

A Novel Strategy for Mining Frequent Closed
Itemsets in Data Streams

Keming Tang
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Department of Software Engineering, Yancheng Teachers University, Yancheng, China
tkmchina@126.com

Caiyan Dai

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
daicaiyan@gmail.com

Ling Chen*

Department of Computer Science, Yangzhou University, Yangzhou, China

yzulchen@gmail.com

Abstract— Mining frequent itemsets from data stream is an
important task in stream data mining. This paper presents
an algorithm Stream_FCI for mining the frequent closed
itemsets from data streams in the model of sliding window.
The algorithm detects the frequent closed itemsets in each
sliding window using a DFP-tree with a head table. In
processing each new transaction, the algorithm changes the
head table and modifies the DFP-tree according to the
changed items in the head table. The algorithm also adopts a
table to store the frequent closed itemsets so as to avoid the
time-consuming operations of searching in the whole DFP-
tree for adding or deleting transactions. Our experimental
results show that our algorithm is more efficient and has
lower time and memory complexity than the similar
algorithms Moment and FPCFI-DS.

Index Terms— Stream data, mining closed frequent data
itemsets, sliding window

I. INTRODUCTION

In recent years, researchers have paid more attention to
mining data streams. Mining frequent itemsets from data
streams is an important problem with ample applications
in data streams analysis. Examples include stock tickers,
bandwidth statistics for billing purposes, network traffic
measurements, web-server click streams, data feeds from
sensor networks, transaction analysis in stocks and
telecom call records, etc. Unlike traditional data sets, data
streams flow in and out of a computer system
continuously and with varying update rates. They are
temporary ordered, fast changing, massive and potentially
infinite. For the stream data applications, the volume of
data is usually too huge to be stored or to be scanned for
more than once. Furthermore, since the data items can

only be sequentially accessed in data streams, random
data access is not practicable.

In 1999, Pasquierti[1] first proposed the concept of
closed frequent data itemsets to reduce the storage space
and processing time. Since then mining closed frequent
data itemsets has been the subject of numerous studies.
Many of the algorithms proposed in these studies are
Aperiori-based[2]. They depend on a generate-and-test
paradigm. They find frequent itemsets from the
transaction database by first generating candidates and
then checking their supports against the transaction data
base.

To improve efficiency of the mining process, Han et
al[3] proposed an algorithm FP-growth (frequent-pattern
growth) which is a tree-based algorithm for finding
frequent itemsets. FP-growth algorithm is based on the
following partition strategy. Firstly it compresses the
database into a frequent pattern tree. Then the
compressed database is divided into a group of
conditional database, each of which is associated with a
frequent itemset or a pattern portion and then the
algorithm mines every conditional database. To construct
the FP-tree, the database must be scanned twice. Like the
Apriori approach, the first scan generates the frequent 1-
itemsets and their supports. The results are sorted in the
descending order of their supports and stored in a list L.
In the second scan, transactions are processed by the
order in the list L and a branch in FP-tree is created for
each transaction. To traverse the tree easily, a head table
is constructed where each item has a pointer indicating its
node in the FP-tree.

To mine the frequent itemsets on FP-tree, a conditional
pattern base and a conditional pattern tree are first be
constructed for each 1-itemset and then the frequent
itemsets are detected by mining the tree recursively. To
generate the frequent itemsets, the algorithm attaches the
suffix pattern with the frequent itemsets of the

* corresponding author.

1564 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.7.1564-1573

conditional pattern tree. The algorithm needs not to
generate all the candidate frequent itemsets. It uses the
most infrequent item as the suffix to reduce the search
space and the overhead significantly.

Example 1: Let },,,{ dcbaI = , },,,{ acdabcbcacD = ,

min_sup=2, then L={{c:4},{a:3},{b:2}}, the generated
FP-tree is shown in Fig.1.

When mining the closed frequent itemsets in a static

database, FP-growth algorithm needs to scan the database
more than once. It is not practicable in data stream
mining which allows only one time scan.

