresented in m intensity levels (I/O event frequency

I/O load intensity and schedule VMs on I/0 cpupool only yajye scope) [0, 1, 2... m]. The number of samples at
when they are in heaviest I/O load state, we can maximiZgye| j can be denoted by,;.

the benefit from 1/0O scheduling and reduce the overhead T4ia] number of samples:
of VM migration efficiently. To achieve this, we need to

B. Execution phase tracking and VM dynamic migration

m

specify a proper threshold to differentiate heavy and low N =3 n,.

I/O load intensity and setup a proper condition for VM 1

migration. Probability distribution of different I/O intensity lewel
P=%

Threshold of 1/0O load intensity: This threshold is
used to decide whether a VM has been in heavy I/O load Separate history samples into two classgs= (1 ~ k)
state and should be scheduled on I/O cpupool. Since thend C; = (k + 1 ~ m) which represent background
I/0 load intensity of different programs have significantly and objects respectively (low and heavy /0O execution
difference and could vary over time, static thresholdphases in our study) by a threshold k. In this case, the
would be inappropriate. We have introduced that theprobabilities of class occurrence 6f andC; are given
principle of our execution phase tracking is maximizingby:

the benefit of I/O speeding up while limit the frequency =1

of VM migration, therefore the threshold setting should wo =Y, P =uwyg
be able to maximize the 1/O load intensity distinction Z_:H’i

between different execution phases. To achieve this gbject wi= Y Pi=1-—w
we borrowed a idea of segmentation from digital image m

processing. The purpose of image segmentation is to and the class mean values@§ andC; are given by:
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Lo = i iXP the 1/0O intensity threshold, we will migrate it to the
=1 o Wk I/0 cpupool immediately. However, only when a VM's

=3 ixP _ =y practical I/O intensity is lower than the threshold in three

i=kr1 “r continuous sampling periods, we will check whether its

where I/O prediction result of coming period is also under the
k threshold. If so, this VM will be migrated back to the

Mk = Z iP; computing cpupool. This setting makes sure that heavy

I/0 execution phases could always be perceived and opti-
& mized in the first place although computing performance
wp = > P could suffer from I/O scheduling. In order to evaluate the
=1 influence of scheduling computing jobs on I/O cpupool,
we tested the performance variation of EP program when
4= ’2”: iP = wopto + Wi scheduling it with different context switch frequency. ﬂ_’es _
= result demonstrates that the performance degradation is
only about 8.7% when the period of scheduling switch
reduced from 10ms to 0.5ms. This degradation is much
less than the performance reduction caused by I/O latency
wotwy =1 increasing, especially for those communication-intemsiv
applications(eg. the performance of CG program reduced
more than 40% when average network latency increases
02 = wolpo — p)° + wi (1 — p)® = wows (y — po)® = from 0.5ms to 10ms). Therefore, we think weaker entry
[wi X p—pr]® condition for 1/O-intensive execution phase should be
wiX[1=wi] a rational choice for our study. Actually, this selection
We iterate threshold k from 1 tex and find the result could be more reasonable for network-based large-scale
which can maximize the interclass variancg system such as science cloud where a large number
An important factor affecting the threshold calculationof virtualized computing nodes are integrated through
precision is the history size. Larger history size couldnetwork to perform parallel applications. In this case,
better reflect the entire characteristic of program whilethe benefit from network capacity improvement would be
smaller one could detect more detail of variation. Wemore notable and more sufficient to offset the negative
compared the effect of different history size and finallyinfluence caused by computing performance degradation.
set it to 200 in this study. This time length has been In summary, with the I/O intensity threshold and
able to cover several complete iteration periods in mos¥M migration condition, we divide the entire running
cases while avoid inducing too much noisy which couldprocess of applications into different phases. We hope
lead to unnecessary phase transition. We applied thihis temporal dividing could isolate the execution of I/O
algorithm to our study cases and got ideal result. Foend computing jobs and then reduce the performance
samples of LU, SP and CG programs in Figure 3, thedegradation caused by scheduling competition.
I/O intensity thresholds are 97, 69 and 247 respectively.
These results have been able to tell transient executioe
phases from stable execution process clearly. In order to’
keep enough sensitiveness to the variation of applicgtions Besides the dynamic VM migration, we also try to op-
we recalculate the threshold each 50 sample periodémize the scheduling strategy based on the correlation be-
Test result demonstrates that the time consumption fdWeen different virtual machines. As illustrated in segtio
each threshold update is less than 65 us in our test bdll, there are strong similarity between the I/O behaviors
which only causes very slight influence to the schedulePf cooperative VMs and this correlation is mainly caused
efficiency. Actually for those applications which have by inter-VM communications. In section 1V, we have used
well periodicity and stable 1/O intensity(such as NpPB this characteristic to promote the prediction precision of
benchmarks), the threshold result will a|WayS keep |nllo load state. In this Section, we will discuss how to
a stable scope during the entire execution. For TPCUSe this correlation to optimize the scheduling strategy
W benchmark, this threshold could need more frequenfor cooperative virtual machines.
update because of the strong variation of application’s
I/O intensity.

