
 

 

Parallel Implementation of Xvid Decoder on 

Multi-Core  
  

  

Ying Liu  
College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China  

liuying@ise.neu.edu.cn     

   

Fuxiang Gao     
College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China  

gaofuxiang@mail.neu.edu.cn    

 

Shiyuan Wang     
College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China  

wangshiyuan@ise.neu.edu.cn    

  

  

 
Abstract—With rapid development of multimedia 

technology, performance of computers is changing 

constantly. Today even the most ordinary computers have 

already equipped with multi-core processors. At the same 

time, high-quality videos have become main requirement of 

customers. Therefore it is a serious problem how to make 

video codec process a large number of video data efficiently 

on multi-core processors. It is a good way to develop the 

software which is compatible with multi-core. But most 

video codec has been already designed and developed for 

single-core processors. So it’s a good idea to transform the 

current sequential program into the parallel one by the 

parallelization runtime library. In this paper we choose 

Intel isomorphic quad-core processor as hardware platform, 

Linux as OS, and use Intel parallel runtime library TBB to 

transform the decoder. The transformation includes that 

Loop parallelization, memory parallelization, data 

parallelization, pipeline parallelization and task-level 

parallelization. Then, for testing, sequential program and 

parallel one run on the same environment respectively, and 

the final results show that after parallelization the 

performance has improved significantly     

  

Index Terms—Parallelization; TBB; Multi-core;Xvid 

Decoder    

  

I.  INTRODUCTION 

Due to advances in circuit technology and performance 

limitation, speeding up processor frequency had not 

worked very well in the earlier part of this decade, so 

computer architects needed a new approach to improve 

performance. And the multi-core technology has become 

the mainstream in CPU designs [1]. The development of 

a sequential programming hardly involves the processor 

architecture, while the development of the multi-core 

application needs to know much about it. You can make 

full use of the multi-core resource, only if you know the 

hardware architecture very well. Program speed and CPU 

processing power is closely related. 

Multi-core processor is a chip multiple with multiple 

processor engines. It’s not a new concept, which has been 

used in embedded systems and specialized applications 

for some time. But nowadays this technology has become 

the mainstream because of many commercially available 

multi-core chips produced by Intel and AMD. In contrast 

to two and four core machines recently available, some 

experts believe that “by 2017 embedded processors could 

sport 4,096 cores, server CPUs might have 512 cores and 

desktop chips could use 128 cores.” [2] 

 

 

Figure 1.  Homogeneous Multi-core Processor Configuration.     

 

Figure 2.  Heterogeneous Multi-core Processor Configuration    

Multi-core CPUs can be categorized into two 

configurations, namely the ”homogeneous multi-core 

processor configuration” and the ”heterogeneous multi-

core processor configuration”. Each core in a 

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1639

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.7.1639-1646



 

 

homogenous system is exactly the same: equivalent 

frequencies, the same cache sizes, functions, and so on. 

While, each core in a heterogeneous system may have 

different functions, different frequencies, memory model, 

and so on. So there is an apparent tradeoff between 

processor complexity and customization. As shown in Fig. 

1, multiple cores of the same type are implemented in one 

homogeneous multi-core processor. While in Fig. 2, 

multiple cores of different types are implemented in one 

heterogeneous multi-core processor.   

THERMAL

CONTROL

A
R

C
H

 S
T

A
T

E

E
X

E
C

U
T

IO
N

 

R
E

S
O

U
R

C
E

S

L
1

 C
A

C
H

E

THERMAL

CONTROL

A
R

C
H

 S
T

A
T

E

E
X

E
C

U
T

IO
N

 

R
E

S
O

U
R

C
E

S

L
1

 C
A

C
H

E

THERMAL

CONTROL

A
R

C
H

 S
T

A
T

E

E
X

E
C

U
T

IO
N

 

R
E

S
O

U
R

C
E

S

L
1

 C
A

C
H

E

THERMAL

CONTROL

A
R

C
H

 S
T

A
T

E

E
X

E
C

U
T

IO
N

 

R
E

S
O

U
R

C
E

S

L
1

 C
A

C
H

E

APIC APIC APIC APIC

POWER MANAGEMENT LOGIC

L2 SHARED CACHE

BUS INTERFACE

FSB

  

Figure 3.  Block Diagram for the Intel Core 2 Quad. 

Most multi-core processors used today are both 

Homogeneous multi-core processors. Intel is one of the 

mainstream microprocessors manufacturers in the world. 

It produces many different types of multi-core processors. 

