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Abstract—The paper presents a hybrid model grid variable 

structure multiple model algorithm basing on strong 

tracking filter (STF-VSMM) which is used to state 

estimation for complicated system. The total model set for 

STF-VSMM is the combination of a coarse model grid and 

an adaptive fine grid moving freely in the system mode 

space. During the produce of the fine model grid, the paper 

uses a strong tracking filter to get the center position. Then, 

STF-VSMM can form a two-double bestrow of the system 

mode space. At last, the paper realizes the accurate tracking 

of maneuvering target using STF-VSMM. Simulation 

results demonstrate that STF-VSMM estimator 

outperforms the corresponding fixed structure multiple 

model (FSMM) at a negligible extra computational cost.  

 

Index Terms—maneuver target tracking; multiple model 

estimation; strong tracking filter; VSMM 

 

I.  INTRODUCTION 

   A hybrid system involves two types of components: 

the base state which varies continuously and the model 

state which may jump only. For the estimation problem 

of hybrid systems, multiple model (MM) approach is a 

valid solution. It is cost-effective and robust and has a 

parallel structure. In the MM approach, a set of models is 

designed to cover the possible system behavior patterns. 

This model set has fixed structure during the algorithm 

running. In the result, this approach is always been named 

fixed structure multiple method (FSMM). However, 

when applying the FSMM to hybrid estimation, we 

sometimes encounter two problems: First, the chosen 

model set may not cover the full range of the mode, the 

truth may lie between the adjacent models; second, even 

if the chosen model set is large enough to cover the full 

range, use of all those models does not necessarily 

guarantee performance improvement, not to mention the 

prohibitively large computational cost. It was 

demonstrated that use of too many models may be as bad 

as use of too few models.             

  To overcome the limit of FSMM, X. R. Li presented 

variable structure multiple model method (VSMM) in 

1992. The basic idea of VSMM is that uses a model set 

whose structure is changing to replace the fixed structure 

model set in FSMM. VSMM is a probabilistically 

weighted sum of all estimators based on admissible mode 

sequences that are mutually exclusive and exhaustive, 

while FSMM is of all estimators based on possible mode 

sequences. Generally, VSMM estimation consists of two 

functional components: model set adaptation (MSA) and 

model-set sequence conditioned estimation (MSSCE). 

MSSCE aims to provide the best possible estimation 

given a model-set sequence. MSA, which is unique for 

VSMM, aims to determine the model set at each time for 

the MM estimation, using the information contained in 

measurements as well as a priori knowledge. Different 

VSMM algorithms differ from one another primarily with 

respect to how the model set adapts. 

Under the frame of VSMM, the paper develops a 

practical algorithm for MM estimation, called the 

variable structure multiple model basing on strong target 

filter (STF-VSMM). STF-VSMM uses a hybrid model 

grid consisted of a fixed coarse model grid (CMG) and an 

adaptive fine model grid (FMG). The area center of FMG 

is updated by STF in real time. It is an online processing 

scheme, and is particularly advantageous when the mode 

space is continuous and large, and the mode involves 

jumps of small or medium magnitudes. Via simulation in 

the context of maneuvering target tracking in different 

scenarios, STF-VSMM estimation is shown to have a 

good adaptive ability and better performance than the 

corresponding FSMM. 

        II. DESCRIPTION OF STF-VSMM 

As is known, the performance of a STF-VSMM 

depends highly on how close the model set used in the 
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approach is to the true mode. It is best that the true mode 

can be added to the model set within the MM estimation 

framework. But it is impossible because that the true 

mode of system is unknown. An EMA method is 

provided in [2], which improves the overall estimation 

through adding an optimal estimation of system to the 

fixed structure coarse model grid. The optimal estimation 

of system can close to the real system mode in statistical 

probability. STF-VSMM improves the EMA on two 

aspects: first, STF-VSMM improves the result of FSMM 

by adding a batch of models, so, the amendatory power of 

the optimal estimation of system is enhanced; second, 

STF-VSMM introduces the STF method to decide the 

center position of fine model grid. So, it is possible to get 

the fine model set which is closer to the real system mode, 

no matter the target makes strong maneuver or not.  