and

The total mean value of I/O intensity history is:

and we can easily verify the following relation for any
choice of k:

Finally, the interclass variance are given by:

Scheduling optimization for cooperative VMs

Grouping migration: Cooperative virtual machines
usually undertake different threads of parallel program
VM migration condition : This condition is used de- or commercial server. They always perform intensive 1/0
cide whether we should treat the coming period as @perations to communicate with each other when syn-
new execution phases and perform a VM migration tochronizing computing result or acquiring data. However,
adapt to the variation of application I/O intensity. In serious CPU competition and disordered VM schedul-
our study, we apply a weaker condition for migratinging could prevent inter-VM communication finishing in
VM to I/O cpupool and a stricter condition for reverse time and then cause serious synchronization latency or
operation. Each time a VM's prediction result exceedgesponse timeout. Currently, some scholars have proved
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that the co-scheduling strategy is an efficient way toprovider could not get enough information from customer
address the synchronization problem under virtual maer user could change their application deployment during
chine system [29]. Therefore, in our study, we also applysystem running. In this case, some automatic recognizing
similar mechanism to optimize the VM migration. As mechanism would be necessary to dynamically detect
illustrated in Figure 6, we divide several VMs into the the cooperation relationship between different virtual ma
same group if they have cooperative relationship (E.gchines. Although we haven't investigated this issue in
four VMs running LU program will be put int@& oupN  this paper, we believe some simple pattern identification
while four other VMs running CG program will be put methods based on I/O behavior characterizing, such as
into G oup(N+1) ). VMs belong to the same group periodicity comparison or correlation analysis would be
will always be migrated cross different cpupools con-sufficient to address this problem.

currently. This mechanism guarantees cooperative VMs

could always benefit from I/O scheduling simultaneoustD summary
when they are both in 1/O-intensive load state and thus™
maximizes the efficiency of inter-VM communication. Although we haven't finished our design, preliminary

However, this grouping migration strategy could aIso_teSt results demonstrate that this asymmetric schedul-

increase the difficulty of balancing the resource allocatio ing framework could efficiently reduce the performance

between 1/0 and computing cpupools since the amount Oqegradqtion caused by interfgrenpe b_etwee_n /O and com-
VMs in both cpupools will vary rapidly. In this case, the puting jobs. Some communication-intensive HPC pro-

resource capacity of I/O and computing cpupools neegdrams could get significant performance improvement

to be adjusted more promptly to achieve an optimal Con\_/vhen running in scheduling competition environment(e.g.