The Pentium D is used in desktops, the Core 2 Quad is 

used in both laptop and desktop environments, and the 

Xeon processor is used in servers. So we choose Intel 

Core 2 Quad as the experiment processor in this paper. 

Fig. 3 shows block diagram for the Intel Core 2 Quad. Its 

architecture is the homogenous quad-core processors. The 

Core 2 Quad adheres to a shared memory model with 

private L1 caches and a shared L2 cache. While the eight-

core or even more core processors can be the choice for 

extension. 

Intel Core 2 Quad is used as the development platform, 

four cores of which have the same functions and 

operations. Each core has it own executive resources, and 

cache L1. The four cores share 6MB cache L2, and can 

support truly parallel computing [3]. 

With the continuous development of codec standards, 

computation of video processing is more and more, and 

the computing power of processors is becoming the 

bottlenecks of video application [4]. Parallelization on 

multi-core is an ideal solution for video processing, there 

is a natural parallelism in the process of which. The video 

codec can be parallelized from two aspects, hardware and 

software. Parallelization from the perspective of hardware, 

it’s feasible to accelerate through multi-core platforms 

like DSP, GPU, IBM Cell or Intel. Parallelization from 

the perspective of software, the whole development cycle 

is too long time from the design for multi-thread 

parallelization on multi-core to accomplish according to 

the traditional parallel model. And the development and 

debugging of the multithread are also the technical 

problems themselves, which would cost the programmers 

a lot of time on learning traditional knowledge of parallel 

development. Parallelization on multi-core for the current 

sequential program can just parallelize some parts of it, 

while its infrastructure and algorithm unchanged. So the 

development time of a parallelization program design can 

be accelerated, and the efficiency of program has 

improved. We can use the parallel runtime library to 

transform a sequential program to a parallel one. TBB, 

OpenMP, and MPI are the common used parallel runtime 

libraries at present. In this paper, we choose Intel TBB as 

the multi-core runtime library. TBB, Thread Building 

Block, is a parallel programming tool developed by Intel. 

It is a C++ template library, which provides the parallel 

program with a suitable abstraction and the 

implementation for commonly used algorithm. TBB also 

has the feature of automatic load balance, flexible 

scalability, and so on. 

 

It is an open source C++ template library, which can 

run on the OS like Windows, Linux and UNIX with C++ 

compiler. The parallelization level of TBB is higher, on 

the abstraction. It’s based on task not thread. It concerns 

performance, scalability and etc. Therefore TBB is the 

best choice for parallelization development on multi-core. 

Compared with the traditional parallelization technology 

such as OpenMP and MPI, TBB has features and benefits 

as follows. 

1) Task-oriented Parallelization Programming: The 

Thread functions are specified from the logical task rather 

than the physical thread. The task is more advanced 

parallel abstraction than the thread. When we use its C++ 

template library, we just need to design the task not the 

thread. That makes us ignore some detail about thread, 

such as load balancing, scheduling optimization, and so 

on. The underlying components of TBB have 

implemented these grunt jobs, which map the tasks to the 

threads through efficient way, and implement automatic 

scheduling by work stealing. 

2) Easy to Use: TBB is the library implemented by the 

standard C++ template. It does not contain the special 

language extensions like in OpenMP, nor is a new 

programming language. We can choose the efficient 

parallel algorithm template from the C++ template library 

provided by TBB, and feel the benefits from multi-core 

processors. 

3) Support crossing Platform: TBB is the library 

implemented by the standard C++ template. It does not 

contain the special language extensions like in OpenMP, 

nor is a new programming language. We can choose the 

efficient parallel algorithm template from the C++ 

template library provided by TBB, and feel the benefits 

from multi-core processors. 

4) Supporting Development Tools: There many Intel 

supporting development tools for TBB, such as Intel 

Thread Checker, Intel VTune Amplifier and so on. All 

these can coordinate with TBB to improve the efficiency 

of developing and debugging. 

1640 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER



 

 

We have studied the cubic convolution interpolation 

algorithm for image processing and parallelized it using 

the parallel programming tools TBB and OpenMP, and 

compare the performance of parallel and sequential 

implementations in our Preliminary work. 

The paper is organized as follows. Section II briefly 

introduces the codec-Xvid. What’s the Xvid and why we 

use it. And the Xvid decoder algorithm is introduced in 

Section III while its implementation is given in Section 

IV. Section V discusses how to parallelize the decoder 

program efficiently. The experimental results are shown 

in Section VI. Finally, Section VII concludes this paper 

and discusses the future work. 