As the result, the hybrid model grid in STF-VSMM 

can be depicted as followed. The model set in effect at 

the current time is composed of two model subsets: fixed 

coarse and adaptive fine. Firstly, the coarse subset is 

quantized from the mode space crudely, that is, the 

spacing between the quantization levels is large, and it is 

fixed at all times. Secondly, the fine subset is quantized 

from the region surrounding the optimal estimate of the 

true mode, and the quantization is finer than the coarse 

subset. The true mode may jump, so the fine subset is 

adaptive and time-varying. 

Using the hybrid grid has the following advantages: 

1) The coarse grid provides a robust scheme to handle 

abrupt jumps of the system mode and directs the 

placement of the fine grid to be based on. The fine grid 

can be adapted in a relative small and better unit, which 

intuitively makes the mode and state estimate more 

accurate. 

2) The HG can be also viewed as a generalization of 

the EMA, for the mode estimation-error, as well as the 

mode estimate, is incorporated into the model inference. 

The HG scheme is suitable for the estimation of the 

system whose mode involves jumps of different 

magnitudes. 

III. DESIGN AND REALIZATION OF STF-VSMM 

One important task of STF-VSMM is the decision of 

FMG, and the important task has two steps: first, the 

decision of the center position; second, the decision of the 

radius. 

A. Get the Center Position of FMG  

 We must get the optimal system estimation  if we 

want to decide the center of FMG, at the same time, the 

value of determines the position of FMG in the total 

system mode space. So the distance between  and real 

system mode affect the precision of the STF-VSMM, 

greatly. In EMA, is calculated by (1). 

Mk-1 is the fixed CMG at the time k-1, aj is the 

acceleration of model j, uj is the probability of model j at 

the time k-1. When the target is not in the maneuver style, 

the  by (1) is close to real system mode; but when the 

target is in the style of maneuver, will be aberrant and 

degrade the accuracy of STF-VSMM. The paper [4] 

provides a strong target tracking method. This filter 

selects the proper time varying filter gain K(k+1) online 

to make (a) the mean of residual is least; (b) the residual 

approximates Gaussian white noise. When the model 

matches the actual system mode, the import residual of 

kalman filter is not auto-correlational Gaussian white 

noise sequence. As the result, when the target makes 

great maneuver, the STF still can get the preferable 

tracking result. The STF can adaptively adjust the filter 

gain basing on residual, through importing an attenuation 

gene. After getting the filter result of STF, STF-VSMM 

obtains the area center of FMG by (2).  
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       δ is adjust gene, usually, δ=0.5. is the estimation of 

acceleration basing on coarse model set. is the estimation 

of acceleration basing on fine model set. 

B. Strong Tracking Filter  

In STF, the linear discrete-time model for a 

maneuvering target is represented by (3~4). 

Where X is state vector, X = [x, vx, ax, y, vy, ay]’; Y is 

measurement vector; H is observe matrix and 

H=[1,0,0,0,0,0; 0,0,0,1,0,0]; ā(k) is the mean of current 

acceleration, F is the state transition matrix refer to (5). U 

is control input matrix as (6). T is the sampling period, α 

is the maneuver frequency . v(k) and w(k) are process 

noise and measurement noise respectively. Suppose they 

are independent white Gaussian noise with zero mean and 

known variance matrix Q(k) and R(k). The value of Q is 

illustrated in [4]. 

