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Abstract— In virtual machine system, different workloads
are consolidated into a single platform to fully utilize
the hardware resources. However, the diversity and strong
variation of applications always make it difficult to opti-
mize the resource allocation and thus reduce the system
performance and efficiency. Therefore, how to accurately
analyze and predict the runtime behavior of applications
has become an important basement for virtual machine
system optimization. In order to study the characteristic
and predictability of virtualization applications, this p aper
proposes a dynamic behavior characterizing and predicting
methodology under Xen virtual machine. We analyze the
characteristics of several typical virtualization workloads
with fine temporal granularity and apply several online
predictors to predict application’s runtime I/O behavior.
Experiment results demonstrate that the I/O behavior of
virtualization workloads can be efficiently predicted by using
proper predicting model and configuration. With this result,
we further investigate the possibility of virtual machine
scheduler optimizing based on I/O behavior characteriz-
ing. Several important issues are discussed including I/O
computing jobs isolation through asymmetric scheduling,
VM dynamic migration based on execution phase tracking
and co-scheduling of multiple cooperative virtual machines.
Preliminary test results demonstrate that this approach
could efficiently reduce the performance degradation caused
by scheduling competition in virtual machine system.

Index Terms— Virtualization, I/O, behavior analysis, predict,
scheduler

I. I NTRODUCTION

Virtualization technology offers many advantages to
modern computing environment. By running multiple
virtual machines (VMs) in a shared physical platform, vir-
tualization enables high utilization of hardware resources.
Many features such as live migration and easy restart of
VMs also significantly improve manageability of large-
scale computing system. In virtualization environment,
different traditional server applications are consolidated
into a single physical platform to fully utilize the hardware
resources. These workloads always have different runtime
behavior and resource requirement. However, current vir-
tual machine schedulers usually employ global-symmetric
algorithms to force different workloads to compete for the
CPU resources disorderly and thus cause serious perfor-
mance interference [1], [2] which significantly reduce the
system performance and efficiency.

This work was supported by the National High Technology Research
and Development Program (”863”Program) of China (2007AA01Z118).

In order to address this problem, previously proposed
works have tried to classify applications into different
categories(such as I/O-intensive and CPU-intensive ones)
and encapsuled them into individual virtual machines
[3], [4]. This approach attempts to employ the isolated
computing environment provided by VMM to reduce
the resource competition between different applications.
However, most virtualization workloads contain I/O and
computing operations simultaneously and their behavior
always vary over time while exhibit complex character-
istics. In this case, traditional workload classification at
virtual machine granularity would not be accurate and
flexible enough to reflect the actual resource requirement
of different applications promptly. It could make the re-
source allocation strategy become either over-provisioned
or overloaded and thus cause performance regression.
Therefore, it would be challenging to properly optimize
the resource allocation at virtualization environment.

A possible solution for this issue is classifying appli-
cations at a finer temporal granularity (e.g. couples of
scheduling periods) and dynamically allocate computing
resources to specific workloads based on their current
running states. In this case, the scheduler must be able
to perceive the state variation of applications and adjust
its resource allocation strategy promptly. Therefore, accu-
rately characterizing and predicting the runtime behavior
of applications would become a pivotal problem for
intelligent and self-adaptive virtual machine scheduler
design. Most of current research works about virtualiza-
tion workloads concentrate on the performance analysis
and scheduling algorithm optimization [5], [6], [7], [8].
The study of fine-granularity application behavior analysis
has not been carried out thoroughly. At the same time,
although application behavior analysis and prediction
has been a common and efficient way to improve the
efficiency of hardware system [9], [10] or to optimize
the performance of traditional programs [11], [12], [13],
none of these presented works specifically dealt with
virtualization environment.

Therefore, in this paper we propose a runtime behavior
characterizing and predicting methodology for virtual-
ization environment. We first build a test bed based on
Xen virtual machine and collect the runtime information
of several typical virtualization applications. Then we
characterize their time-varying behavior and explore the
predictability from several aspects including periodicity,
state-transition trait and cooperative relationship cross
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different virtual machines. After that, we describe several
online predictors and compare their precision when they
are applied into different cases. Test results demonstrate
that the I/O state variation of applications can be effi-
ciently captured and predicted by using proper predicting
model and configuration.

Based on these results, we further exploit the possibility
of virtual machine scheduling optimization using I/O
behavior predicting and execution phase tracking. We
first construct a asymmetric scheduling framework under
Xen-4.1.0 virtual machine and deploy two individual cpu
subsets to undertake I/O and computing jobs respectively.
Then we try to track different execution phases of ap-
plications based on their I/O behavior prediction results
and migrate VMs cross different cpu subsets if we decide
the system performance could benefit from this schedul-
ing adjustment. Several important issues are discussed
including the method of execution phase tracking, topol-
ogy optimization of cpupool allocation and co-scheduling
of cooperative virtual machines. Preliminary test results
demonstrate that this approach could efficiently efface
the competition between I/O and computing jobs and
then promote the system performance, especially for some
communication-intensive applications.

The contributions of this paper are mainly listed as fol-
lows. First, we propose a runtime behavior characterizing
and predicting framework for virtualization environment.
Second, we discuss several important issues that affect
application behavior analysis and predicting. Finally, we
exploit a possible methodology of virtual machine sched-
uler optimization based on I/O behavior predicting and
asymmetric scheduling.

The remainder of this paper is organized as follows. We
first describe our test environment and method of runtime
information collecting in section 2. Then we characterize
the I/O behavior of several representative virtualization
applications and discuss their predictability in section
3. After that, we compare several online predictors and
discuss the principal of predictor selecting in section 4.
We further investigate several important issues of virtual
machine scheduler optimization based on I/O behavior
predicting and provide some preliminary test results in
section 5. We introduce some related work in section 6
and finally conclude with a discussion in section 7.

II. RUNTIME I/O INFORMATION COLLECTING

Our application behavior analysis work is based on
Xen-4.1.0 virtual machine which applies an IDD(Isolated
Device Domain) device model to manage its I/O devices
[14]. In this model, a virtualfrontend driver in a do-
mainU communicates with a corresponding virtualback-
end driver residing in the isolated driver domain(always
Dom0) and forwards I/O requests to a native device driver.
The frontend driver and the backend driver notify each
other by an I/O event throughevent channelmechanism
which is a virtualization of hardware interrupt. Each time
an I/O request or response is sent, an I/O event is pent in
the corresponding event channel and then delivered into
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Figure 1. IDD Model of Xen Virtual Machine

the target domain when this domain is scheduled next
time.