For mining the frequent itemsets in data stream,
MOMENT by Chi[4] is a typical algorithm which can
decrease the size of the data structure. In solving many
application problems, it is desirable to discount the effect
of the old data. One way to handle such problem is using
sliding window models. There are two typical models of
sliding window[5]: milestone window model and
attenuation window model. Lossy Counting[6] is a
typical mining algorithm for data streams based on the
milestone window. Using the attenuation window, Chang
presented the algorithm Decest[7]. Gannell[8] proposed
FP-stream by adopting the traditional FP-tree to process
the data streams. FP-stream detects the frequent itemsets
in the different period by using the different time
granularity. Key differences between FP-tree and FP-
stream structure include the following. First, each path in
an FP-tree represents a transaction, while each path in an
FP-stream represents a potential frequent itemset.
Second, each node in an FP-tree contains one support
value, whereas each node in an FP-strean contains a
nature or logarithmic tilted-time window table containing
multiple support values, one for a batch of transactions.
Teng proposed FTP-DS algorithm[9] which uses the
statistical regression technique in the sliding window.
Fujiang Ao et al[10] presented an algorithm named
FPCFI-DS for mining closed frequent itemsets in data
streams. FPCFI-DS uses a single-pass lexicographical-
order FP-Tree-based algorithm with mixed item ordering
policy to mine the closed frequent itemsets in the first
window, and updates the tree for each sliding window.

In this paper, we present an algorithm Stream_FCI for
mining the frequent closed itemsets from data streams in
the model of sliding window. The algorithm detects the
frequent closed itemsets in each sliding window using a
DFP-tree (Dynamical FP-tree) with a head table. In
processing each new transaction the algorithm changes
the head table and modifies the DFP-tree according to the
changed items in the head table. The algorithm also
adopts a table FCIT (frequent closed itemset table) to
store the frequent closed itemsets so as to avoid the time-
consuming operations of searching in the whole DFP tree
for adding or deleting transactions. The frequent closed
itemsets are first arranged in FCIT in the descending
order of their supports. For the frequent closed itemsets
with identical support in FCIT, they are organized in a
lexicographical order. When adding or deleting
transactions, DFP-tree and FCIT should be updated

accordingly. In DFP-tree, the nodes in every path are
arranged in the descending order of their supports so as to
reduce the searching space in maintaining and mining the
DFP-tree. Our experimental results show that the
algorithm is more efficient and has lower time and
memory complexity than the algorithms Moment and
FPCFI-DS.

The rest of this paper is organized as follows. The next
section describes the background of frequent closed
itemset mining. In section 3, our algorithm Stream_FCI is
introduced. Section 4 shows the experimental results in
testing Stream_FCI. Finally, conclusions are given in
Section 5.

II. BACKGROUND

A. Frequent Closed Itemsets
Let },,,{ 21 miiiI = be a set of distinct data items,

and a subset IX ⊆ is called an itemset. Each transaction
t is a set of items in I . A data stream,

),...},(),...,,{(11 nn ttidttidDS = , is an infinite
sequence of transaction, where ktid is the identifier of a
transaction and),,2,1(nkItk =⊆ is an itemset. For all
transactions in a given window W of data stream, the
support)sup(X of an itemset X is defined as the
number of transactions with X as a subset.

Figure 1. Frequent pattern tree.

Given a threshold of support min_sup in the range of

[0,w], where w is the size of the sliding window, the
itemset X is frequent if sup(X)≥min_sup.

In general, the more transactions a sliding window has,
a larger amount of frequent itemsets could be produced.
In this case, there are many redundancies among those
frequent itemsets. For example, in the frequent itemsets

},,{ aadacd , the only useful information is set acd
according to Apriori[2] property, because acd includes
ad and a . Closed itemsets are a solution to this
problem. A frequent itemset X is a closed one if it has
no superset Y X⊃ such that)sup()sup(YX = . Closed
frequent itemset is a condensed, i.e. both concise and
lossless, representation of a collection of frequent
itemsets. It is concise since a collection of closed itemsets
is in an order of magnitude smaller than the
corresponding collection of frequents. This allows us to
use very low minimum support thresholds, which would
make the extraction of all the frequent itemsets
intractable. Moreover, they are lossless, because it is

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1565

© 2012 ACADEMY PUBLISHER

possible to derive the identity and the support of every
frequent itemset in the collection from them. Since when
mining closed itemsets, we implicitly discard
redundancies, extracting association rules directly from
them has been proven to be more meaningful for analysis.