 

The process of strong tracking filter is as following 

(7~12):   

 

  )1()1()|1(ˆ)1|1(ˆ  krkKkkxkkx     (7) 

       

 )()()|(ˆ),1()|1(ˆ kakUkkxkkFkkx       (8)   

  

)|1(ˆ)1()1()1( kkxkHkykr              (9)  

 

1

ˆ ( 1)    (1)


 
j k

k j j

a M

s u k a

( 1) ( 1, ) ( ) ( ) ( ) ( ) (3)    X k F k k X k U k a k w k

( 1) ( 1) ( 1) ( ) (4)    Y k H k X k v k

)5(

00

/)1(10

/)1(1

),1(




























T

T

T

e

e

eTT

kkF










(6)

1

/)1(

/)/)1(2/(

)(

2






























T

T

T

e

eT

eTT

kU










1608 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER



 

 

       
1)]()1()|1()1([

)1()|1()1(





kRkHkkPkH

kHkkPkK

T

T

      (10) 

 

       

)()()(

)()|()()1()|1(

kkQk

kFkkPkFkkkP

T

T



 
    (11) 

 

       )|1(

)]1()1([)1|1(

kkP

kHkKIkkP





        (12) 

    The key part of STF is the decision of attenuation 

gene. 

            














1)1(,1

1)1(),1(
)1(

k

kk
k




             (13) 

                          

                              

)]1([

)]1([
)1(






kMtr

kNtr
k         (14) 

 

             
)1()()()()1(

)1()1()1( 0





kHkkQkkH

kRkVkN

TT


          (15) 

 

)1()()|()()1()1(  kHkFkkPkFkHkM TT  (16) 

 















0),1()1(

1),1/())1()1()((

)]1()1([)1(

0

0

krr

kkrkrkV

krkrEkV

T

T

T


  (17) 

 

Where ρ is the forget gene, usually ρ = 0.95, r(1) is 

initial residual. After we get the filter result of STF, we 

can calculate the area center of FMG as (2). 

C. Get the FMG 

Here, we present a simple approach to produce the 

FMG. The fine model grid is formed by quantizing the 

region whose center is , and it has a fixed area radius. The 

grid distance is predefined with the prior knowledge. 

D. The realization of the STF-VSMM 

Traditional FSMM and STF whose filter results are 

used to update the area center of FMG run parallel in the 

STF-VSMM. Then a fine model grid which has strong 

amendatory capability is produced and the overall system 

estimation basing on optimal fusion theory will be 

obtained. The details of STF-VSMM is as Fig.1 

                                                   
                                                                  Figure 1 Flow Chart of STF-VSMM 
            

IV  STF-VSMM IN MANEUVER TARGET 

TRACKING 

   The state and observation equation of the traditional 

FSMM which bases on coarse model grid (CMG) can 

refer to (18~19). 

                     )()()1( kk waGkFXkX                    (18) 

 

)()1()1()1( kvkXkHkY                  (19)    

 

        where X= (x, vx, y, vy)’ is the state vector, z is the 

measurement vector, a = (ax, ay)’ is the acceleration. 

w~N(0,Q) and v~N (0,R) are mode-dependent Gaussian 

process and measurement noises respectively and 

mutually independent, F = diag [F2,F2] and G = diag 

[G2,G2]. 
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In addition, supposes the acceleration of maneuver 

target will be obtained by quantizing of the acceleration 

space: 

 
max{( , ) :| | | | }c

x y x yA a a a a a                (20) 

And the jump among the acceleration governed by a 

Markov process with a transition probability matrix. The 

model set in FSMM and STF-VSMM is depicted in Fig 2. 
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Figure 2 The mode set in FSMM/EMA/STF-VSMM

 
 

    Figure 2(a) represents the model set in FSMM, 

whose structure is fixed. Figure 2(b) depicts the model 

set belonging to EMA. The model (1~13) is the coarse 

model grid whose structure is fixed, and the 

symbol “*”represents the real system mode, the 

symbol “●”represents the optimal estimation basing on 

coarse model grid. When the target makes strong 

maneuver, the estimation will depart from real system 

mode. Figure 2(c) represents the model set which is used 

by STF-VSMM. As above mentioned, model (1~13) is 

the coarse model grid, and the red fine model grid is the 

amendatory model set whose center area is the 

probabilistically weighted sum of filter results belonging 

to FSMM and STF respectively. Even the target makes 

strong maneuver, the optimal estimation can be close to 

the real system mode. 