Therefore, in Xen virtual machine, the I/O event behav-
ior could exhibit the characteristic of I/O jobs intuitively.
Some other virtual machine systems such as KVM [15]
and VMWare ESX [16] also have similar I/O structure
although their device models may have a little difference.
For example, VMWare ESX server does not have an in-
dividual driver domain and manages native device drivers
by VMM itself. However, they also apply similar soft
interrupt mechanism to notify the GuestOS about the I/O
operation state. Therefore, characterizing the I/O behavior
of applications through I/O event information could be an
universal approach for most virtual machine systems. In
this paper, we applied a monitoring tool [17] to collect the
I/O event information of virtual machines dynamically.
This information is later used to characterize and predict
the runtime I/O behavior of applications.

III. V IRTUALIZATION WORKLOADS BEHAVIOR

CHARACTERIZING

A. Test Environment

In this section, we will characterize the I/O behavior
of several representative virtualization applications toset
the stage for I/O state predicting. Our test covers two
typical industry-standard benchmarks includingTPC-W
and NPB-MPI. We ran these two benchmarks under
Xen virtual machine and recorded the I/O behavior of
applications by collecting their I/O event information with
a time granularity of 100ms. All of our experiments
were performed in a x86 server which has an Intel
Q9550 quad-core processor, 4GB DDRII-800 memory,
double RTL8169 1000Mbps Ethernet NIC and Seagate
1TB SATA hard disk. We ran Xen-4.1.0 virtual machine
and used Domain0 as driver domain. Both Domain0 and
DomainU ran Debian6.0 Linux distribution with Linux-
2.6.32 kernel.

B. I/O Behavior of Typical Server Consolidation Work-
loads

NPB-MPI: NPB-MPI is an MPI implementation of
the NASA Advanced Supercomputing (NAS) Parallel
Benchmark (NPB) [18]. It is a small set of programs
designed to help evaluate the performance of parallel
supercomputers. The benchmarks, which are derived from
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(a) I/O behavior of LU program
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(b) Result zoomed into 20s
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(c) I/O behavior of SP program
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(d) Result zoomed into 20s
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(e) I/O behavior of CG program
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(f) Result zoomed into 20s
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(g) I/O behavior of EP program
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(h) Result zoomed into 20s

Figure 2. I/O behavior of NPB-MPI benchmark

computational fluid dynamics (CFD) applications, consist
of five kernels and three pseudo-applications. In this test,
we selected four benchmarks includingLU, CG, SP
andEP. Test results of other three benchmarks (MG, BT
and FT) were excluded here because their have similar
behavior. We used the Class C problem sizes to achieve a
proper data scale and total running time and tested each
benchmark using 4 parallel computing nodes with each of
them had one VCPU and 512MB memory. The I/O event
frequency variation of each individual VM was recorded
during the execution. We only demonstrate the result of
primary node(DomainU1) here because other computing
nodes have very similar I/O behavior. We will discuss the
similarity and correlation between the I/O behaviors cross
different computing nodes in detail in section III.C.

As illustrated in Figure 2, these programs exhibit sig-

nificantly different I/O behaviors during their execution.
For LU benchmark, I/O intensity keeps in lower level
in most time while high-intensity I/O operations appear
periodically. Conversely, the I/O intensity ofCG bench-
mark always keeps in high level and only companied by
transient low-intensity I/O load states. ForSP benchmark,
high and low intensity I/O load states appear alternately
and the variation does not exhibit noticeable periodicity.
The EP benchmark has little I/O operations during its
entire execution.

This behavior distinction actually reflects the com-
munication activity difference between these parallel
benchmarks.LU benchmark applies SSOR algorithm to
solve regular-sparse lower and upper triangular systems.
Computing nodes perform fine-granularity point-to-point
communication during each iteration and thus cause con-
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Figure 3. Periodograms of NPB-MPI and TPC-W benchmarks

tinuous but low-intensity I/O operations. The periodic
high-intensity I/O states are caused by data transmission
at the joint of two iterations since result data need to be
synchronized before starting the next step calculation.CG
benchmark uses a conjugate gradient method to compute
an approximation to the smallest eigenvalue of a large,
sparse, symmetric positive definite matrix. Different from
LU, it performs intensive irregular collective communica-
tion cross different nodes when executing sparse-matrix
vector multiplication during each loop. Therefore, con-
tinuous high-intensive I/O operations are observed during
the execution and periodic low-intensive I/O states always
appear at the end of each iteration.SP benchmark solves
multiple independent systems of non diagonally dominant
scalar pentadiagonal equations. This program is used to
test the balance cross communication and computing. Its
communication is mainly composed of irregular point-to-
point long message transmission and each process can
perform computing work as soon as it receives data
from other processes. Therefore, low-intensity I/O load
states are always followed by irregular high-intensity
I/O operations which demonstrate the transmission of
messages during the execution.EP benchmark, as the
acronym suggests, is an ”embarrassingly parallel” kernel.
It requires virtually no inter-processor communication and
only coordination of pseudo-random number generation
at the beginning and collection of results at the end.
Therefore, it produces little I/O operations during its
entire execution.

We further apply fourier transform to analyze the
periodicity of different programs. Using 100ms sampling
period, the range of frequency discernible is 0 to 5
cycles/sec according to the Nyquist rate. As illustrated in
Figure 3,LU andCG programs exhibit strong periodicity
just as our intuitively observation. This periodicity can
be attributed to the execution iteration loops of these two

programs. For example, the frequency spectrum peak of
0.2 cycle/sec forLU and 0.29 cycle/sec forCG exactly
match the iteration periods illustrated in figure 3(b)(about
5s, total 250 iterations during 1283s execution) and figure
3(f)(about 3s, total 75 iterations during 247s execution).
This strong structural regularity could significantly facil-
itate the following I/O state predicting. By contrast,SP’s
periodogram is a little unexpected. There is a peak value
that reflects an implicit periodicity of 0.32 cycles/sec
which is difficult to perceive from temporal behavior
intuitively while could match the iteration period ofSP
program (total 400 iterations during 1473s execution).
This implicit periodicity could also promote the precision
of history predictors. We will demonstrate the effect of
application’s periodicity for I/O state predicting through
several experiments in section IV.