Example 2: Let },,,{ dcbaI = , },,,{ acdabcbcacD = ,

min_sup=2. The frequent itemsets are (a:3), (b:2), (c:4),
(ac:3) and (bc:2). Since (a:3) has the same support with
its superset (ac:3), (b:2) has the same support with its
superset (bc:2), they are not frequent closed itemsets.
Therefore, the frequent closed itemsets are (c:4), (ac:3)
and (bc:2).

B. Sliding Window
In some real world applications such as meteorological

study and financial operations, recent data in the stream
have more importance than the old ones. One way to
handle such problem is using a fading factor to act on the
count of data items in data stream. It takes into account
all the old data items in the history, and assigns less
weights on the past data. In some applications, the users
are interested in the current data within a fixed time
period. Therefore, the sliding window[5] is another
practical approach to emphasis the recent data in the
stream. It is suitable for the applications such like stocks
or sensor networks, where only recent events may be
important. The sliding window model only observes
within a limited time window and entirely ignores the
ones outside. This method reduces memory requirements
because only a small portion of data is stored.

The basic idea of mining frequent closed itemset in the
sliding window model is that it makes decisions from the
recent transactions in a fixed time period instead of all the
transactions happened so far. Formally, a new data
element arriving at the time t will expire at time , where
is the length of the window. At every time step, when a
new transaction comes to the window, the oldest one in
the window should be deleted. Since the transactions in
the window are updated over time, the frequent itemsets
should be renewed accordingly. Fig.2 shows an example
of sliding window. Since the model only stores the data
items within a small data window of fixed size, it needs
less memory space and is easy to be implemented.

Figure 2. An example of sliding window.

III. THE STREAM_FCI ALGORITHM

In this section, we illustrate the frame work of the
algorithm Stream_FCI for mining the frequent closed
itemsets in data streams based on the model of sliding
window. First the data structure used in the algorithm is
introduced.

A. Data Structure
(1) DFP-tree (Dynamical frequent-pattern tree)
To construct the conventional FP-tree, the database

must be scanned twice. However, it is not suitable for
processing the stream data. A data structure called DFP
(Dynamical frequent-pattern tree) is proposed to store the
transactions in the current sliding window.

The root of the tree is labeled with null. A branch
starting from the root is created for each transaction. The
itemstes sharing the common prefix will have identical
ancestors in their paths. Each node on the tree represents
an item. The structure of each node x in the tree is as
follows:

node_item node_sup node_link

Here, node_item(x) is the the name of the item in the

node x; node_sup(x) is the count of the item in node x ;
node_link(x) is the pointer of the item linking with the
other items which having the same node_name.

A transaction is represented in DFP-tree by a path
starting from the root. To make the algorithm be suitable
for data streams and reduce the memory cost, items in
each transaction are arranged in its path in the order of
descending support count. In general the count of each
node along the common prefix is greater than the
summation of the counts of its child nodes.

(2) Head Table
To facilitate the tree traversal, a head table is built so

that each item points to its occurrences in the tree via a
chain of node links. The head table stores all the frequent
items which may be consisted in the frequent closed
itemsets in the DFP-tree.

Every record in the head table represents an item, and
its structure is as follows:

sup item_name link

Here, sup is the count of the item, item_name is the

name of the item, and link is the pointer which is linked
with the chain of nodes of item_name in DFP-tree.

To make the algorithm be suitable for data streams and
efficient in terms of memory and time cost, the entries in
the head table are arranged in a descending order of their
supports. All the possible items are considered as
alphabets which form an alphabet table ∑. The items
with the same count are arranged according to their
alphabetical order.

Example 3: Let },,,{ dcbaI = , },,,{ acdabcbcacD = ,

min_sup=2, then the frequent items and their supports are
(c:4), (a:3) and (b:2), the DFP-tree generated is shown in
Fig.3.

1566 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

Figure 3. A dynamical frequent pattern tree.

 (3) Frequent Closed Itemsets Table (FCIT)
In in order to record the frequent closed itemsets, a

table called FCIT (Frequent Closed Itemsets Table) is
used, where each entry records the count of a frequent
closed itemset. The structure of each entry in the table is
as follows:

sup set

Here, sup is the count of the frequent closed itemset;

set is the frequent closed itemset.
In FCIT, the entries are arranged in the order as

follows. Firstly, the items in each itemsets are arraged
according their alphabet order in ∑, which is called the
the normal expression of the itemset. The entries in the
FCIT are arranged by the descending order of their
counts. The itemsets with the same count are arranged in
the lexical order of their the normal expression defined on
∑.