                                V. SIMULATION 

A. Design of Simulation Scene 

The parameters of coarse model grid in simulation are 

decided as following: T = 1s, the models in coarse model 

grid are initialized as {m1,m2,m3,m4,m5}, the initial 

probility is PCMG={u1=u2=u3=u4=u5=1/5}, the state 

vector is X0={0,10;0,10}. The process noise covariance 

Qv=0.6 and the measure noise covariance Rx=100. 

To prove the validity   of STF-VSMM, the paper 

designs three different simulation scenes, DS1 and DS2 

belong to decided scenes. The concrete parameters are 

described by Figure 3, and the sequence pairs in the table 

denote the accelerations with x/y axis in different time. 

                                                 
Figure 3  The Scene of Simulation 

 

        The first DS1 assumes that the real acceleration 

jumps only among the nodes that are borders upon each 

other in Figure 2(a). The second DS2 assumes that the 

real acceleration jumps in arbitrary nodes in Fig 2(a). 

The models in coarse model grid are illustrated by (21). 

The compared algorithm is FSMM. 

        It should be emphasized that the evaluation and thus 

comparison of MM algorithms depend to a large degree 

on the scenarios used. Both deterministic and random 

scenarios were designed for this example.  

        For the random scenario, it is assumed that the 

acceleration vector a(t)=a(t)·Δ θ (t) is a semi-markov 

process. It is a 2-dimensional process that would be 

Markov were the sojourn time τ  for each of its states 

not random. In simple terms, it implies that the 

acceleration process undergoes sudden jumps from a 

state with a magnitude a and phase θ  to another one 

after staying in it for a random period of time.  
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        1) The sojourn time τ kof the state ak conditioned 

on ak has a truncated (τ k > 0) Gaussian density with 

mean τ k and varianceσ 2
τ.. 

         2) The acceleration magnitude ak+1 has probability 

masses of P0 and PM to be zero and maximum, 

respectively, and is uniform over the values in between, 

where P0 and PM are in general functions of ak. 

        3) The angle θ k+1 of acceleration is uniform over 

2π if ak=0 and is Gaussian with meanθ k and variance 

σ 2
θ  if ak≠0. 

        The following parameters were used in our design: 

                  max 0 max( )( ) /M Ma a a      
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        The random sojourn time τ  is rounded to its 

nearest integer and the initial acceleration a1 was set to 

zero. The Monte Carlo simulation runs 50、100、150 in 

the three scenarios respectively.  

B. The Results and Analysis of Simulation 

     Here, the paper presents the filter results of 

position and velocity, at the same time, the standard 

deviation is a so important standard of the algorithm 

performance that we present the results in the figures.  

     Figure 4 depicts the position result of simulation in 

DS1. Figure 5 presents the standard deviation of 

estimation error belong to position and velocity in DS1; 

Figure 6 depicts the position result of simulation in DS2. 

Figure 7 presents the standard deviation of estimation 

error belong to position and velocity in DS2; Figure 8 

depicts the position result of simulation in DS3. Figure 9 

presents the standard deviation of estimation error belong 

to position and velocity in DS3.  

 

                                        
 

                                      Figure 4  The Filter Results of Position in DS1 

 
 

   
(a) Position                                                                                                     (b) Velocity 

 
                                                     Figure5 The Standard Deviation of Estimation Error Belong to Position and Velocity in DS1 
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                                                                                   Figure 6  The Filter Results of Position in DS2 
 

   
(a) Position                                                                                                             (b) Velocity 

 

             Figure 7 The Standard Deviation of Estimation Error Belong to Position and Velocity in DS2 

 

 
                                                                               

                                                                                Figure 8  The Filter Results of Position in DS3 
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(a) Position                                                                                                        (b) Velocity 

 
                                                Figure 9  The Standard Deviation of Estimation Error Belong to Position and Velocity in DS3 

 

    The TABLE I statistics the mean of estimation error 

belongs to position and velocity of FSMM and STF-

VSMM. The TABLE II statistics the standard deviation 

of estimation error belongs to position and velocity of 

FSMM and STF-VSMM. 
 