II.  XVID AS PROFILE    

There are many codecs in the world. The codec is an 

abbreviation for [co]der/[dec]oder, hence describes a 

program to encode and decode digital video. The purpose 

of encoding video data is to reduce redundancies. After 

that the video files can be smaller for faster transmission 

over computer networks or for more efficient storage on 

computer disks. And the Xvid is one of the most common 

ones currently. Nearly 90 percent movies on BitTorrent 

and eMule are suppressed by Xvid. The Xvid can 

somewhat be seen as a ZIP for video. But unlike ZIP, it is 

not lossless. That means that a video after compression 

and decompression with Xvid won't be identical to the 

original source. Typically however, a difference to the 

source is visually imperceptible. The Xvid removes 

information that is not important for human perception, 

which is somewhat similar to MP3 for audio. This 

enables very high compression rates that allow to 

effectively working with digital video on PC. For 

example: uncompressed digital video is huge and requires 

about 100 GB per hour at PAL resolution. The same 

video would require just 500 MB per hour at very high 

quality when compressed with the Xvid. That is a 

compression ratio of 200:1. 

The Xvid is the Free Software and released under the 

GNU GPL license. This means that the source code of the 

software is publically available and programmers are 

allowed to make modifications to the code which is good 

news for us. We can obtain the Xvid free of charge, 

without time or feature limitations. Also the Xvid source 

code is publically available and can be reviewed by any 

interested programmer [5]. So we choose it as the 

experiment object.  

It is possible to have Xvid running on many different 

platforms. And it could still be made available to new 

platforms or new operating systems by anyone interested 

without involvement of the original developers.  

Since it is the first truly open source code, it’s also a 

typical traditional sequential program. By transforming it 

into the parallel one, a general solution for parallelization 

of the typical sequential program is proposed. Most 

sequential programs can learn how to parallelize from it, 

including the parallelization analysis, parallelization 

design, and parallelization implementation.      

III. ALGORITHM FOR XVID DECODER     

As a video codec standard, Xvid has the open source 

code online. It has just implemented all functions of Xvid 

video standard. Although its readability and portability 

has been implemented, the real-time performance of 

video code has not been considered. Nor is the 

practicality for the further extension. 

To make the code more practical, we choose decoder 

of Xvid developed on Linux as the research object. The 

core of its SMP version can support multi-core processor 

well. And Linux Kernel 2.6 is chosen as OS, which has a 

new process scheduler supporting SMP well. It can also 

keep load balancing and cache effective. Xvid decoder 

based on MPEG-4 will be parallelized, and it will be 

more practical. 

Xvid decoding algorithm based on MPEG-4 includes 

three functions, decoder create for creating decoder 

instance, decoder decode for decoding image frame by 

decoder, decoder destroy for destroying decoder. There 

can be many decoders. We can call decoder decode for 

decoding image frame in cycle call, but only can call 

decoder create or decoder destroy just once. 

In this paper, the parallelization process of decoding 

algorithm is mentioned. The algorithm process is 

introduced in detail. In MPEG-4 SP video decoding 

algorithm, the process of decoder decoding is shown in 

Algorithm 1. 

Algorithm 1. decoder_decode 

1: initialize stream structure; 

2: analyze stream head structure; 

3: if  BitstreamReadHraders ==  1／2 then 

4:     analyze stream head structure; 

5: end if 

6: if  BitstreamReadHraders ==﹣3 then 

7:     decoder_resize; 

8: end if 

9: ensure the first decoding is I- frame; 

10: decoder_iframe(); 

 decoder_pframe(); 

The SP level of MPEG-4 video frame has two kinds, 

Iframe and P-frame. I-frame decoding is decoded by 

function decoder iframe, while p-frame by function 

decoder pframe. The two functions both have to decode 

in cycle for all the macro blocks, which are the focus of 

parallel transformation. Function decoder pframe is 

chosen as an example because Pframe is the main type in 

decoding. The process of P-frame is shown in Algorithm 

2. 

To decode P-frame, there are three coding modes, Inter, 

Intra and not coded. The decoding for them is finished in 

a loop. And we will parallelize it. 

/*All the Macro blocks in the Loop*/ 

For(y=0; y<height; y++){ 

 For(x=0; y<width; x++){ 

 /* Is it intra */         /* Intra macro block decoding*/ 

/* Is it inter */          /* Inter macro blockdecoding*/ 

/* Is it not coded*/   /* no decodereturn directly*/ 

} 

} 

Algorithm 2. decoder_pframe 

1: initialize parameters; 

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1641

© 2012 ACADEMY PUBLISHER



 

 

2: while (all the blocks are decoded) do 

3:     get quantization step of DC; 

4:     if  decoded() == 1 then 

5:        get decode information; 

6:        if  Intra()==1 then 

7:           Intra block decode; 

8:       end if 

9:       if  Inter()==1 then 

10:          Inter block decode; 

11:      end if 

12:    end if 

13:    no decode is needed; 

14:    MV clear; 

15: end while 

  IV. DECODER IMPLEMENTATION    

The purpose of parallelization for traditional programs 

is to reduce as much workload as possible by rewriting 

the applications to guarantee performance. Therefore in 

the parallelization the general algorithm hardly changed. 