In fact, each entry (sup, set) can be treated
integractively as a vector, and all those vectors are
arranged in FCIT according to their lexical order. We can
perform radix sorting and binary search on FCIT so as to
make quick querys and modifications on the table.

Example 4: The frequent closed itemsets of the

transactions in Example 3 are {c:4}, {ac:3}, {bc:2}.
Their FCIT TABLE I is as follows:

TABLE I.
FCIT

sup set
4 c

3 ac

2 bc

B. Framework of algorithm Stream_FCI
The algorithm Stream_FCI receives a transaction from

the data stream at each time step, and forms a new sliding
window by adding this new transaction into the window
and emitting the oldest one. To identify the frequent
closed itemstes in this new sliding window, Stream_FCI
should modify the DFP-tree, head table and FCIT
accordingly. Since two adjacent windows are overlapped
except the added and deleted transactions, the frequent

closed itemsets of the two windows do not change
abruptly. Stream_FCI needs only to process the part of
DFP-tree, head table and FCIT involving these two
transactions. Therefore, procedures are proposed to
modify DFP-tree, head table and FCIT when adding and
deleting a transaction.

At the beginning of the stream, DFP-tree, head table
and FCIT are firstly constructed for the first window
using a procedure BuildFirstTree.

The framework of algorithm Stream_FCI(D) is as
follows:

Algorithm: Stream_FCI(D)
Input: D: the data stream;
Output: L: the frequent closed itemset table;
Begin
1 BuildFirstTree(T);
2 while not the end of the stream do
3 Receive a new transaction t from the stream;
4 AddTransDFP(T,t);
5 Adjust(T);
6 AddTransFCIT(L,t);
7 DeleteTransDFP(T,s);
8 Adjust(T);
9 DeleteTransFCIT(L,s)
 /* s is the oldest transaction in the window*/
10 end while
End.

C. Constructing the first DFP-tree and FCIT
The DFP-tree and FCIT for the first window are

constructed by a procedure BuildFirstTree(). When a new
transaction in the stream enters the first window, the head
table is modified by increasing the supports of the items
in the new transaction. Then the new transaction will be
inserted into the DFP-tree according to the pointers of its
items listed in the head table. A procedure
AddTransDFP(T,t) is presented to add a new transaction t
into the DFP-tree rooted at T. Also, the FCIT table is
modified accordingly by adding the new frequent closed
itemsets detected in the DFP-tree. A procedure
AddTransFCIT(L,t) is presented to modify the FCIT table
L when adding a new transaction t.

The algorithm BuildFirstTree() is described as follows:

Procedure: BuildFirstTree()
Input: length: length of the window;
Output: T: the root of DFP-tree,
 L: the frequent closed itemsets table
Begin
1 T=Φ; size=0;
2 repeat
3 receive a new transaction t from the stream;
4 update the head table;
5 AddTransDFP(T,t);
6 AddTransFCIT(L,t);
7 size=size+1;
8 Adjust(T);
9 until size=length;
End.

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1567

© 2012 ACADEMY PUBLISHER

Details of procedures AddTransDFP(T,t) and
AddTransFCIT(L,t) will be diescribed in the next section.

D. Adjusting the DFP-tree
After adding or deleting a new transaction, since the

supports of the items are changed, the DFP-tree should be
adjusted accordingly so that the nodes in each path of the
tree are arranged in the descending order of their
supports. A procedure Adjust(T) is proposed to rearrange
the nodes in DFP-tree.

Suppose node y in DFP-tree is a child of node x, and
node_item(x)=a, node_item(y)=b. If in the head table
sup(a)<sup(b), then x and y can be called an inversed
pair. Suppose node x and y is an inversed pair, the
position of x and y should be exchanged to make sure
they are in the descending order of their supports. In
DFP-tree, the subtree rooted at node x is denoted as
subtree(x), and let subtree-(x)=subtree(x)-{x}. When
exchanging the position of an inversed pair of nodes, if
node y is the only child of x, their position can be
exchanged directly. But if x has children other than y,
subtree-(y) should be inserted into w, which is the father
of node x, and the support of x should be modified
accordingly.