TPC-W: TPC-W benchmark is a double-tier applica-
tion based on the TPC-W standard [19] for an online
bookstore. It is usually used to evaluate the performance
of commercial servers. A TPC-W implementation always
requires two software modules to support the test system
and drive the benchmark: an frontend application server
handling user sessions and a backend database server
keeping merchandize information. In our test, we applied
a TPC-W-NYU [20] test suit which is a fully J2EE
compliant application to setup our test environment. We
used JBoss 3.2.7 [21] as the frontend application
server andMySQL 4.1 [22] as the backend database
server. We deployed these two tiers into individual vir-
tual machines which both have two VCPUs and 1GB
memory allocation. Then we used the workload gener-
ator provided byTPC-W-UVA [23] to simulate multiple
concurrent browser clients accessing the application from
another physical client in the same local network. We
ran shopping mix test for an hour with 100 parallel
sessions and recorded the I/O event frequency variation of
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(a) I/O event frequency of front-tier
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(b) Result zoomed into 10s
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(c) I/O event frequency of back-tier
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(d) Result zoomed into 10s

Figure 4. I/O behavior of TPC-W benchmark

both frontend and backend virtual machines with 100ms
sample period. Test result is illustrated in Figure 4.

Different from NPB benchmarks, the I/O event fre-
quency of TPC-W test servers exhibit strong variation
during the test. We analyze the periodograms of its
I/O behavior and there are a cluster of peaks at high
frequencies depicted in figure 3(d) which demonstrate a
strong aperiodicity. This phenomenon is mainly caused by
the diversity of online transaction server’s I/O operations
which are composed of customer network access for the
web server, disk operations for the database server and
inter-VMs communication between frontend and backend
tiers. On the other hand, the access requests from parallel
browser clients also have several different types including
browsing, ordering and shopping and the behavior of
customers always have strong randomness. Therefore,
intuitively it would be difficult to distinguish the regularity
of I/O behavior of TPC-W severs. However, when we
zoom our test result into a 10 second duration which
includes 100 samples, we find the I/O load intensity
will always stay in a stable state for several continuous
sample periods. Therefore, although we may not be able
to get as much benefit from the periodicity of TPC-W
application as we did from NPB programs, we could still
predict the I/O load states of TPC-W severs correctly and
differentiate different execution phases if using a proper
configuration.

C. I/O behavior correlation cross virtual machines

Besides the variation and periodicity distinction of
different benchmarks, we also observed some noticeable
relevance characteristic between multiple cooperative vir-
tual machines. For instance, we zoom the test result of LU
program into 10 seconds which contains 100 samples and

compare the variation detail of I/O behaviors of 4 com-
puting nodes. As illustrated in Figure 5a, there are strong
similarity between them. The only noticeable difference
is the peak value of node1 at 3.7 second is not as high
as three other ones and the intensity peak of node1 at 9th
second appears about one sample period(100ms) later than
three others. Similar phenomenon can be observed from
other NPB-MPI benchmarks and front-tier and back-
tier of TPC-W benchmark. In order to provide a more
objective measurement of this similarity, we compare the
I/O behavior periodograms of these cooperating VMs
and try to match the peak frequencies of each virtual
machine to indicate how strongly the periodicity is related
across cooperating virtual machines. As exemplified from
figure 5b to figure 5e, although the relative amplitude
of the peaks vary across different VMs, the approximate
match rate across all cooperative VMs is on average of
more than 80%. We also calculate the cross-correlation
coefficient and get the similar result. This high matching
rate indicates that the periodicity of I/O behavior is shared
across all VMs which cooperate together during their
execution.

This phenomenon can be easily understood. For
NPB-MPI test, several virtual machines were actually
configured as a virtual cluster to undertake different
threads of the same parallel program. These VMs commu-
nicate with each other to transfer intermediate data during
the execution. Therefore, the network I/O behaviors of
these VMs always exhibit strong dependency with each
other. Similar situation also exists inTPC-W test since
the web server and database server need to coordinate to-
gether to accomplish a customer request. This conformity
could not only help us to enhance traditional predictors
with precision and efficiency but also provide some pos-
sibility to optimize the virtual machine scheduling based
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Figure 5. Correlation of I/O behavior of cooperating VMs

on the correlation cross multiple VMs. We will elaborate
our cross-VMspredicting mechanism in section IV.C and
VM-Groupingscheduling optimization in section V.C.

D. Disk and network I/O

In above discussion, we did not explicitly distinct disk
and network I/O. Actually, for NPB-MPI benchmark, only
a little disk I/O operations are performed since reference
data need to be loaded at the beginning of program
execution. Most I/O operations are caused by network
communication which transforms intermediate data cross
cooperative virtual machines. This characteristic is very
common in most network-based HPC applications. Com-
pared to NPB benchmarks, the component of I/O oper-
ations for TPC benchmark is more complex. Since the
web sever and database sever are deployed in individual
VMs, the I/O operations of front-tier VM are almost
completely caused by network communication while the
back-tier VM needs to perform some disk I/O opera-
tions to load commodity and customer information from
database. However, with the test running, the frequency
of disk I/O operations of back-tier gradually reduced.
This is because only a small quantity of commodity and
customers information are deployed in database sever
during our test and thus most of them can be cached
into the memory. In practical use, the system might have
no enough memory to cache all these data and periodic
disk I/O operations would be unavoidable. In this case,
we should cautiously distinguish these two kinds of I/O
operations since they have totally different characteristic.

However, since the I/O intensity of disk access is much
lower then the one of network communication in our
study cases, we did not treat them separately in this paper.
Actually, we think network I/O should have more influ-
ence to the performance of current virtualization-based
applications since most of them are deployed through
network. Most of current research works also proved that
network latency is a critical issue that limits the perform
of HPC applications under virtualized and cloud environ-
ment [24], [25]. On the other hand, compared to network
transmission, the performance of disk access actually
suffers much less from scheduling competition because of
the existence of disk cache. Current research works about
disk I/O mostly focused on the disk bandwidth allocation
and Qos mechanism providing [7], [26]. Therefore, in this
paper, we just concentrate our scheduling optimization on
the promotion of network capacity and we will discuss
this issue in detail in section V.

E. summary

In summary, our characterization finds that the I/O
behavior of virtualization workloads have significant vari-
ability even at a coarse granularity. This variation actually
reflects the running and communication characteristic
of different applications. Some workloads such as NPB
benchmarks exhibit strong periodicity because of their
structural parallel programming paradigm. Therefore, it
would be easy to accurately predict their I/O states
and then provide some optimization for virtual machine
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scheduling. However, some other applications such as
TPC-W servers have noticeable randomness for their I/O
behavior. This irregularity could induce serious difficulty
for our I/O state predicting and thus prevents further
scheduling optimization. In the next section ,we will
propose our methodology of I/O behavior predicting and
introduce several typical predicting models and compare
their performance for different applications.