) : : . : . ... the Mops of CG program improved from 164.48 to 264.84
figuration. In this paper, we just assigned flxed—quantlt)}vvith 4 F\)/irtual co?np%ting no%es running on 2 processor

of CPU resource to I/0O and cpupools to explain our
conception. In future works, we W?” ﬁeep working on this cores). However, compared to NPB programs, .TPC'W
issue and try to find a way to balance the performancg’enchrnark gets much less performance promotlo(?. The
between 1/O and computing jobs efficiently. average latency of user request reduced less _than 4% when
100 parallel sessions accessed the sever simultaneously.
This is because the CPU competition for TPC-W bench-
ark is much slighter than NPB programs during out
st. The average CPU usages of front-tier and back-tier
: . . Ms of TPC-W sever are only 60% and 20% respectively
drivers prefer to apply memory sharing mechamsm(sucIVYVhile NPB programs always iry to exhaust their CPU

as grant table in Xen) to speed up the network time. Therefore, the 1/0O performance degradation of TPC-

communication between multiple virtual machines wherw er d by CPU competition actually not
they are deployed in the same physical platform. In Server caused by competition actually not as

this case, the efficiency of data transmission could gel?/g'gui as thefczlpF()eCoINNPB berr:chmark. Fur(tjhermore, thg
notable promotion if the sharing L2 or L3 cache could ehavior o ~VV SEVer has more randomness an

be well utilized. Therefore, in our design, we alwaysvarlatlon than NPB programs and thus decrease the accu-

try to deploy /O and computing cpupools in individual racy of I/O state pre_dlct|_0n whlch then causes much more
processor sockets to make sure cooperative VMs coulynnecessary VM migrations. This result demonstrates that

take fully advantage of cache sharing when they are pel,f—)hur app}roach COUI?C be morf swtal;lel /foor. trt])e caseds tW hs e
forming inter-VM communication. Although this isolation € performance of computing an Jobs need 1o be

between 1/0 and computing cpupools could increase th}Q’e” balanced and the application I/O behavior has better

overhead of VM migration because of cache flushing,regwma”ty' sl Ki th heduler desi
this overhead can be efficiently controlled if we limit the . ”er'c]lre rtnovg SII Worthlng on the sche u.(ta.r isu{:;n, espl;aé
frequency of VM migration into a proper range. We tested'@'y NOW 10 balance the resource capacities between

the performance of EP program when 4 virtual computin%"’i1nd computing cpupools to achieve an optimal configura-

nodes periodically migrate cross two individual cpupools on. Othe_r issues such as VCPU ‘T"gr_a“"” opt|m|zaj[|on
which both employ Credit scheduler but deployed Onand possible VM scheduling coordination cross multiple
hysical nodes are also in study now. We will describe

two different sockets. Compared to static scheduling, th& ; .

performance degradation is less than 5% if the migratiorlnnOre Qetalls about these issues after we get complete

period is longer than 300ms. Since the VM migrationanalys's results.

frequency is strictly controlled based on the I/O intensity

threshold and migration condition, we think deploying I/O VI. RELATED WORKS

and computing cpupools in separate sockets should be cyrrently, the behavior analysis of virtualization appli-

reasonable in our study. cations at fine granularity has not been thoroughly carried
It needs to point out that we only group VMs stati- out. Most of current research work about virtual machine

cally in this study. This method needs user to providesystem concentrated on the performance evaluation and

grouping information explicitly before virtual machines scheduler optimization. E.g., Ongaro [3] al. explored

are deployed into system. However, sometimes sevdhe impact of a VM scheduler for various combinations

Cpupool allocation optimization: Besides VM mi-
gration strategy, cross-VM correlation also influences tht%n
topology of cpupool allocation. Currently, virtual networ €
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of scheduling features over multiple DomUs running dif- VII. CONCLUSION AND FUTURE WORK
ferent types of applications. Cherkasaizal. studied the

impact that three different schedulers, Borrowed-Virtual
Time(BVT), Credit and SEDF schedulers, have on th
throughput of different 1/0O-intensive benchmarks [31].f

X o or virtual machine environment. We characterize the
Govindan et_al. [32] pro.posed a communication-aware time-varying I/O behavior of several typical virtualizati
VM _schedulmg mechamsm.to 'mprove the performaneeNorkloadS and explore their predictability using several
of high throughput network intensive workloads. |_Nv"’mjuonline predictors. Test results demonstrate that the 1/O

Kim [33] et al. analyzed the boost/tickle mechanism of ﬁtate variation of applications can be efficiently captured

In order to exploit the methodology of dynamic be-
havior analysis for virtualization workloads, this paper
roposes a runtime characterizing and predicting approach