 
 

                                                           TABLE I. 

                                                                       THE COMPARATION OF THE MEAN FOR ESTIMATION ERROR BELONGING TO FSMM AND STF-VSMM 
 SCENE Xmean /m Vx,mean /m·s-1 Ymean /m VY,mean /m·s-1 

FSMM STF-VSMM FSMM STF-VSMM FSMM STF-VSMM FSMM STF-VSMM 

DS1 -0.01 -0.10 1.16 0.96 2.13 1.29 1.08 1.05 
DS2 -8.20 -6.88 -1.17 0.73 -6.17 -6.04 -0.59 -0.71 
DS3 6.03 -3.17 1.28 4.22 8.20 8.13 1.35 -1.20 

 
TABLE II. 

                                                  THE COMPARATION OF THE STANDARD DEVIATION FOR ESTIMATION ERROR BELONGING TO FSMM AND STF-VSMM 

 SCENE       Xstd        Vx,std           Ystd  VY,std  
 FSMM STF-VSMM FSMM STF-VSMM FSMM STF-VSMM FSMM STF-VSMM 

DS1 47.74 44.70 30.21 23.22 43.86 40.85 27.76 20.27 
DS2 53.74 41.03 46.38 22.30 56.79 44.76 46.29 23.11 
DS3 50.68 39.80 42.55 19.59 53.18 40.87 46.38 20.36 

 

 

         Under the DS3, FSMM and STF-VSMM run 50, 

100, 150 times, at the same time, the TABLE III 

compares the mean value belong to position and velocity 

of FSMM and STF-VSMM, the TABLE IV compares 

the standard deviation belong to position and velocity of  

FSMM and STF-VSMM. The results indicate that the 

time of simulation has a little influence on the 

precision of algorithms, and the performance of STF-

VSMM is steady. 

                                                                                                        

                                                                                                                                                       TABLE III. 

THE COMPARATION OF THE MEAN FOR ESTIMATION ERROR WHEN FSMM AND STF-VSMM RUN 50, 100, 150 

ALGORITHM Xmean Vx, mean Ymean VY, mean  

50 100 150 50 100 150 50 100 150 50 100 150 
FSMM -5.45 -6.03 -4.95 1.78 1.47 1.28 -6.34 -5.04 -6.84 -0.56 -0.71 -0.57 

STF-VSMM -3.98 -3.17 -4.09 4.90 4.22 4.86 7.85 8.13 8.37 -1.85 -1.20 -1.96 

 

 
                                                                                                                                                           TABLE IV. 

                                              THE COMPARATION OF THE STANDARD DEVIATION FOR ESTIMATION ERROR WHEN FSMM AND STF-VSMM RUN 50, 100, 150 
             

 

 

 

VI. INCLUSION 

 The paper presents a variable structure multiple 

model method basing on strong tracking filter -- STF-

VSMM. The new approach imports the STF, and adjusts 

the center position of FMG in real time. It is possible that 

the optimal estimation of system is closer to the real  

 

 

 

 

system mode, no matter the target has small or great 

maneuver. Secondly, the STF-VSMM gets the fine 

model grid and runs a period of IMM. At last, STF-

VSMM realizes the accurate tracking of maneuver target 

basing on optimal fusion theory. Simulation results 

demonstrate that STF-VSMM estimator outperforms the 

corresponding fixed structure multiple model (FSMM) at 

a negligible extra computational cost. 

 

ALGORITHM Xstd Vx,std Ystd VY,std  

50 100 150 50 100 150 50 100 150 50 100 150 
FSMM 53.36 50.68 52.04 46.36 42.55 43.17 53.85 53.18 55.20 46.07 46.38 43.45 

STF-VSMM 36.45 39.80 40.56 20.45 19.59 22.24 40.58 40.87 41.34 19.57 20.36 18.77 
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