And this is the general principles for our parallelization 

analysis of sequential program [6]. In the process of 

specific analysis, the following aspects should be paid 

attention to mainly. 

(1) Find out a suitable parallelization level for the 

original program. In this level, it’s not necessary to 

consider the structure design of the original program. And  

it will be the key points of performance. 

(2)The parallelization level mentioned above may 

cover the entire program, so the Independence of each 

data and program segment must be guaranteed. 

(3)Data decomposition, task decomposition and 

pipeline decomposition can be used in the parallelization 

[7].  

By analyzing Xvid decoder based on MPEG-4, the 

main function of the original program is to decode the 

Xvid video. The following points can be used in the 

parallelization parts. 

(1) Function parallelization is finished firstly, which 

means that a frame is divided into several steps and each 

processor will process one of them. 

(2) Data parallelization means that a frame data can be 

divided into several data blocks, and each processor will 

process a data block. 

(3) Parallel memory allocation is used for allocation of 

the image frames. 

(4) Work stealing strategy is used to balance workload 

when the image decoding work is distributed unevenly. 

(5) There are many loops in the Xvid decoding 

program, including initialization of parameters in the 

video decoding and the computing process of decoding. 

Therefore Loop parallelization will be used through the 

whole program. 

We can parallelize the original program from the 

following aspects. The first one is data decomposition. 

When parallelizing the decoder, we should pay more 

attention to the data dependence. In the parallelization of 

the data decomposition macro block (16×16 pixel block) 

group division is used. The second one is loop 

parallelization. From the source code of the key functions, 

we know that there are many loops which are not related 

to the data processing. The increasing number of loops 

can make computing time increase exponentially, which 

will be the bottleneck at last. So loop parallelization is the 

most important point of our work. The last one is task 

parallelization. The function process of Xvid decoder 

needs to be considered. If there is no traffic between tasks, 

or only some dependencies like pipeline, task 

parallelization can be used. The overall scheme of 

parallelization for source is shown in Figure. 4.    

 

Inter Macro Block

Function 

Implementation

Decoding Function 

Module

Data Parallelization

Loop Parallelization

Pipeline 

Parallelization

Memory Allocation Parallelization

Parallel Analysis of Original Program

 

 

Figure 4.  Overall Scheme of Parallelization.   

Data Parallelization  

Data parallelization of Xvid video decoding is to 

divide a frame of data into several data blocks, and each 

processor processes a data block. Macro block decoding 

function occupies a large amount of computation. It 

includes Motion compensation, inverse transformation, 

inverse quantization, and so on each of which needs 

much computation. Therefore the key to parallelize Xvid 

decoding is data parallelization. In the process of macro 

block decoding, the data dependency must be paid 

attention to. The decoding of the marco block needs to 

check whether all the related macro blocks are decoded. 

In the sequential program, the macro blocks are decoded 

according to the row sequence. When the current macro 

block is decoded, its reference blocks have been decoded. 

So macro-block-level parallelization is to find out the 

macro block whose reference macro blocks have been 

decoded. 

By analyzing the code, we know that each macro block 

is decoded sequentially in a loop. To parallel a loop 

correctly, we must find out a macro block group which is 

independent with each other. If a macro block group can 

be decoded independently, two or even more groups can 

run together.     

Loop Parallelization       

The relevance between data must be analyzed when we 

study loop parallelization, and the data partition methods 

are discussed when computing. We should pay special 

attention to the data relevance. Of course, if there is no 

sharing data between tasks, these tasks can execute in 

parallel. If the two tasks which are relevant to each other 

1642 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER



 

 

are to read the same data in the sharing memory unit, they 

can also execute in parallel. But when a task write and the 

other task read or write the same data, the sequence is 

critical. And they can’t execute in parallel. Therefore 

when the relationship between data is the first two cases, 

loop parallelization can be finished    

A. Function Parallelization    

The work flow of Xvid CODEC decoding algorithm 

includes three steps, initializing CODEC, using CODEC, 

destroying CODEC. Creating handle and allocating 

memory is finished in the process of initializing CODEC. 

MPEG-4 decoding is finished in loop of using CODEC. 