Xen heredlt icr:jeclj_uler, ang pr_opots)ed ?jtask-?ware w;tu nd predicted if using proper predicting model and con-
machine scheduling mechanism based on Inference tec guration. Based on this result, we further investigate

nlq:cjes using %ray.—bog knol\(/\llleddge X;I m;ptrrc:ve the Iliothe possibility of virtual machine scheduler optimization
performance ol mixed workioads. Of tESe WOTKS p1sed on 1/0 behavior characterizing. We discuss several

demonstrated a fact that the performance interference bﬁﬁportant issues including /O computing jobs isolation

tween different applications and the mismatch between re{hrough asymmetric scheduling, VM dynamic migration

source allocation and application behavior always cause%_j]Sed on execution phase tracking and scheduling op-

serious performa_mce degradation and signific_:ar?tly reducet ization for cooperative virtual machines. Preliminary
the system efficiency. However, current optimization fortest results demonstrate that this method could efficiently

v:rtueir:nacmtr_\ee _systen:/lgrgel%/_:octjsed (2;_1 thte SCTidu“n ecrease the performance degradation caused by 1/0O and
algorithm optimizing or I/O architecture adjustment base omputing competition.

on application characteristics [3], [6], [7], [8]. They ddu Currently, more and more traditional server applica-

hot overcome the reseurce requwemen} centrad|_ct|on b‘%i_ons are consolidated into virtualization environment to
tween I/O and computing workloads which is the mheren}

. : ; educe cost and increase flexibility. In this case, assggnin
defect of traditional symmetric scheduler. Since more and y 0

o . . adequate computing resource to specific applications at
more complex sever applications are consolidated intg 9 puting b PP

irtulizati ; . roper timing has become an important prerequisite for
virtulization platform, resource allocation control atdin prop 9 p prereq

ranularity and more flexible adaptive scheduler frame-SyStem optimization. Because of the diversity and strong
9 ty P . . ~variation of applications, accurately characterizing and
work become more necessary for future virtual machi

svstem desian n‘?:)redicting the runtime behavior of workloads would be
y an. necessary for correct scheduling decision making. In this
paper, we characterize the 1/0 behavior of several typical
virtualization workloads and preliminarily discuss the
Application behavior analysis and prediction has beerpossibility of optimizing virtual machine scheduler using
a common and efficient way to improve the efficiencyasymmetric scheduling. In future works, we will further
of hardware system or optimize the performance ofcomplete our design and exploit other important issues
traditional programs. E.g., D. Josegihal. implemented including resource allocation balance between /O and
Markov model in hardware to predict the prefetch ad-computing jobs and possible VM scheduling coordination
dresses [9] and Cheat al. applied the same way to cross multiple physical nodes. We hope this methodology
predict branches [10]. Timothy Sherwoetlal. presented could break the restriction of traditional scheduler desig
a unified profiling architecture to capture and classifyand provide more space for virtual machine scheduling
phase-based program behavior on the largest of timeptimization.
scales [11]. Duesterwaldt al. studied the time-varying
behavior of programs using metric_s derived from hard- REFERENCES
ware counters on IBM Power architectures and explore _
the potential of incorporating prediction into adaptive [1] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, null Zhi-
systems [12]. Coskust al. investigated how to use pre- hua Wen, and C. Pu, “An analysis of performance interfer-
. ’ . ; ence effects in virtual environmentdEEE International
dlctors_for forecasting future temperature and workload Symmposium on Performance Analysis of Systems and
dynamics, and propose proactive thermal management  Software pp. 200-209, 2007.
techniques for multiprocessor system-on-chips(MPSoCs)2] P. Apparao, R. lyer, X. Zhang, D. Newell, and
[13]. There are still many other related works applying T Adelc;neyer,b“Chzra]ractle(nzergon & (j!ﬂalySl? tohf af Se;\k/]er
; i H H P At consolidation benchmark,” ifProceedings o e rTour
a:}ppllcatlon ber;awor analysdls ;nd predicting to pLorT;pte ACM SIGPLAN/SIGOPS international conference on Vir-
t e.system per .or.mance an e. Ielency. However, the fine- a1 execution environments(VEE '0&008, pp. 21-30.
grain characterizing and prediction of workloads under [3] p. Padala, X. Zhu, Z. Wang, S. Singhal, and K. Shin,
virtualized environment has not been widely studied. “Performance evaluation of virtualization technologies f
Therefore, in this paper, we tried to propose a runtime server consolidation,HP Laboratories Technical Report
behavior characterizing and predicting methodology for 2007.