IV. I/O B EHAVIOR PREDICTING

Currently, there have been a large number of stud-
ies that attempt to predict program behavior based on
their execution information. Most of them classify the
execution of the program into different states where
each state is defined as a region of a program with
relatively stable behavior [11], [27]. In this paper, we also
adopt this way to predict I/O behavior of virtualization
applications. We try to dynamically identify different
I/O load states of workloads based on their I/O event
frequency and then provide some guide for execution
phase tracking and further scheduling decision. In this
section, we first describe some important issues that affect
the I/O behavior prediction and then introduce several
online predictors which are applied to our study cases.
We also discuss the behavior similarity between multiple
cooperative virtual machines and propose a cross-VMs
mechanism to enhance traditional predictors.

A. Configuration of temporal and spatial sampling

There are two important factors that affect the I/O
behavior predicting: 1) the period of temporal sampling
2) the precision of spatial sampling. Ordinarily, fine-
granularity temporal sampling could provide more vari-
ation details while coarse-granularity temporal sampling
could filter noise more efficiently and reduce the over-
head of information collecting and analyzing. In order to
achieve a optimal configuration, we changed the temporal
sampling period from 50ms to 500ms and compared the
visibility variation of program’s I/O behavior. Test results
demonstrate that the detail of I/O state transition could be
sufficiently exposed with the sampling period of 100ms
while avoid inducing too much noise which could lead
to some unnecessary state-transitions. Therefore, in this
paper, we select a temporal granularity of 100ms as the
sampling period.

Besides the temporal sampling period, the precision of
spatial sampling is another pivotal factor that affects the
prediction accuracy. In our test, the I/O load intensity
is described by I/O event frequency value which is
continuous on real number scope. Although some simple
statistic predictors(such asLast Valueand Average(N))
can directly work on these value sequences, we need to
convert them into discrete state sequences before applying
some history-based predictors such as discrete Markov
model and run length encode(RLE) predictor. In this case,
the converting precision should be sensitive enough to
distinguish different I/O load states while avoid over-
enlarging the capacity of state space. As illustrated in

Figure 2 and Figure 4, the amplitude of fluctuation al-
ways keeps under 50times/100ms when the I/O frequency
keeps in stable state. Therefore, in this paper, we encode
history I/O event frequency values at a precision of 50
times/100ms (i.e., a frequency value of 25times/100ms
will be converted to state(1) while 125times/100ms will
be converted to state(3)). We have experimentally verified
that this configuration provides the best trade-off between
sensitivity of state transition and predictor efficiency.

B. Predictors comparison and selection

Simple Statistics predictor: The most basic predictor
we considered is theLast Valuepredictor. A Last Value
predictor assumes that the program executes in a stable
phase and that the current behavior will repeat. The
prediction for the next interval is simply the last measured
value. More sophisticated predictors use histories of met-
ric values to smooth out noise and isolated peaks. A typ-
ical and most common-used instance is the exponentially
weighted moving average (EWMA) predictor. Compared
to normalAverage(N)predictor which chooses the average
over the last N values, EWMA places more emphasis on
the most recent data. An EWMA prediction for the value
is computed as:

(1− α)xn + αx̄n−1

wherexn is the n-th metric value,x̄n−1 is the EWMA
over the firstn-1 values, andα ≤ 1 is the filter constant
that determines the relative weight of older values com-
pared to more recent ones. Simple statistics predictors
are always used in reactive systems and the time-delay
is an inherent defect of them. Therefore, although they
can achieve well precision when applied to some little-
variation cases, they cannot perceive the state transition
promptly.

Markov predictor : Markov model is a classic predictor
which has been widely used in computer architecture to
predict both prefetch address and branch. The basic idea
behind it is the next state of the system is only related
to the last set of states. A Markov chain is a sequence
of random variablesX1, X2, X3, ... with the Markov
property, namely that, given the present state, the future
and past states are independent. The first step for inferring
the Markov model is to establish the state space which in
this paper is determined based on the I/O event frequency.
The second step is to construct the rate matrix - the
matrix containing the rates for transition from one state
to another - which is calculated based on history state
sequence. This transition probability matrix is finally used
to predict the state of coming duration.

An important defect of standard Markov model is that
it is not sensitive to abrupt state changing. Its prediction
is based on the transition matrix which comes from
the specific state sequence of last intervals. For some
applications such asLU andCG, there are many sections
of stable behavior interspersed with periodic abrupt state
transitions. In this case, the Markov model could make
incorrect prediction.
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Run Length Encode predictor: Run Length Encoding
(RLE) predictor [11] is another classic predictor used in
computer science field. It is commonly used to compress
continuous stable states and predict abrupt but periodic
state-transitions. The basic idea behind this predictor is
using a run-length encoded version of the history to index
into a prediction table. The table reference is a hash of
the state value and the number of times that this state has
occurred in a row. The lower bits of the hash function
provide an index into the table while the higher bits
provide a tag. Each predicting period, the tag will be
checked. If there is a match, the value stored in the table
entry will provide a prediction for the state of coming
duration. If the tag match fail, the prior state is assumed
to be the prediction result for next execution period which
means no state-transition will happen. The hash table
will be updated in two cases: (1)state value changes
which means state-transition happens; (2)tag match which
means a table entry need to be updated. In the first
case, we directly insert a new entry into the hash table
since we want to predict this state-transition before its
next happening. Execution intervals where the same state
continuously occurs will not be stored into the table
since they will be correctly predicted as ”last phase ID”
when the table lookup missed. In the second update case
where a tag match happens, we update the value of this
table entry because the observed run length may have
potentially changed.

Compared to standard Markov predictor, Run-length
predictor yields more efficient history encoding for pro-
grams with successive intervals of stable behavior. It
could efficiently compress the data size of continuous
stable state while keeping enough sensitivity to phase
transition. Therefore, it would be more appropriate for
those applications which always stay in stable state while
companied by periodic but abrupt phase changing.