The inverse process of initialization is finished in 

destroying CODEC. Xvid CODEC is written in standard 

C language, whose core module includes transformation 

copy, DCT transformation, SAD computation, motion 

compensation, CBP computation and so on. There are 

complex communications between tasks in the three steps, 

which are not suitable for parallelization on common 

multi-core PC. But for video input, frame decoding and 

frame output, there is the significant dependence, pipeline 

parallelization can be used. Pipeline parallelization of 

decoding is shown in Figure. 5.   

     

Pipeline Paralleliztion

 

filter_mb（）

decoder_pframe（）

decoder_mb_decode

Including Entropy Decoding, 

Motion Compensation, Inverse 

Transform, Inverse Quantization

Save P-frame（）

Open Video File

 

 

Figure 5.  Pipeline Parallelization of Decoding    

Overall, we can improve the parallel efficiency greatly 

by using pipeline parallelization structure on the whole, 

data decomposition parallelization in the frame decoding 

process, and loop parallelization in anywhere that it can 

be used. The purpose of parallelization solution is that 

scalability, high performance and correctness. And 

scalability means that as the core number of a processor 

and data amount processed increasing, performance and 

efficiency can be both improved. High performance 

means higher performance computing on multi-core. 

Correctness means that parallel program must have the 

same result as the sequential one.       

  IV. DECODER IMPLEMENTATION    

According to the scheme in the Section IV and TBB 

specific algorithm, the overall structure of the sequential 

program parallelization is proposed, which is shown in 

Figure 6..      

 

Overall Structure of Parallel Design

Initialization

Decoding Frame

Output Frame

Task Schedule 

Initialization

Memory Allocation 

Initialization

Pipeline Initialization

Filter Initialization

Macro Block Decode Macro Block Filter

Output Video Frame Free Memory Space

 

Figure 6.  Overall Structure of Parallel Design   . 

Loop Parallel Implementation      

Data parallelization of Xvid video decoding is to 

divide a frame of data into several data blocks, and each 

processor processes a data block. Macro block decoding 

function occupies a large amount of computation. It 

includes Motion compensation, inverse transformation, 

inverse quantization, and so on each of which needs 

much computation. Therefore the key to parallelize Xvid 

decoding is data parallelization. In the process of macro 

block decoding, the data dependency must be paid 

attention to. The decoding of the marco block needs to 

check whether all the related macro blocks are decoded. 

In the sequential program, the macro blocks are decoded 

according to the row sequence. When the current macro 

block is decoded, its reference blocks have been decoded. 

So macro-block-level parallelization is to find out the 

macro block whose reference macro blocks have been 

decoded. 

Grain size is the measure of computing size and traffic 

size. In our case, that includes grain size of the 

application and grain size of the machine. Generally 

speaking, the grain size refers to the application grain size. 

Application grain size is the ratio of computation and 

traffic. Traffic refers to overhead of data sharing or 

message passing among threads or processes. Machine 

gain size is the ratio of computing power and 

communications power. 

Grain size makes a great impact on analyzing, coding 

and running the parallel program. When application 

running, a suitable grain size should be chosen. For a 

fine-grained application, if it runs in the coarse-grained, 

the efficiency is very poor. Because traffic becomes its 

bottleneck, and the coarse-grained makes it even worse. 

TBB Grain size partition tool is used for grain size 

partition of Xvid parallelization directly. Meanwhile, tbb 

blocked range and tbb parallel for are used together for 

loop parallelization in this paper. 

The parallel for is used for loop in the TBB library. 

Iteration is the simplest scalable way. By parallel 

processing of the circulation element in a loop, the speed 

of circulation process can be improved. The parallel for is 

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1643

© 2012 ACADEMY PUBLISHER



 

 

used in the parallelization of independent iterative 

process. In the Xvid decoding source, there are many 

loop operations in the process of frame decoding, which 

can be parallelized by parallel for. 

In the loop tbb::block range is used for gain size 

partition. Grain size is default in the example above for 

the loop parallelization. The grain size will make a great 

impact on parallelization performance, so it’s necessary 

to study it. For partitioning, the way of recursive division 

is better than static. blocked range is the iteration space 

from 0 to n-1. Its common form is [8]: 

blocked range<T> (begin, end, gransize) 

The iteration space is partitioned according to 

parameter gransize by parallel for, so the size of gransize 

makes a direct impact on the parallelization result. In the 

worse case, because of the wrong division of the 

subinterval, overhead of creating and destroying 

subintervals is much larger than performance improved 

by parallelization. So it’s necessary to find out the best 

grain size partition. TBB has provided a default automatic 

partitioner. Set the value of gransize as auto partitioner, 

then automatic partitioner will give the proper grain size 

like 500, according to the system case. But there is a 

defect that the best gain size can not be given. So we have 

to propose another method to find a better grain size. By 

setting gransize as higher value and testing the result in 

the experiments, modify the value gradually. By 

analyzing the relationship between execution time and 

value size, the best gransize value will be found. 