irtualizati licati We h th VS Id[4] N. E. Jerger, D. Vantrease, and M. Lipasti, “An eval-
viruualization applications. vve hope these analysis cou uation of server consolidation workloads for multi-core

provide some inspirations and help for future intelligent  designs,” inlSWC '07: Proceedings of the 2007 IEEE 10th
and adaptive virtual machine scheduler design. International Symposium on Workload Characterization

©2012 ACADEMY PUBLISHER



JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1725

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]
[23]

Washington, DC, USA: IEEE Computer Society, 2007, pp.[24] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn,

47-56. “Case study for running hpc applications in public clouds,”
G. Liao, D. Guo, L. Bhuyan, and S. R. King, “Software in Proceedings of the 19th ACM International Symposium
Techniques to Improve Virtualized I/O Performance on on High Performance Distributed Computinger. HPDC
Multi-core Systems,” irProceedings of the 4th ACM/IEEE '10, 2010, pp. 395-401.

Symposium on Architectures for Networking and Commu{25] J. E. Simons and J. Buell, “Virtualizing high perfornean
nications Systems (ANCS'08Yov. 2008, pp. 161-170. computing,” SIGOPS Oper. Syst. Revol. 44, pp. 136-

K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and 145, December 2010.

S. Rixner, “Achieving 10 Gb/s Using Safe and Transpareni{26] M. Kesavan, A. Gavrilovska, and K. Schwan, “On disk i/o
Network Interface Virtualization,” inProceedings of the scheduling in virtual machines,” iRroceedings of the 2nd
5th ACM SIGPLAN/SIGOPS International Conference on conference on /O virtualizatigrser. WIOV'10, 2010, pp.
Virtual Execution Environments (VEE'QQylar. 2009, pp. 6-6.

61-70. [27] A. S. Dhodapkar and J. E. Smith, “Managing Multicon-
S. R. Seelam and P. J. Teller, “Virtual /O Scheduler: a figuration Hardware via Dynamic Working Set Analysis,”
Scheduler of Schedulers for Performance Virtualization,” in Proceedings of the 29th International Symposium on

in Proceedings of the 3th ACM SIGPLAN/SIGOPS Inter-  Computer Architecture, ISCA-28ay 2002.
national Conference on Virtual Execution Environments[28] N. OTSU, “A thresholding selection method from gray-

(VEE’07), June 2007, pp. 105-115. level histogram,IEEE Transactions on Systems, Man and
A. .Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing Cyberneticsvol. 9, no. 1, pp. 62 — 66, 1979. _
Network Virtualization in Xen,” in Proceedings of the [29] C. Weng, Z. Wang, M. Li, and X. Lu, “The hybrid
USENIX 2006 Annual Technical Conference (USENIX'06) scheduling framework for virtual machine systems,” in
Berke|ey, CA, USA: USENIX Association, June 2006, pp. Proceedlngs of the 2009 ACM SIGPLAN/SIGOPS interna-
2-92. tional conference on Virtual execution environmergsr.

D. Joseph and D. Grunwald, “Prefetching Ssing Markov VEE '09, 2009. . o . .
Predictors,” inProceedings of the 24th Annual Interna- [30] D.Ongaro, A. L. Cox, and S. Rixner, “Scheduling 1/O in
tional Symposium on Computer Architectudene 1997. Virtual Machine Monitors,” inProceedings of the 4th ACM
I-C. Chen, J. T. Coffey, and T. N. Mudge, “Analysis of SIGPLAN/SIGOPS International Conference on Virtual
Branch Prediction via Data Compression,’Rmoceedings Execution Environments (VEE'08:Mar. 2008, pp. 1-10.
of the 7th International Conference on Architectural Sup-[31] L. Cherkasova, D. Gupta, and A. Vahdat, *Comparison
port for Programming Languages and Operating Systems ~ ©f the Three CPU Schedulers in XenSIGMETRICS
Oct. 1996, pp. 128-137. Perform_. Eval. Reywvol. 35, no. 2, pp. 42-51, 2007.