Predictors Comparison In order to evaluate the appli-
cability of different predictors for virtualized applications,
we test the precision of four different predictors including:
1)Last Value; 2)EWMA(10) filter (α = 0.3); 3)Order(1)
Markov predictor; 4)Run-length encoded predictor. For
both Markov and RLE predictors, we apply a history
size of 100. We test the precision of predictors with both
entire state predicting and state-transition predicting.The
entire precision is tested through the predicting hit rate
which demonstrates the matching degree between predic-
tion results and the actual ones. The precision of state
transition depicts the sensitivity and temporal accuracy
of predictors for state changing. A prediction of state
transition is thought to be correct only when both origin
and coming state match the actual ones. We apply all
these predictors on five different workloads includingLU,
CG, SP, EP programs fromNPB-MPI benchmark and
TPC-W benchmark. ForNPB-MPI benchmarks, we only
test the I/O behavior of primary node because all other
nodes have similar results. ForTPC-W benchmark, we
test the I/O state variation of front-tier and back-tier VMs
respectively. All results are illustrated in Table I and Table

TABLE I.
ENTIRE PREDICTING PRECISION OF STATE VALUE

LU SP CG EP TPC1 TPC2
LastValue 85.9% 49.1% 89.9% 99.6% 38.0% 40.1%

EWMA 88.0% 65.4% 84.5% 99.6% 72.6% 75.1%
Markov-S 94.0% 84.8% 90.6% 99.6% 79.6% 70.8%
RLE-S 90.1% 75.2% 89.6% 99.6% 68.0% 70.0%
Markov-C 95.2% 87.0% 93.1% 99.6% 86.3% 74.1%
RLE-C 92.4% 80.7% 90.6% 99.6% 69.6% 73.3%

TABLE II.
PREDICTING PRECISION OF STATE-TRANSITION

LU SP CG EP TPC1 TPC2
LastValue N/A N/A N/A N/A N/A N/A

EWMA 28.1% 19.0% 34.0% N/A 18.4% 16.2%
Markov-S 48.0% 48.2% 49.6% N/A 46.6% 46.7%
RLE-S 63.3% 58.7% 65.9% N/A 58.9% 57.4%
Markov-C 58.9% 57.1% 62.4% N/A 54.1% 52.8%
RLE-C 78.7% 68.8% 78.7% N/A 61.0% 61.2%

II (standard Markov and RLE predictors are referred to as
Markov-S andRLE-S while corss-VM enhanced ones
are referred to asMarkov-C andRLE-C respectively).

As illustrated in Table I and Table II, different pre-
dictors exhibit significantly performance distinction. As
expected, Last Value predictor has the worst precision for
both entire state predicting and state-transition predicting
because of its reactive manner. Compared to Last Value
predictor, another simple statistic predictor EWMA has
better performance. However, its state-transition predict-
ing accuracy is much worse then the ones of Markov
and RLE predictors(about 23% and 36% lower respec-
tively). This is because simple statistic predictors always
use immediate past behavior as representative of future
behavior and thus cause serious time delay. Therefore, this
kind of predictors would not be suitable for virtualization
environment where programs’ hebavior always exhibit
strong variability during their execution.

Standard Markov predictor has better entire-state pre-
dicting precision then RLE predictor since the latter
one has stronger history persistence which could cause
some erroneous prediction of state-transition. However,
its sensitivity of state changing also leads to a bet-
ter accuracy of state-transition predicting. The average
precision of standard RLE predictor for state-transition
predicting is 60.8%, about 13 percents higher than the
one of standard Markov predictor(47.4%). This difference
is more noticeable in those cases where programs have
stronger periodicity and more long-term stable phases
which followed by abrupt I/O-intensity changing such
as LU and CG benchmarks. Since our purpose of I/O
behavior predicting is tacking different execution phases
of applications and providing direction for virtual machine
scheduler, incorrect state-transition prediction could cause
false phase tracking result and then leads to irrational
scheduling adjustment. Therefore, the precision of state-
transition predicting is actually more important than the
one of entire state predicting. In this paper, we apply RLE
model as our predictor since it has the best precision of
state-transition predicting in our study cases.
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C. Cross-VMs predicting

In section III.C, we have exploited the fact that period-
icity tends to be shared across multiple cooperative virtual
machines. These VMs always take I/O state transition
simultaneously although their I/O intensities might have
some difference. Therefore, in this paper, we construct
a cross-VMs mechanism through integrating the history
information among multiple virtual machines to promote
the precision and efficiency of traditional predictors. In
our design, we gather all prediction results from multiple
cooperative virtual machines at each predicting period.
If most of them predict a coming state-transition, we will
revise the prediction results of those VMs which predict to
keep in a stable state and update their prediction values to
the last state-transition result that actually happened(e.g.
a prediction result of state-keeping around current state(2)
will be revised to a state-transition to state(3) if last state-
transition happened at state(2) is targeting to state(3)).
If there are only two cooperative virtual machines, we
will trace their predicting accuracy for state-transitionand
make prediction decision according to the one that has
better precision history.

We evaluate this cross-VM mechanism by applying it
to Markov and RLE predictors. Test result demonstrates
that the precision of state-transition predicting got an
obvious promotion. The average precision improvement
of all five benchmarks with two predictors is about 9.2%.
On the other hand, we also observe some difference
between the precision improvements cross different appli-
cations. The average precision improvements of Markov-
C and RLE-C are 10.9% and 12.8% when they were
applied toNPB-MPI benchmark, while the same ones
of TPC-W benchmark are only 6.8% and 3.0%. This is
because the cooperative virtual machines running NPB
programs almost have no other I/O operations besides
their inter-VM communications through network. In this
case, virtual machine’s I/O behavior significantly depends
on each others’. By comparison, the I/O behavior of
TPC-W virtual machines are much more complex. Besides
the network communication between two VMs, the web
server also needs to interact with clients while the back-
tier sever needs to access database. This I/O operation
variety increases the randomness of I/O behavior and
thus reduces the consistency between twoTPC-W virtual
machines. In this case, the precision promotion benefits
from cross-VM optimization is much less noticeable than
the one ofNPB tests.

We also tried to use the prediction result of one virtual
machine to predict the I/O states of other cooperative
VMs. However, for some applications, the I/O load in-
tensity could vary over different VMs although they have
similar periodicity and state-transition characteristic. In
this case, simply using the I/O intensity of one virtual
machine to predict other one’s could cause serious mean
error. Therefore, in this paper, we only apply the cross-
VMs mechanism to enhance the predicting of state-
transition.

D. summary

In this section, we introduce several typical online
predictors and discuss several important issues about I/O
behavior predicting. Our tests proved that the I/O load
state of applications could be efficiently predicted if using
proper predicting model and configuration. With these
prediction results, we could perceive coming I/O load
variation promptly and then provide some directions for
virtual machine scheduling to reduce the performance
degradation caused by disordered scheduling competition.
In the next section, we will propose our conception
of virtual machine scheduling optimization based on
asymmetric virtual machine scheduler and I/O behavior
predicting and describe several important mechanisms
that support our design.

V. SCHEDULING OPTIMIZATION BASED ON I/O
BEHAVIOR CHARACTERIZING

Current researches have proved that the scheduling
competition cross I/O and computing jobs is an important
issue that causes the performance degradation of virtual
machine system. In order to address this problem, we have
applied a multi-core dynamic partitioning method to real-
ize a asymmetric scheduling framework under Xen-3.1.0
virtual machine. This approach tried to isolate the nega-
tive influence to the computing jobs by scheduling I/O-
intensive VCPUs on separate processor core which em-
ploys frequent context switch and event-prior preemptive
scheduling algorithm. Although this method could address
the performance interference issue in some degree, it also
reduced the efficiency of scheduler because it just applied
a simple reactive way to handle the I/O load variation of
virtual machines: a VCPU migration is always instantly
performed when an I/O event arriving. Since frequent VM
migration could cause serious overhead especially when
it happens cross different sockets, we should schedule
VMs more cautiously to protect the scheduler efficiency
while keeping enough sensitivity to the variation of I/O
load intensity. In this case, accurate I/O state predicting
and execution phase tracking would be very helpful for
the scheduler to make correct scheduling decision. In last
section, we have described our methodology of I/O state
predicting and proposed several principles of predictor
evaluation and selecting. In this section, we will further
introduce the framework of our asymmetric virtual ma-
chine scheduler based on Xen-4.1.0 virtual machine and
discuss how to perform an optimal scheduling decision
based on the result of I/O behavior predicting.

A. Asymmetric scheduler based on Xen virtual machine

4.0 and earlier versions of Xen virtual machine sys-
tem employed traditional global-symmetric scheduler to
manage VMs. Both the main scheduler framework and
specific scheduling algorithm (such as Credit or SEDF)
need to be modified to realize the asymmetric scheduling.
Currently, the latest Xen-4.1 system provides aCPUPOOL
feature which allows several individual cpupools coexist
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in the system. Each cpupool has specific quantity of CPU
resources which are managed by its own scheduler and
virtual machines can be migrated cross different cpupools.
Although only Credit scheduler completely supports the
CPUPOOL mechanism currently, most important man-
agement functions have been realized in Xen-4.1.0 sys-
tem, including cpupool creating and destroying, processor
resource adding and removing, VM migrating and etc.
Based on this framework, asymmetric scheduling can be
achieved in a more modular and graceful way.

As illustrated in Figure 10, we increase a event-prior
round-robin(RR) scheduler to Xen virtual machine and
use it to manage a specificI/O cpupool. This sched-
uler applies frequent context switch to speed up I/O
operations and schedules VMs in sequence according to
their orders in scheduling queue. Beside I/O cpupool,
there is anothercomputing cpupoolwhich applies default
Xen-Credit scheduler to undertake virtual machines that
perform less I/O operations. During system running, we
trace the I/O load states of each virtual machine dynam-
ically and consider to migrate them between I/O and
computing cpupools if we predict their I/O load intensity
will significantly change. Different from our past research
work [17], the VM migration will only be performed
when we believe the entire system performance could
benefit from this scheduling adjustment rather than a
single I/O operation could be accelerated. Therefore, this
decision will be made based on the history analysis and
prediction of application’s I/O behavior. We will detail
our methodology of VM migration decision making in
next section.

B. Execution phase tracking and VM dynamic migration

As illustrated in section III, the I/O load state of most
applications always keep on stable state while transient
variations only happen occasionally. If we can distinguish
different execution phases of applications based on their
I/O load intensity and schedule VMs on I/O cpupool only
when they are in heaviest I/O load state, we can maximize
the benefit from I/O scheduling and reduce the overhead
of VM migration efficiently. To achieve this, we need to
specify a proper threshold to differentiate heavy and low
I/O load intensity and setup a proper condition for VM
migration.

Threshold of I/O load intensity: This threshold is
used to decide whether a VM has been in heavy I/O load
state and should be scheduled on I/O cpupool. Since the
I/O load intensity of different programs have significantly
difference and could vary over time, static threshold
would be inappropriate. We have introduced that the
principle of our execution phase tracking is maximizing
the benefit of I/O speeding up while limit the frequency
of VM migration, therefore the threshold setting should
be able to maximize the I/O load intensity distinction
between different execution phases. To achieve this object,
we borrowed a idea of segmentation from digital image
processing. The purpose of image segmentation is to
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Figure 6. Asymmetric scheduling model of Xen virtual machine

distinguish the object from background based on their
characteristic difference such as gray scale. In our study,
transient I/O state transitions could also be considered
as isolated objects that spread cross the whole execution
process which could be considered as the background.
The difference is the characteristic distinction is reflected
by the I/O load intensity rather than gray value in digital
image processing.

In our study, we appliedOTSU (Maximization of inter-
class variance) algorithm [28] to calculate the threshold
dynamically. Compared to other common-used segmenta-
tion algorithms such as adaptive iteration and morphology
method, this algorithm has the best adaptability and can
get best results for most of our study cases. The original
OTSU algorithm tries to select an optimum threshold
by maximizing the interclass variance in a digital image
based on the histogram and probability of pixel’s gray
value. In our study, we replace the gray value of pixels by
I/O event frequency and calculate the interclass variance
based on the histogram of I/O intensity history. The
revised OTSU algorithm applied in this paper can be
formulated as follow:

Let the samples of a given I/O intensity history be
represented in m intensity levels (I/O event frequency
value scope) [0, 1, 2... m]. The number of samples at
level i can be denoted byni.

Total number of samples:

N =
m∑

1
ni.

Probability distribution of different I/O intensity levels:

Pi =
ni

N

Separate history samples into two classesC0 = (1 ∼ k)
and C1 = (k + 1 ∼ m) which represent background
and objects respectively (low and heavy I/O execution
phases in our study) by a threshold k. In this case, the
probabilities of class occurrence ofC0 andC1 are given
by:

ω0 =
i=1∑

k

Pi = ωk

ω1 =
i=k+1∑

m

Pi = 1− ωk

and the class mean values ofC0 andC1 are given by:
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µ0 =
k∑

i=1

i×Pi

ω0

= µk

ωk

µ1 =
m∑

i=k+1

i×Pi

ω1

= µ−µk

1−ωk

where

µk =
k∑

i=1

iPi

and

ωk =
k∑

i=1

Pi

The total mean value of I/O intensity history is:

µ =
m∑

i=1

iPi = ω0µ0 + ω1µ1

and we can easily verify the following relation for any
choice of k:

ω0 + ω1 = 1

Finally, the interclass varianceσ2
k are given by:

σ2
k = ω0(µ0 − µ)

2
+ ω1(µ1 − µ)

2
= ω0ω1(µ1 − µ0)

2
=

[ωk×µ−µk]
2

ωk×[1−ωk]

We iterate threshold k from 1 tom and find the result
which can maximize the interclass varianceσ2

k.
An important factor affecting the threshold calculation

precision is the history size. Larger history size could
better reflect the entire characteristic of program while
smaller one could detect more detail of variation. We
compared the effect of different history size and finally
set it to 200 in this study. This time length has been
able to cover several complete iteration periods in most
cases while avoid inducing too much noisy which could
lead to unnecessary phase transition. We applied this
algorithm to our study cases and got ideal result. For
samples of LU, SP and CG programs in Figure 3, the
I/O intensity thresholds are 97, 69 and 247 respectively.
These results have been able to tell transient execution
phases from stable execution process clearly. In order to
keep enough sensitiveness to the variation of applications,
we recalculate the threshold each 50 sample periods.
Test result demonstrates that the time consumption for
each threshold update is less than 65 us in our test bed
which only causes very slight influence to the scheduler
efficiency. Actually for those applications which have
well periodicity and stable I/O intensity(such as NPB
benchmarks), the threshold result will always keep in
a stable scope during the entire execution. For TPC-
W benchmark, this threshold could need more frequent
update because of the strong variation of application’s
I/O intensity.

VM migration condition : This condition is used de-
cide whether we should treat the coming period as a
new execution phases and perform a VM migration to
adapt to the variation of application I/O intensity. In
our study, we apply a weaker condition for migrating
VM to I/O cpupool and a stricter condition for reverse
operation. Each time a VM’s prediction result exceeds

the I/O intensity threshold, we will migrate it to the
I/O cpupool immediately. However, only when a VM’s
practical I/O intensity is lower than the threshold in three
continuous sampling periods, we will check whether its
I/O prediction result of coming period is also under the
threshold. If so, this VM will be migrated back to the
computing cpupool. This setting makes sure that heavy
I/O execution phases could always be perceived and opti-
mized in the first place although computing performance
could suffer from I/O scheduling. In order to evaluate the
influence of scheduling computing jobs on I/O cpupool,
we tested the performance variation of EP program when
scheduling it with different context switch frequency. Test
result demonstrates that the performance degradation is
only about 8.7% when the period of scheduling switch
reduced from 10ms to 0.5ms. This degradation is much
less than the performance reduction caused by I/O latency
increasing, especially for those communication-intensive
applications(eg. the performance of CG program reduced
more than 40% when average network latency increases
from 0.5ms to 10ms). Therefore, we think weaker entry
condition for I/O-intensive execution phase should be
a rational choice for our study. Actually, this selection
could be more reasonable for network-based large-scale
system such as science cloud where a large number
of virtualized computing nodes are integrated through
network to perform parallel applications. In this case,
the benefit from network capacity improvement would be
more notable and more sufficient to offset the negative
influence caused by computing performance degradation.

In summary, with the I/O intensity threshold and
VM migration condition, we divide the entire running
process of applications into different phases. We hope
this temporal dividing could isolate the execution of I/O
and computing jobs and then reduce the performance
degradation caused by scheduling competition.

C. Scheduling optimization for cooperative VMs

Besides the dynamic VM migration, we also try to op-
timize the scheduling strategy based on the correlation be-
tween different virtual machines. As illustrated in section
III, there are strong similarity between the I/O behaviors
of cooperative VMs and this correlation is mainly caused
by inter-VM communications. In section IV, we have used
this characteristic to promote the prediction precision of
I/O load state. In this section, we will discuss how to
use this correlation to optimize the scheduling strategy
for cooperative virtual machines.

Grouping migration : Cooperative virtual machines
usually undertake different threads of parallel program
or commercial server. They always perform intensive I/O
operations to communicate with each other when syn-
chronizing computing result or acquiring data. However,
serious CPU competition and disordered VM schedul-
ing could prevent inter-VM communication finishing in
time and then cause serious synchronization latency or
response timeout. Currently, some scholars have proved
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that the co-scheduling strategy is an efficient way to
address the synchronization problem under virtual ma-
chine system [29]. Therefore, in our study, we also apply
similar mechanism to optimize the VM migration. As
illustrated in Figure 6, we divide several VMs into the
same group if they have cooperative relationship (E.g.
four VMs running LU program will be put intoGroupN
while four other VMs running CG program will be put
into Group(N+1)). VMs belong to the same group
will always be migrated cross different cpupools con-
currently. This mechanism guarantees cooperative VMs
could always benefit from I/O scheduling simultaneously
when they are both in I/O-intensive load state and thus
maximizes the efficiency of inter-VM communication.

However, this grouping migration strategy could also
increase the difficulty of balancing the resource allocation
between I/O and computing cpupools since the amount of
VMs in both cpupools will vary rapidly. In this case, the
resource capacity of I/O and computing cpupools needs
to be adjusted more promptly to achieve an optimal con-
figuration. In this paper, we just assigned fixed-quantity
of CPU resource to I/O and cpupools to explain our
conception. In future works, we will keep working on this
issue and try to find a way to balance the performance
between I/O and computing jobs efficiently.

Cpupool allocation optimization: Besides VM mi-
gration strategy, cross-VM correlation also influences the
topology of cpupool allocation. Currently, virtual network
drivers prefer to apply memory sharing mechanism(such
as grant table in Xen) to speed up the network
communication between multiple virtual machines when
they are deployed in the same physical platform. In
this case, the efficiency of data transmission could get
notable promotion if the sharing L2 or L3 cache could
be well utilized. Therefore, in our design, we always
try to deploy I/O and computing cpupools in individual
processor sockets to make sure cooperative VMs could
take fully advantage of cache sharing when they are per-
forming inter-VM communication. Although this isolation
between I/O and computing cpupools could increase the
overhead of VM migration because of cache flushing,
this overhead can be efficiently controlled if we limit the
frequency of VM migration into a proper range. We tested
the performance of EP program when 4 virtual computing
nodes periodically migrate cross two individual cpupools
which both employ Credit scheduler but deployed on
two different sockets. Compared to static scheduling, the
performance degradation is less than 5% if the migration
period is longer than 300ms. Since the VM migration
frequency is strictly controlled based on the I/O intensity
threshold and migration condition, we think deploying I/O
and computing cpupools in separate sockets should be
reasonable in our study.