Certainly, it’s too tedious. If the loop parallelization is not 

used frequently, default value auto partitioner is 

recommended. Finally, task scheduler scheduler init will 

distribute tasks in parallel. 

Memory Parallel Implementation 

Xvid video decoding needs to allocate and free 

memory frequently. And it may occupy a lot of execution 

time. Therefore, we use TBB memory allocator to read 

video images and free memory. 

The template of memory allocator provided by TBB is 

scalable_allocator<T>. The memory blocks can be 

allocated in advance and reused, which would reduce the 

overhead of system calls. TBB memory allocator uses 

thread private heap, not global lock. So it will not lead to 

lock contention. 

TBB scalable memory allocator includes just TBB 

scalable memory allocator library, not TBB universal 

library. So it can be independent with other algorithm or 

container template. It replaces malloc, free, realloc, and 

calloc in C++. Accordingly, the memory allocated by 

scalable allocator should be freed by itself. 

Data Parallel Implementation 

To implement parallelization based on macro block 

group, it needs to be decoded according to the 

dependence. So thedependence of the macro block groups 

must be expressed correctly. It’s implemented by a two-

dimensional matrix. Each element in the matrix 

represents a macro block group in the corresponding 

coordinate set of the image. The value of element is the 

number of dependent macro block groups that haven’t 

been decoded. When the value reduces to 0, the 

dependent groups have been all decoded. So a task can be 

created for decoding this macro block group. After that, 

the value of this group in the matrix is modified at the 

same time and check if there is any new group can be 

decoded. This process is shown as Algorithm 3. 

Algorithm 3. parallel design 

1: build two-dimensional data; 

2: i=x/2; 

3: j=y/2+x%2; 

4: while value(i; j)!= 0 do 

5:    decode group in coordinates(i,j); 

6:    values of coordinates((i+1),j)-1; 

7:    values of coordinates((i+1),(j+1))-1; 

8:    values of coordinates(i,(j+1))-1; 

9: end while 

10: decode macro block group(i,j); 

Pipeline Parallel Implementation 

Pipeline parallel implementation needs to use TBB 

pipeline and filter class. Data processing node should 

inherit from filter class, which is a filter in the pipeline. 

Filter constructor has just a Boolean parameter, which is 

used to decide whether it is a sequential operation or 

parallel one. ”True” represents the sequential operation 

while ”false” represents the parallel one. 

For CPU-intensive and IO-intensive applications in the 

program, pipeline model is chosen. The CPU-intensive 

part is put in a filter, and IO-intensive is put in another 

one. The two filters can be distributed different threads, 

and the speed difference between them is matched by the 

queue linking them. Therefore we can get the best 

efficiency of concurrent. 

In the implementation, there is a pure virtual function 

void*operator()(void *item), and it must be implemented. 

The input parameters are the data from the previous node, 

and the processed data will be returned. Local Xvid video 

files input, loading video image, initialization, decoding 

video frame, and video frame output are finished at the 

nodes. So four filters need to be established, including 

input filter, load filter, frame decode filter, and frame 

output filter. 

Task Parallel Implementation 

Task scheduling mechanism is the core of all the 

algorithms. TBB uses the tasks with the threads, and the 

task scheduling mechanism is introduced. When using 

this mechanism, both TBB_scheduler_init and TBB_task 

should be used. TBB initializes a global thread pool 

implicitly [9], which can manage the thread pool 

automatically. All these functions can make programmers 

write high performance code easily.  

The scheduler_init is the initialization of TBB task 

scheduler. TBB::task_scheduler_init must initialize TBB 

before using task scheduler or any TBB parallel 

algorithm template.  

Task scheduler is used to create a thread for each core, 

and map it to the logic thread to make each thread run in 

full load. When a thread is free, it will ”steal” tasks from 

other thread. And it will achieve dynamic threads load 

balance.  

1644 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER



 

 

Every TBB task inherits from ”task”, and it must finish 

the following steps from its creating to running. 

(1) Allocate memory space for tasks. The overloading 

operator “new” and task::allocateroot is used to allocate 

memory. The root suffix in the names represents that the 

task created have no father task, and it’s the root of the 

task tree. 

(2) Create the task according to corresponding 

constructor, and it will be called in the overloading 

operator “new”. 