The procedure Adjust(T) is described as follows:

Procedure: Adjust(T)
Input: T: root of the DFP-tree
Output: the adjusted DFP-tree rooted at T.
Begin
1 while there exists inversed pair in T do

/* Suppose the inversed pair is (x,y), y is the child
 node of x , w is the parent of x */
2 Delete subtree(y) from the children set of x;
3 node_sup(x)=node_sup(x)-node_sup(y);
4 Add a path “u→ v→ subtree-(y)” as a child of w;
5 node_item(u)=node_item(y);
6 node_sup(u)=node_sup(y);
7 node_item(v)=node_item(x);
8 node_sup(v)=node_sup(y);
9 if w has another child p such that
 node_item(p)=node_item(u) then
10 emerge subtree(p) and subtree(u);
11 end if
12 end while
End.

Let the length of the window be 4, Fig.4 illustrates the

process of constructing the first DFP-tree of the database
in Fig.2. In Fig.4, (a), (b) , (c) and (d) show the changing
of DPF-tree when the first four transactions are inserted,
while (e) is the FCIT TABLE II for the first sliding
window.

(a) Inserting transaction.bc

(b) Inserting transaction.ab

(c) Inserting transaction.acd

(d) Inserting transaction.acd

TABLE II.
FCIT

sup set
3 a

3 c

2 acd
2 b

(e) The FCIT TABLE II

Figure 4. Building the first DFP-tree and FCIT TABLE II.

When the fourth transaction coming into the sliding

window, supports of a, b and c can be found, which are
identical in the previous window, have been changed.
The supports of a and c in the new window are greater
than that of b. Therefore, locations of their nodes in the
DFP-tree should be rearranged by the procedure
Adjust(T). The process of rearranging the nodes in DFP-
tree is shown in Fig.5.

(a) Generate new route after exchanging a and.b

1568 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

(b) Merging the same nodes.

(c) Exchange b and.c

Figure 5. Rearrange the order of the nodes in DFP-tree.

E. Adding a Transaction
When a new transaction enteres the sliding window, it

should be added into DFP-tree and FCIT should be
modified accordingly. A procedure AddTransDFP(T,t) is
presented to add a new transaction into the DFP-tree.
Also a procedure AddTransFCIT(T,t) is presented to
modify the FCIT table when adding a new transaction.

(1) AddTransDFP(T,t)
The procedure AddTransDFP(T,t) is to add a new

transaction t into the DFP-tree rooted at T. When a
transaction is to be added into the DFP-tree, its items are
processed in order according to descending support
count. Suppose the first item of the inserted transaction t
is b, the algorithm first finds a child of T representing
item b, and then recursively constructs the path according
to the rest part of t. If T has no such a child representing
item b, a new child of T representing item b is created.

The procedure AddTransDFP(T,t) is shown as follows:

Procedure: AddTransDFP(T,t)
Input: T: Root of the DFP-tree

t: The transaction to be added
Output: the updated DFP-tree rooted at T
Begin

/* Suppose t=(b|B), b is the first item in t,
B is the suffix of t after b */

1 if T has a child x such that node_item(x) =b then
2 node_sup(x)=node_sup(x) +1;
3 else create a new node x as a child of T;
4 node_sup(x)=1;
5 node_item(x)=b;
6 make node_link(x) to the end of link b
7 end if
8 if B is not empty then
9 AddTransDFP(x,B);
10 end if
End.

Fig.6 shows the new DFP-tree after inserting new
transaction into the current window of Fig.5.

Figure 6. The DFP-tree after inserting.abd

When new transaction abd is received, the algorithm

detects if there exists a child of root T representing item
a. Since node (a:3) has already exists in DFP-tree, the
algorithm modifies (a:3) into (a:4) and detects if it has a
child representing item b. Since node (b:1) has already
exists, the algorithm modifies (b:1) into (b:2) and detects
if it has a child representing item d. Since (b:2) has no
child, the algorithm simply adds a child node (d:1). The
pointer of item d in head table is modified accordingly.

(2) AddTransFCIT(L,t)
When a new transaction enters the data stream, FCIT

should be modified accordingly by adding the new
frequent itemsets detected in the DFP-tree. A procedure
AddTransFCIT(L,t) is presented to modify the FCIT table
when adding a new transaction t.