It needs to point out that we only group VMs stati-
cally in this study. This method needs user to provide
grouping information explicitly before virtual machines
are deployed into system. However, sometimes sever

provider could not get enough information from customer
or user could change their application deployment during
system running. In this case, some automatic recognizing
mechanism would be necessary to dynamically detect
the cooperation relationship between different virtual ma-
chines. Although we haven’t investigated this issue in
this paper, we believe some simple pattern identification
methods based on I/O behavior characterizing, such as
periodicity comparison or correlation analysis would be
sufficient to address this problem.

D. summary

Although we haven’t finished our design, preliminary
test results demonstrate that this asymmetric schedul-
ing framework could efficiently reduce the performance
degradation caused by interference between I/O and com-
puting jobs. Some communication-intensive HPC pro-
grams could get significant performance improvement
when running in scheduling competition environment(e.g.
the Mops of CG program improved from 164.48 to 264.84
with 4 virtual computing nodes running on 2 processor
cores). However, compared to NPB programs, TPC-W
benchmark gets much less performance promotion. The
average latency of user request reduced less than 4% when
100 parallel sessions accessed the sever simultaneously.
This is because the CPU competition for TPC-W bench-
mark is much slighter than NPB programs during out
test. The average CPU usages of front-tier and back-tier
VMs of TPC-W sever are only 60% and 20% respectively
while NPB programs always try to exhaust their CPU
time. Therefore, the I/O performance degradation of TPC-
W server caused by CPU competition actually not as
serious as the one of NPB benchmark. Furthermore, the
I/O behavior of TPC-W sever has more randomness and
variation than NPB programs and thus decrease the accu-
racy of I/O state prediction which then causes much more
unnecessary VM migrations. This result demonstrates that
our approach could be more suitable for the cases where
the performance of computing and I/O jobs need to be
well balanced and the application I/O behavior has better
regularity.

We are now still working on the scheduler design, espe-
cially how to balance the resource capacities between I/O
and computing cpupools to achieve an optimal configura-
tion. Other issues such as VCPU migration optimization
and possible VM scheduling coordination cross multiple
physical nodes are also in study now. We will describe
more details about these issues after we get complete
analysis results.

VI. RELATED WORKS

Currently, the behavior analysis of virtualization appli-
cations at fine granularity has not been thoroughly carried
out. Most of current research work about virtual machine
system concentrated on the performance evaluation and
scheduler optimization. E.g., Ongaro [30]et al. explored
the impact of a VM scheduler for various combinations
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of scheduling features over multiple DomUs running dif-
ferent types of applications. Cherkasovaet al. studied the
impact that three different schedulers, Borrowed-Virtual-
Time(BVT), Credit and SEDF schedulers, have on the
throughput of different I/O-intensive benchmarks [31].
Govindanet al. [32] proposed a communication-aware
VM scheduling mechanism to improve the performance
of high throughput network intensive workloads. Hwanju
Kim [33] et al. analyzed the boost/tickle mechanism of
Xen credit scheduler, and proposed a task-aware virtual
machine scheduling mechanism based on inference tech-
niques using gray-box knowledge to improve the I/O
performance of mixed workloads. All of these works
demonstrated a fact that the performance interference be-
tween different applications and the mismatch between re-
source allocation and application behavior always caused
serious performance degradation and significantly reduced
the system efficiency. However, current optimization for
virtual machines system largely focused on the scheduling
algorithm optimizing or I/O architecture adjustment based
on application characteristics [5], [6], [7], [8]. They could
not overcome the resource requirement contradiction be-
tween I/O and computing workloads which is the inherent
defect of traditional symmetric scheduler. Since more and
more complex sever applications are consolidated into
virtulization platform, resource allocation control at finer
granularity and more flexible adaptive scheduler frame-
work become more necessary for future virtual machine
system design.

Application behavior analysis and prediction has been
a common and efficient way to improve the efficiency
of hardware system or optimize the performance of
traditional programs. E.g., D. Josephet al. implemented
Markov model in hardware to predict the prefetch ad-
dresses [9] and Chenet al. applied the same way to
predict branches [10]. Timothy Sherwoodet al. presented
a unified profiling architecture to capture and classify
phase-based program behavior on the largest of time
scales [11]. Duesterwaldet al. studied the time-varying
behavior of programs using metrics derived from hard-
ware counters on IBM Power architectures and explore
the potential of incorporating prediction into adaptive
systems [12]. Coskunet al. investigated how to use pre-
dictors for forecasting future temperature and workload
dynamics, and propose proactive thermal management
techniques for multiprocessor system-on-chips(MPSoCs)
[13]. There are still many other related works applying
application behavior analysis and predicting to promote
the system performance and efficiency. However, the fine-
grain characterizing and prediction of workloads under
virtualized environment has not been widely studied.
Therefore, in this paper, we tried to propose a runtime
behavior characterizing and predicting methodology for
virtualization applications. We hope these analysis could
provide some inspirations and help for future intelligent
and adaptive virtual machine scheduler design.

VII. C ONCLUSION AND FUTURE WORK

In order to exploit the methodology of dynamic be-
havior analysis for virtualization workloads, this paper
proposes a runtime characterizing and predicting approach
for virtual machine environment. We characterize the
time-varying I/O behavior of several typical virtualization
workloads and explore their predictability using several
online predictors. Test results demonstrate that the I/O
state variation of applications can be efficiently captured
and predicted if using proper predicting model and con-
figuration. Based on this result, we further investigate
the possibility of virtual machine scheduler optimization
based on I/O behavior characterizing. We discuss several
important issues including I/O computing jobs isolation
through asymmetric scheduling, VM dynamic migration
based on execution phase tracking and scheduling op-
timization for cooperative virtual machines. Preliminary
test results demonstrate that this method could efficiently
decrease the performance degradation caused by I/O and
computing competition.

Currently, more and more traditional server applica-
tions are consolidated into virtualization environment to
reduce cost and increase flexibility. In this case, assigning
adequate computing resource to specific applications at
proper timing has become an important prerequisite for
system optimization. Because of the diversity and strong
variation of applications, accurately characterizing and
predicting the runtime behavior of workloads would be
necessary for correct scheduling decision making. In this
paper, we characterize the I/O behavior of several typical
virtualization workloads and preliminarily discuss the
possibility of optimizing virtual machine scheduler using
asymmetric scheduling. In future works, we will further
complete our design and exploit other important issues
including resource allocation balance between I/O and
computing jobs and possible VM scheduling coordination
cross multiple physical nodes. We hope this methodology
could break the restriction of traditional scheduler design
and provide more space for virtual machine scheduling
optimization.
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