(3) Run the task, until task::spaw_root_and_wait is 

finished.      

VI. EVALUATION      

Test Environment     

Operating System: Red Hat Enterprise Linux 5 

Processor: HP IntelRCoreTM2 Quad CPU Q8400 

@2.66GHz 

Memory Size: 4G 

Decoding Program Compiler: GCC 4.12 

After parallelization of sequential program on multi-

core, Xvid video decoding is tested on quad-core. The 

testing sequence [10] is shown in Table I. Among them, 

CIF is the common standard image format, which is equal 

to 352288 pixels in the H.323 protocol cluster. While 

QCIF is also the common standard image format, which 

is equal to 176144 pixels in the H.323 protocol cluster.      

TABLE I.   
TEST SEQUENCE        

Sequential Resolution Coded frames Video file size 

Akiyo(qcif) QCIF 300 4.8MB 

Coastguard CIF 300 13.1MB 

Container CIF 300 15.9MB 

Foreman CIF 300 20.2MB 

 

Sequential Program Data     

In sequential experiments, the corresponding functions 

of Xvid decoder based on MPEG-4 run on Linux, and the 

decoding time is recorded. From Table II, we can find 

that decoding performance of small size video file is 

excellent, when it is not parallelized. But with the size of 

video file increasing, the speed has not changed a lot. In 

the following tables fps is short for frames per second       

TABLE II.   
DECODING  TIME OF XVID DECODER    

Sequential Size Frame Number Decoding Frame Rate 

Akiyo_qcif QCIF 300 231.3547fps 

Coastguard_cif CIF 300 87.5061fps 

Container_cif CIF 300 66.0995fps 

Foreman_cif CIF 300 54.5729fps 

 

A. Parallel Program Test   

Evaluation capacity: Decoding Frame Rate in 

Sequential, DFRS for short; Decoding Frame Rate in 

Parallel, DFRP for short, Speedup which is equal to the 

ratio of DFRP and DFRS.  

(1) Test of Gain Size Partition and Loop Parallelization  

The results are shown in Table III.    

TABLE III.   
RESULTS OF GAIN SIZE PARTITION AND LOOP 

PARALLELIZATION    

Sequential DFRS DFRP File Size Speedup 

Akiyo 231.3547fps 305.3882fps 4.8MB 1.320 

Coastguard 87.5061fps 101.7696fps 13.1MB 1.163 

Container 66.0995fps 77.9974fps 15.9MB 1.180 

Foreman 54.5729fps 67.9432fps 20.2MB 1.245 

   

(2) Test of Data Parallelization The results are shown 

in Table IV.      

TABLE IV.     
RESULTS OF DATA PARALLELIZATION     

Sequential DFRS DFRP File Size Speedup 

Akiyo 231.3547fps 282.2527fps 4.8MB 1.220 

Coastguard 87.5061fps 100.6320fps 13.1MB 1.150 

Container 66.0995fps 78.6584fps 15.9MB 1.190 

Foreman 54.5729fps 67.1247fps 20.2MB 1.230 

 

(3) Test of Pipeline Parallelization, The results are 

shown in Table V..      

TABLE V.   
RESULTS OF PIPELINE PARALLELIZATION     

Sequential DFRS DFRP File Size Speedup 

Akiyo 231.3547fps 224.4141fps 4.8MB 0.970 

Coastguard 87.5061fps 83.1308fps 13.1MB 0.950 

Container 66.0995fps 62.1335fps 15.9MB 0.940 

Foreman 54.5729fps 50.7528fps 20.2MB 0.930 

 

From the testing results, we can find that the program 

decoding speed hasn’t been improved but a little lower 

in 

the pipeline parallelization. Because that the 

introduction of Intel pipeline parallelization model leads 

the possible of lock conflict which is much larger than 

before with the hardware threads increasing. To the quad-

core processor used for testing, the number of its 

hardware threads became the bottleneck of the whole 

experiments, so its efficiency is lower than the sequential 

one. But it doesn’t mean that pipeline parallelization is 

not feasible. When the number of the hardware threads is 

more than 32, pipeline parallelization is the most efficient. 

(4) Test of Memory Allocation Parallelization. The 

results are shown in Table VI.     

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1645

© 2012 ACADEMY PUBLISHER



 

 

TABLE VI.   
RESULTS OF MEMORY ALLOCATION PARALLELIZATION       

Sequential DFRS DFRP File Size Speedup 

Akiyo 231.3547fps 246.3928fps 4.8MB 1.065 

Coastguard 87.5061fps 91.7939fps 13.1MB 1.049 

Container 66.0995fps 69.6028fps 15.9MB 1.053 

Foreman 54.5729fps 57.7927fps 20.2MB 1.059 

 

(5) Test of General Parallelization 

Compared sequential decoding sequence with parallel 

decoding sequence, after computing we can get the data 

shown in Table VII.  