When inserting a new transaction t, we first detect:
1) If there already exists the same itemset t in FCIT, its

support should be increased by 1.
2) If the FCIT table has already included some sup-sets

of the new transaction t, the new transaction t is a
frequent closed itemset and should be inserted into FCIT.
Its support is set equal to the support of the largest
support of its supsets plus 1.

3) If there exists a subset r of the new transaction t in
FCIT, support of r should be increased by 1.

The procedure of AddTransFCIT(L,t) is as follows:

Procedure: AddTransFCIT(L,t)
Input: L: the FCIT table;

t: The new transaction added;
Output: the updated frequent closed itemsets table L;
Begin
1 if t is in L then sup(t)=sup(t)+1;
2 else
3 if there exists s which has the maximal
4 support in the supersets of t in FCIT then
5 add t into L;
6 sup(t)=sup(s)+1
7 else
8 Search t in the DFP-tree;
9 if t is a newly generated frequent closed
10 itemset then add t into L;
11 end if
12 end if
13 end if
14 for all subset r of t do
15 If there exists r in L then
16 sup(r)=sup(r)+1;

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1569

© 2012 ACADEMY PUBLISHER

17 else
18 Search r in the DFP-tree;
19 if r is a newly generated frequent closed
20 itemset then add r into L;
21 end if
22 end if
23 end for
End.

F. Deleting a Transaction
Once a new transaction is added into the window, the

oldest one in the window must be discarded, and the
DFP-tree and FCIT table should be modified accordingly.
A procedure DeleteTransDFP is presented to delete an
old transaction from the DFP-tree. Also a procedure
DeleteTransFCIT is presented to modify the FCIT table
when deleting an old transaction.

(1) Delete TransDFP(L,t)
The procedure DeleteTransDFP(T,t) is to delete a

transaction t from the DFP-tree rooted at T. Since each
transaction in the DFP-tree is represented by a path
starting from the root, to delete a transaction from the
DFP-tree, the counts of the nodes on the path can be
simply decreased. The procedure of DeleteTransDFP(T,t)
is described as follows:

Procedure: DeleteTransDFP(T,t)
Input: T: Root of the DFP-tree;

 t: The transaction to be deleted;
Output: the updated DFP-tree rooted at T;
Begin
 /* suppose t=[b|B]*/
1 Find node X in T’s children such that item(X)=b;
2 if such X exists then
3 node_sup(X)=node_sup(X)-1;
4 DeleteTransDFP(X,B);
5 end if
End.

Adding or deleting a transaction in the DFP-tree may

cause disorder on the supports of the nodes in the paths.
Therefore it is necessary to call procedure Adjust(T) to
rearrange the nodes in the DFP-tree.

Fig.7 and Fig.8 illustrate the changes of DFP-tree after
deleting transaction bc from the tree in Fig.6.

Figure 7. Deleting transaction bc from DFP-tree.

Figure 8. The change of DFP-tree after deleting.bc

 (2) DeleteTransFCIT(L,t)
The procedure DeleteTransFCIT(L,t) is to delete a

transaction t from the FCIT table L. Since no new
frequent closed itemset could appear when deleting an
old transaction, the number of the enties in FCIT will not
increase. When deleting a transaction t, we should detect
whether there exist t or the subsets of t in FCIT table. The
set which consists of t and its subsets in FCIT are defined
as F(t). If F(t) is not empty, the supports of all itemsets in
F(t) should be decreased by 1, and may be removed from
FCIT if such a itemset becomes infrequent or not closed.
The procedure DeleteTransFCIT(L,t) is described as
follows:

Procedure: DeleteTransFCIT(L,t)
Input: L: the FCIT table;

 t: the transaction to be deleted;
Output: modified FCIT table L
Begin
1 Detect if there exist t and its subsets in L;

/* define the set which consists of t
and its subsets in L as F(t) */

2 if F(t) is not empty then
3 for each itemset r in F(t) do
4 sup(r)=sup(r)-1;
5 if sup(r)<minsup then delete r from L
6 else
7 if there exsits a superset s of r in L
8 such that sup(s)=sup(r) then
9 delete r from L;
10 end if
11 end if
12 end for
13 end if
End.

 The FCIT TABLE III of the second sliding window of

database in Fig.1 is as follows:

TABLE III.
FCIT

sup set
4 a

3 ad

2 ab
2 acd

1570 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

IV. EXPERIMENTAL RESULTS

The quality and efficiency of our Algorithm
Stream_FCI is evaluated through extensive experiments
on the real data set and compare with algorithms
Moment[4] and FPCFI-DS[10]. We focus on the
algorithms’ memory costs, computation times for
building the first window and the average time of the
sliding window moving.

All experiments were carried out on a 2.8GHz CPU
and 1G RAM PC running Windows version XP; the
program developed in Visual studio C++6.0.

A. Test Data Sets
The testing datasets Mushroom[11] and

T10I4D100K[11] are used. Mushroom is a dense dataset
which contains 8124 pieces of records. T10I4D100K
adopts three common parameters: T (the longest length of
the transaction); I (the average length of the transaction);
D (the number of the items in the datasets). The the
longest length of the transactions in T10I4D100K is 10,
and the average length of the transactions is 4, the
number of the items in the datasets is 100K. Similar to
[12], system tool is used to observe the change of the
memory usage. The average time for processing the
sliding window is obtained by 100 trials. The sizes of the
sliding window are 5K and 60K for mining on dense and
sparse dataset respectively.

B. Experimental Results and Analysis
The memory costs by Moment, FPCFI-DS and

Stream_FCI are first compared. Fig.9 shows the memory
requirements of the three algorithms. From the figure we
can see that for processing both dense and sparse dataset,
Moment requires the most memory space and
Stream_FCI requires the least. The main reason is that
Stream_FCI only searches in the DFP-tree to establish
FCIT without generating all candidate itemsets or using
an extra data array.

We also test the three algorithms to compare their
times for building the first window. Fig.10 shows the test
results, from which it can be seen that when minsup
changes from 1 to 0.1, Stream_FCI is obviously faster
than Moment, but a little slower than FPCFI-DS. The
reason is that when building the first window,
Stream_FCI needs to adjust the nodes in the DFP-tree so
that the nodes in each path are arranged in the descending
order of their supports. But after generating the first DFP-
tree and the FCIT, Stream_FCI is faster than the other
two algorithms.

(a) Mushroom.

(b) T10I4D100K.

Figure 9. Memory usage.

(a) Mushroom.

(b) T10I4D100K.

Figure 10. The time of building the first window.

The comparison of the average time to processing each

sliding window by the three algorithms is shown in
Fig.11. The processing of one window consists of adding
a new transaction entering the current window and
deleting an old one from it. From Fig.11 it can be found
that Stream_FCI is faster than other two algorithms
especially when the value minsup is decreasing.

(a) Mushroom.

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1571

© 2012 ACADEMY PUBLISHER

(b) T10I4D100K.

Figure 11. The average time of window sliding.

V. CONCLUSION

To mining the closed frequent itemsets in data
streams, this paper presents an algorithm Stream_FCI on
the model of sliding window. The algorithm detects the
frequent closed itemsets in each sliding window using a
DFP-tree with a head table. In processing each new
transaction, the algorithm changes the head table and
modifies the DFP-tree according to the changed items in
the head table. The algorithm also adopts a table FCIT to
store the frequent closed itemsets so as to avoid the time-
consuming operations of searching in the whole DFP-tree
for adding or deleting transactions. Our experimental
results show that the algorithm is more efficient and has
lower time and memory complexity than the similar
algorithms Moment and FPCFI-DS.

REFERENCES

[1] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal. Discovering
Frequent Closed Itemsets for Association Rules [C],
Springer, Volume 1540, pp.398-416, 1999.

[2] R. Agrawal, R. Srikant. Fast algorithms for mining
association rules in large databases [A]. Proceedings of the
20th International Conference on Very Large Data Bases
[C]. San Francis2 co: Morgan Kaufmann, pp.487-499,
1994.

[3] H. Jiawei, P. Jian, and Y.Yiwen. Mining frequent patterns
without candidate generation [C], Proc. ACM SIGMOD
2000, pp.1(R) C12.

[4] Y. Chi, H. Wang, P. Yu, R. Muntz. MOMENT:
Maintaining closed frequent Itemsets over a stream sliding
window [C]. Proceedings of the 2004 IEEE International
Conference on Data Mining. Brighton, UK: IEEE
Computer Society Press, pp.59-66, 2004.

[5] Z. Yunyue, D. Shasha. StatStream: statistical monitoring of
thousands of data streams in real time. Proceedings of the
20th International Conference on Very Large Data Bases.
Hong Kong, China: Morgan Kaufmann, pp.358-369, 2002.

[6] G. Manku, R. Motwani. Approximate frequency counts
over data stream. Proceedings of the 28th International
Conference on Very Large Data Bases. Hong Kong, China:
Morgan Kaufmann, pp.346-357, 2002.

[7] Joong Hyuk Chang, Won Suk Lee. Finding recent frequent
Itemsets adaptively over online data streams [C].
Proceedings of the 9th ACMSIGKDD International

Conference on Knowledge Discovery and Data Mining.
Washington, USA: ACM Press, pp.487-492, 2003.

[8] C. Gannell, J. Han, E. Robertson, C. Liu. Mining frequent
Itemsets over arbitrary time intervals in data streams [C].
Bloomington: Indiana University, 2003.

[9] T. Wei-Guang, C. Ming-Syan, Y. Philip S. A regression
based temporal pattern mining scheme for data streams
[A]. Proceedings of the 29th International Conference on
Very Large Data Bases[C]. Berlin, Germany: Morgan
Kaufmann, pp.607-617, 2003.

[10] Fujiang Ao, Jing Du, Yuejin Yan, Baohong Liu, Kedi
Huang An Efficient Algorithm for Mining Closed Frequent
Itemsets in Data Streams, IEEE 8th International
Conference on Computer and Information Technology
Workshops, pp.37-42, 2008.

[11] Dataset available at http://fimi.cs.helsinki.fi/.
[12] H. Li, C. Ho, ET al. A New Algorithm for Maintaining

Closed Frequent Itemsets in Data Streams by Incremental
Updates. In Proc. Of IWMESD’06, Hong Kong, pp.672-
676, 2006.

Keming Tang was born in Jianhu,
Jiangsce, P.R.China, in October 13,
1965. He received master degree in
engineering from Yangzhou
University, P.R. China in 2002. Now,
he is Ph. doctoral student of Nanjing
University of Aeronautics and
Astronautics.

He is currently associate professor
of computer science, and the vice-dean

of Information Science and Technology College, YanCheng
Teachers University, Jiangsu Province, P.R. China. He has
published more than 20 papers in journals including IEEE
Transactions on CiSE and WISM, Journal of Computer
Mathematics. His research interest includes data mining, peer to
peer computing and software engineering.

He is a member of the Chinese Computer Society. His recent
research has been supported by the Chinese National Natural
Science Foundation.

Caiyan Dai was born in Yancheng,
Jiangsce, September 26, 1985. She
received bachelor of engineering
degree in computer education from
Yangzhou University, P.R. China in
2007. She received master degree in
engineering from Yangzhou
University, P.R. China in 2011. Now,
She is Ph. doctoral student of Nanjing
University of Aeronautics and

Astronautics, P.R. China.
Her research director is frequent itemsets mining for data

streaming and uncertain data streaming.
She is a student member of the Chinese Computer Society.

Her recent research has been supported by the Chinese National
Natural Science Foundation.

1572 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

Ling Chen was born in Baoying,
Jiangsce, P.R.China, in September 10,
1951. He received B.Sc. degree in
mathematics from Yangzhou Teachers’
College, P.R. China in 1976.

He is currently professor of
computer science, and the dean of
Information Technology College,
Yangzhou University, Jiangsu
Province, P.R. China. He has published

more than 120 papers in journals including IEEE Transactions
on Parallel and Distributed System, Journal of Supercomputing,
The Computer Journal. In addition, he has published over 100
papers in refereed conferences. He has also co-authored/co-
edited 5 books (including proceedings) and contributed several

book chapters. His research interest includes data mining,
bioinformatics and parallel processing.

Prof. Chen is a member of IEEE and senior member of the
Chinese Computer Society. His recent research has been
supported by the Chinese National Natural Science Foundation,
Chinese National Foundation for Science and Technology
Development and Natural Science Foundation of Jiangsu
Province, China. Prof. Chen has organized several national
conferences and workshops and has also served as a program
committee member for several major international conferences.
He was awarded the Government Special Allowance by the
State Council, the title of “National Excellent Teacher” by the
Ministry of Education, and the Award of Progress in Science
and Technology by the Government of Jiangsu Province.

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1573

© 2012 ACADEMY PUBLISHER