S. S. T. Sherwood and B. Calder, “Phase Tracking and3?] i g_ovmdsn, A R. N‘:’})t(h' A. I?jasc,: B. grgaonk?“ and
Prediction,” inProceedings of the 30th International Sym- - Slvasubramaniam, “Xen and Co.. Communication-
posium on Computer Architecture, ISCA-3@ine 2003. aware CPU Scheduling for Consolidated Xen-based Host-

E. Duesterwald, C. Cascaval, and S. Dwarkadas, “Charac ing Platforms,” in Procgedings of the 3th ACM SIG-
terizing and predicting program behavior and its variabil- PLAN/SIGOPS International Conference on Virtual Exe-

ity,” in Proceedings of the 12th International Conference cution Environments (VEE'07)une 2007, pp. 126-136.

: oo ; [33] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee, “Task-aware
g'r&g_al}r%fl g\(;%fgtectures and Compilation Techniqussr. Virtual Machine Scheduling for I/O Performance,” Rro-

A Coskun. T. Rosina. and K. Gross. “Utilizina predic- ceedings of the 5th ACM SIGPLAN/SIGOPS International
' L 9 ) Lo 9p Conference on Virtual Execution Environments (VEE'09)
tors for efficient thermal management in multiprocessor

socs,” Computer-Aided Design of Integrated Circuits and Mar. 2009, pp. 101-110.
Systems, IEEE Transactions,aml. 28, no. 10, pp. 1503—
1516, 2009.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, vanyan Hu born in 1984, is currently a Ph.D. candidate of
A. Ho, R. Neugebauer, |. Pratt, and A. Warfield, *Xen and compyting science at Beihang University, Beijing, China H
the Art of Virtualization,” inProceedings of the 19th ACM aceived his BS and MS degrees from Beihang University and

Symposium on Operating Systems Principles (SOSP'03)gijing University of technology in 2004 and 2007, respe.

Oct. 2003, pp. 164-177. _ . His current research interests include operating systémual:
A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,  ization and cloud computing.

“KVM: The Linux Virtual Machine Monitor,” in Proceed-

ings of the 2007 Ottawa Linux Symposium (OLS,@4g.

2007.

A L, A.JM., H. AM., K. R, and M. V,, “An Analysis Xiang Long born in 1963. Ph.D. He is currently professor and
of Disk Performance in VMware ESX Server Virtual Ma- Ph. D. supervisor at Beihang University. His current recear
chines,” inProceedings of the 6th Workshop on Operating interests include embedded systems design, operatingnsyst
System and Architectural Support for the on Demand ITand network and information security.

InfraStructure (WWC-6)Oct. 2003, pp. 65—76.

Y. Hu, X. Long, J. Zhang, J. He, and L. Xia, “l/O
Scheduling Model of Virtual Machine Based on Multi-core . . .
Dynamic gartitioning,” inProceedings of the 19th ACM Jlong_Zhang b_orn n 19.76' Ph. D. He is now a Ie(_:turer
International Symposium on High Performance DistributedOf Beihang University. H'.S current researc_h |nt_ere_stsudel
Computing ser. HPDC '10, 2010. embedded systemsoperating system and virtualization.
“NPB,” http://www.nas.nasa.gov/Resources/Sofeapb.html.

“TPC-W,” http://www.tpc.org/tpcw/.

“TPC-W-NYU,” http://www.cs.nyu.edu/pdsg/.

“The jboss application server,” http://www.jbosgor

“Mysql,” http://www.mysqgl.com.

“TPC-W-UVA,” http://www.cs.virginia.edu/ th8k/domloads/.

©2012 ACADEMY PUBLISHER