TABLE VII.   
RESULTS OF GENERAL PARALLELIZATION    

Sequential DFRS DFRP File Size Speedup 

Akiyo 231.3547fps 393.9970fps 4.8MB 1.703 

Coastguard 87.5061fps 139.1347fps 13.1MB 1.590 

Container 66.0995fps 101.1322fps 15.9MB 1.530 

Foreman 54.5729fps 91.1367fps 20.2MB 1.670 

   

  In order to show the results of that experiment vividly, 

we put the data in Table III, Table IV, Table V, Table VI 

and Table VII together in one diagram. In Fig. 7 we can 

see that the general parallelization  has the best speedup 

while the pipeline parallelization has the worst speedup. 

And we know that for different environments, the result 

maybe totally different. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Akiyo Coastguard Container Foreman

 GAIN SIZE PARTITION

 DATA PARALLELIZATION

 PIPELINE PARALLELIZATION

 MEMORY ALLOCATION
PARALLELIZATION

 GENERAL PARALLELIZATION

 

Figure 7.  Note how the caption is centered in the column. 

As shown in Table VII that there are two aspects: 

firstly, the video decoding frame rate is related to video 

file formats and video file sizes. Taking the QCIF format 

as the example, its decoding frame rate is significantly 

faster than the rate of the CIF format, while its speedup is 

also larger relatively; secondly, in terms of the same 

format, as the video file increases, the parallel decoding 

obtains more obvious advantages. Therefore, the parallel 

decoding based on the Xvid improves the utilization of 

the processor, especially for large video file, and its 

speedup even reaches 1.67.     

 

VII. CONCLUSION 

 

The parallel implementation of applications on Linux 

is studied in the paper. We have discussed the feasibility 

and solution of parallelization, and implemented it in the 

Xvid decoding application. The code needs to be 

optimized, and that’s our work in the paper. By analysis 

of Xvid decoding open source code, a parallelization 

solution for it by TBB library is proposed. The 

parallelization includes loop parallelization, data 

parallelization, memory allocation parallelization, and so 

on. The performances of parallel decoder processing 

different sizes video files are tested in the experiments. 

And from the results, we can know that the performance 

of its functions has been improved by parallelization. We 

have just an initial exploration about parallelization. In 

future, further exploration will be taken about decoding 

on embedded systems, or the other multi-core CPU 

environments     

REFERENCES 

[1] L. Peng et al, “Memory Performance and Scalability of 

Intel‟ s and AMD‟ s Dual-Core Processors: A Case 

Study”, IEEE, 2007 

[2] R. Merritt, “CPU Designers Debate Multi-core Future”, 

EETimes Online, February 2008, 

http://www.eetimes.com/showArticle.jhtml?articleID=206

105179 

[3] Lu Jinzheng, Zhou Dongmei. Visual C++ Audio/Video 

Processing Technology and Engineering Practice. 

Electronics Industry Press, 2009, 519-563. 

[4] Zhou Shuxian. OpenMP-based Programming on Multi-

core PC. SCIENCE & TECHNOLOGY INFORMATION, 

2010, 9: 78-79. 

[5] Xvid. http://www.xvid.org/, 2011 

[6] Xie Xianghui, Hu Sutai, Li Hongliang. Multi-core/many-

core processor and its influences on computer architecture 

design. Journal of Frontiers of Computer Science and 

Technology, 2008, 2(6), 641-650. 

[7] TBB opensource. http://www.threadbuildingblocks.org, 

2008. 

[8] Wang Hai tao, Liu Shu fen. Parallel Computing Based on 

Linux Cluster. Computer Engineering, 2010, 1(36), 64-66. 

[9] Xi Jie; Chen Jie. Parallel Intra Prediction on Multi-core 

Platform. Science Technology and Engineering, 2010, 

10(6), 1379-1383. 

[10] Video Sequence Download. 

http://bbs.chinavideo.org/viewthread.php?tid=1006, 2007.        

 

 

 

 

 

Ying Liu, doctoral student, studies in College of Information 

Science and Engineering, Northeastern University, China  

   

Fuxiang Gao, professor, works in College of Information 

Science and Engineering, Northeastern University,  China  

 

Shiyuan Wang, master student, studies in College of 

Information Science and Engineering, Northeastern University, 

China    

 

 

1646 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER




