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Abstract— Mining frequent itemsets from data stream is an 
important task in stream data mining. This paper presents 
an algorithm Stream_FCI for mining the frequent closed 
itemsets from data streams in the model of sliding window. 
The algorithm detects the frequent closed itemsets in each 
sliding window using a DFP-tree with a head table. In 
processing each new transaction, the algorithm changes the 
head table and modifies the DFP-tree according to the 
changed items in the head table. The algorithm also adopts a 
table to store the frequent closed itemsets so as to avoid the 
time-consuming operations of searching in the whole DFP-
tree for adding or deleting transactions. Our experimental 
results show that our algorithm is more efficient and has 
lower time and memory complexity than the similar 
algorithms Moment and FPCFI-DS.   
 
Index Terms— Stream data, mining closed frequent data 
itemsets, sliding window  
 

I.  INTRODUCTION 

In recent years, researchers have paid more attention to 
mining data streams. Mining frequent itemsets from data 
streams is an important problem with ample applications 
in data streams analysis. Examples include stock tickers, 
bandwidth statistics for billing purposes, network traffic 
measurements, web-server click streams, data feeds from 
sensor networks, transaction analysis in stocks and 
telecom call records, etc. Unlike traditional data sets, data 
streams flow in and out of a computer system 
continuously and with varying update rates. They are 
temporary ordered, fast changing, massive and potentially 
infinite. For the stream data applications, the volume of 
data is usually too huge to be stored or to be scanned for 
more than once. Furthermore, since the data items can 

only be sequentially accessed in data streams, random 
data access is not practicable. 

In 1999, Pasquierti[1] first proposed the concept of 
closed frequent data itemsets to reduce the storage space 
and processing time. Since then mining closed frequent 
data itemsets has been the subject of numerous studies. 
Many of the algorithms proposed in these studies are 
Aperiori-based[2]. They depend on a generate-and-test 
paradigm. They find frequent itemsets from the 
transaction database by first generating candidates and 
then checking their supports against the transaction data 
base. 

To improve efficiency of the mining process, Han et 
al[3] proposed an algorithm FP-growth (frequent-pattern 
growth) which is a tree-based algorithm for finding 
frequent itemsets. FP-growth algorithm is based on the 
following partition strategy. Firstly it compresses the 
database into a frequent pattern tree. Then the 
compressed database is divided into a group of 
conditional database, each of which is associated with a 
frequent itemset or a pattern portion and then the 
algorithm mines every conditional database. To construct 
the FP-tree, the database must be scanned twice. Like the 
Apriori approach, the first scan generates the frequent 1-
itemsets and their supports. The results are sorted in the 
descending order of their supports and stored in a list L. 
In the second scan, transactions are processed by the 
order in the list L and a branch in FP-tree is created for 
each transaction. To traverse the tree easily, a head table 
is constructed where each item has a pointer indicating its 
node in the FP-tree. 

To mine the frequent itemsets on FP-tree, a conditional 
pattern base and a conditional pattern tree are first be 
constructed for each 1-itemset and then the frequent 
itemsets are detected by mining the tree recursively. To 
generate the frequent itemsets, the algorithm attaches the 
suffix pattern with the frequent itemsets of the 
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conditional pattern tree. The algorithm needs not to 
generate all the candidate frequent itemsets. It uses the 
most infrequent item as the suffix to reduce the search 
space and the overhead significantly. 

 
Example 1: Let },,,{ dcbaI = , },,,{ acdabcbcacD = , 

min_sup=2, then L={{c:4},{a:3},{b:2}}, the generated 
FP-tree is shown in Fig.1. 

 
When mining the closed frequent itemsets in a static 

database, FP-growth algorithm needs to scan the database 
more than once. It is not practicable in data stream 
mining which allows only one time scan. 

For mining the frequent itemsets in data stream, 
MOMENT by Chi[4] is a typical algorithm which can 
decrease the size of the data structure. In solving many 
application problems, it is desirable to discount the  effect 
of the old data. One way to handle such problem  is using 
sliding window models. There are two typical models of 
sliding window[5]: milestone window model and 
attenuation window model. Lossy Counting[6] is a 
typical mining algorithm for data streams based on the 
milestone window. Using the attenuation window, Chang 
presented the algorithm Decest[7]. Gannell[8] proposed 
FP-stream by adopting the traditional FP-tree to process 
the data streams. FP-stream detects the frequent itemsets 
in the different period by using the different time 
granularity. Key differences between FP-tree and FP-
stream structure include the following. First, each path in 
an FP-tree represents a transaction, while each path in an 
FP-stream represents a potential frequent itemset. 
Second, each node in an FP-tree contains one support 
value, whereas each node in an FP-strean contains a 
nature or logarithmic tilted-time window table containing 
multiple support values, one for a batch of transactions. 
Teng proposed FTP-DS algorithm[9] which uses the 
statistical regression technique in the sliding window. 
Fujiang Ao et al[10] presented an algorithm named 
FPCFI-DS for mining closed frequent itemsets in data 
streams. FPCFI-DS uses a single-pass lexicographical-
order FP-Tree-based algorithm with mixed item ordering 
policy to mine the closed frequent itemsets in the first 
window, and updates the tree for each sliding window. 

In this paper, we present an algorithm Stream_FCI for 
mining the frequent closed itemsets from data streams in 
the model of sliding window. The algorithm detects the 
frequent closed itemsets in each sliding window using a 
DFP-tree (Dynamical FP-tree) with a head table. In 
processing each new transaction the algorithm changes 
the head table and modifies the DFP-tree according to the 
changed items in the head table. The algorithm also 
adopts a table FCIT (frequent closed itemset table) to 
store the frequent closed itemsets so as to avoid the time-
consuming operations of searching in the whole DFP tree 
for adding or deleting transactions. The frequent closed 
itemsets are first arranged in FCIT in the descending 
order of their supports. For the frequent closed itemsets 
with identical support in FCIT, they are organized in a 
lexicographical order. When adding or deleting 
transactions, DFP-tree and FCIT should be updated 

accordingly. In DFP-tree, the nodes in every path are 
arranged in the descending order of their supports so as to 
reduce the searching space in maintaining and mining the 
DFP-tree. Our experimental results show that the 
algorithm is more efficient and has lower time and 
memory complexity than the algorithms Moment and 
FPCFI-DS. 

The rest of this paper is organized as follows. The next 
section describes the background of frequent closed 
itemset mining. In section 3, our algorithm Stream_FCI is 
introduced. Section 4 shows the experimental results in 
testing Stream_FCI. Finally, conclusions are given in 
Section 5.  

II.  BACKGROUND  

A.  Frequent Closed Itemsets  
Let },,,{ 21 miiiI =  be a set of distinct data items, 

and a subset IX ⊆  is called an itemset. Each transaction 
t is a set of items in I . A data stream, 

),...},(),...,,{( 11 nn ttidttidDS = , is an infinite 
sequence of transaction, where ktid  is the identifier of a 
transaction and ),,2,1( nkItk =⊆  is an itemset. For all 
transactions in a given window W  of data stream, the 
support )sup(X  of an itemset X  is defined as the 
number of transactions with X  as a subset.  

 

  
Figure 1.  Frequent pattern tree. 

 
Given a threshold of support min_sup in the range of 

[0,w], where w is the size of the sliding window, the 
itemset X  is frequent if sup( X )≥min_sup.  

In general, the more transactions a sliding window has, 
a larger amount of frequent itemsets could be produced. 
In this case, there are many redundancies among those 
frequent itemsets. For example, in the frequent itemsets 

},,{ aadacd , the only useful  information is set acd  
according to Apriori[2] property, because acd  includes 
ad  and a . Closed itemsets are a solution to this 
problem. A frequent itemset X  is a closed one if it has 
no superset Y X⊃  such that )sup()sup( YX = . Closed 
frequent itemset is a condensed, i.e. both concise and 
lossless, representation of a collection of frequent 
itemsets. It is concise since a collection of closed itemsets 
is in an order of magnitude smaller than the 
corresponding collection of frequents. This allows us to 
use very low minimum support thresholds, which would 
make the extraction of all the frequent itemsets 
intractable. Moreover, they are lossless, because it is 
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possible to derive the identity and the support of every 
frequent itemset in the collection from them. Since when 
mining closed itemsets, we implicitly discard 
redundancies, extracting association rules directly from 
them has been proven to be more meaningful for analysis.  

  
Example 2: Let },,,{ dcbaI = , },,,{ acdabcbcacD = , 

min_sup=2. The frequent itemsets are (a:3), (b:2), (c:4), 
(ac:3) and (bc:2). Since (a:3) has the same support with 
its superset (ac:3), (b:2) has the same support with its 
superset (bc:2), they are not frequent closed itemsets. 
Therefore, the frequent closed itemsets are (c:4), (ac:3) 
and (bc:2).  

 

B.  Sliding Window  
In some real world applications such as meteorological 

study and financial operations, recent data in the stream 
have more importance than the old ones. One way to 
handle such problem is using a fading factor to act on the 
count of data items in data stream. It takes into account 
all the old data items in the history, and assigns less 
weights on the past data. In some  applications, the users 
are interested in the current data within a fixed time 
period. Therefore, the sliding window[5] is another 
practical approach to emphasis the recent data in the 
stream. It is suitable for the applications such like stocks 
or sensor networks, where only recent events may be 
important. The sliding window model only observes 
within a limited time window and entirely ignores the 
ones outside. This method reduces memory requirements 
because only a small portion of data is stored. 

The basic idea of mining frequent closed itemset in the 
sliding window model is that it makes decisions from the 
recent transactions in a fixed time period instead of all the 
transactions happened so far. Formally, a new data 
element arriving at the time t will expire at time , where  
is the length of the window. At every time step, when a 
new transaction comes to the window, the oldest one in 
the window should be deleted. Since the transactions in 
the window are updated over time, the frequent itemsets 
should be renewed accordingly. Fig.2 shows an example 
of sliding window. Since the model only stores the data 
items within a small data window of fixed size, it needs 
less memory space and is easy to be implemented.  

  

 
Figure 2.  An example of sliding window. 

 

III.  THE STREAM_FCI ALGORITHM  

In this section, we illustrate the frame work of the 
algorithm Stream_FCI for mining the frequent closed 
itemsets in data streams based on the model of sliding 
window. First the data structure used in the algorithm is 
introduced.   

A.  Data Structure  
(1) DFP-tree (Dynamical frequent-pattern tree)  
To construct the conventional FP-tree, the database 

must be scanned twice. However, it is not suitable for 
processing the stream data. A data structure called DFP 
(Dynamical frequent-pattern tree) is proposed to store the 
transactions in the current sliding window. 

The root of the tree is labeled with null. A branch 
starting from the root is created for each transaction. The 
itemstes sharing the common prefix will have identical 
ancestors in their paths. Each node on the tree represents 
an item. The structure of each node x in the tree is as 
follows: 

 
node_item node_sup node_link 

 
Here, node_item(x) is the the name of the item in the 

node x; node_sup(x) is the count of the item in node x ; 
node_link(x) is the pointer of the item linking with the 
other items which having the same node_name. 

A transaction is represented in DFP-tree by a path 
starting from the root. To make the algorithm be suitable 
for data streams and reduce the memory cost, items in 
each transaction are arranged in its path in the order of 
descending support count. In general the count of each 
node along the common prefix is greater than the 
summation of the counts of its child nodes.  

(2) Head Table 
To facilitate the tree traversal, a head table is built so 

that each item points to its occurrences in the tree via a 
chain of node links. The head table stores all the frequent 
items which may be consisted in the frequent closed 
itemsets in the DFP-tree. 

Every record in the head table represents an item, and 
its structure is as follows: 

 
sup item_name link 

 
Here, sup is the count of the item, item_name is the 

name of the item, and link is the pointer which is linked 
with the chain of nodes of item_name in DFP-tree. 

To make the algorithm be suitable for data streams and 
efficient in terms of memory and time cost, the entries in 
the head table are arranged in a descending order of their 
supports. All the possible items are considered as 
alphabets which form an alphabet table ∑. The items 
with the same count are arranged according to their 
alphabetical order.  

 
Example 3: Let },,,{ dcbaI = , },,,{ acdabcbcacD = , 

min_sup=2, then the frequent items and their supports are 
(c:4), (a:3) and (b:2), the DFP-tree generated is shown in 
Fig.3. 
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Figure 3.  A dynamical frequent pattern tree. 

 
 (3) Frequent Closed Itemsets Table (FCIT) 
In in order to record the frequent closed itemsets, a 

table called FCIT (Frequent Closed Itemsets Table) is 
used, where each entry records the count of a frequent 
closed itemset. The structure of each entry in the table is 
as follows: 

 
sup set 

 
Here, sup is the count of the frequent closed itemset;  

set is the frequent closed itemset. 
In FCIT, the entries are arranged in the order as 

follows. Firstly, the items in each itemsets are arraged 
according their alphabet order in ∑, which is called the 
the normal expression of the itemset. The entries in the 
FCIT are arranged by the descending order of their 
counts. The itemsets with the same count are arranged in 
the lexical order of their the normal expression defined on 
∑.  

In fact, each entry (sup, set) can be treated 
integractively as a vector, and all those vectors are 
arranged in FCIT according to their lexical order. We can 
perform radix sorting and binary search on FCIT so as to 
make quick querys and modifications on the table. 

 
Example 4: The frequent closed itemsets of the 

transactions in Example 3 are {c:4}, {ac:3}, {bc:2}. 
Their FCIT TABLE I is as follows:  

 

TABLE I.   
FCIT  

sup set 
4 c 

3 ac 

2 bc 

 

B.  Framework of algorithm Stream_FCI  
The algorithm Stream_FCI receives a transaction from 

the data stream at each time step, and forms a new sliding 
window by adding this new transaction into the window 
and emitting the oldest one. To identify the frequent 
closed itemstes in this new sliding window, Stream_FCI 
should modify the DFP-tree, head table and FCIT 
accordingly. Since two adjacent windows are overlapped 
except the added and deleted transactions, the frequent 

closed itemsets of the two windows do not change 
abruptly. Stream_FCI needs only to process the part of 
DFP-tree, head table and FCIT involving these two 
transactions. Therefore, procedures are proposed to 
modify DFP-tree, head table and FCIT when adding and 
deleting a transaction. 

At the beginning of the stream, DFP-tree, head table 
and FCIT are firstly constructed for the first window 
using a procedure BuildFirstTree. 

The framework of algorithm Stream_FCI(D) is as 
follows: 

 
Algorithm: Stream_FCI(D) 
Input: D: the data stream; 
Output: L: the frequent closed itemset table; 
Begin  
1 BuildFirstTree(T); 
2  while not the end of the stream do 
3    Receive a new transaction t from the stream; 
4    AddTransDFP(T,t); 
5    Adjust(T); 
6    AddTransFCIT(L,t); 
7    DeleteTransDFP(T,s); 
8    Adjust(T); 
9    DeleteTransFCIT(L,s) 
    /* s is the oldest transaction in the window*/ 
10  end while 
End.  
  

C.  Constructing the first DFP-tree and FCIT   
The DFP-tree and FCIT for the first window are 

constructed by a procedure BuildFirstTree(). When a new 
transaction in the stream enters the first window, the head 
table is modified by increasing the supports of  the items 
in the new transaction. Then the new transaction will be 
inserted into the DFP-tree according to the pointers of its 
items listed in the head table. A procedure 
AddTransDFP(T,t) is presented to add a new transaction t 
into the DFP-tree rooted at T. Also, the FCIT table is 
modified accordingly by adding the new frequent closed 
itemsets detected in the DFP-tree. A procedure 
AddTransFCIT(L,t) is presented to modify the FCIT table 
L when adding a new transaction t. 

The algorithm BuildFirstTree() is described as follows: 
 
Procedure: BuildFirstTree() 
Input: length: length of the window; 
Output: T: the root of DFP-tree, 
               L: the frequent closed itemsets table 
Begin 
1 T=Φ; size=0; 
2 repeat 
3    receive a new transaction t from the stream; 
4    update the head table; 
5    AddTransDFP(T,t); 
6    AddTransFCIT(L,t); 
7    size=size+1; 
8    Adjust(T); 
9 until size=length; 
End. 
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Details of procedures AddTransDFP(T,t) and 
AddTransFCIT(L,t) will be diescribed in the next section. 

D.  Adjusting the DFP-tree   
After adding or deleting a new transaction, since the 

supports of the items are changed, the DFP-tree should be 
adjusted accordingly so that the nodes in each path of the 
tree are arranged in the descending order of their 
supports. A procedure Adjust(T) is proposed to rearrange 
the nodes in DFP-tree. 

Suppose node y in DFP-tree is a child of node x, and 
node_item(x)=a, node_item(y)=b. If in the head table 
sup(a)<sup(b), then x and y can be called an inversed 
pair. Suppose node x and y is an inversed pair, the 
position of x and y should be exchanged to make sure 
they are in the descending order of their supports. In 
DFP-tree, the subtree rooted at node x is denoted as 
subtree(x), and let subtree-(x)=subtree(x)-{x}. When 
exchanging the position of an inversed pair of nodes, if 
node y is the only child of x, their position can be 
exchanged directly. But if x has children other than y, 
subtree-(y) should be inserted into w, which is the father 
of node x, and the support of x should be modified 
accordingly. 

The procedure Adjust(T) is described as follows: 
 
Procedure: Adjust(T) 
Input: T: root of the DFP-tree 
Output: the adjusted DFP-tree rooted at T. 
Begin 
1  while there exists inversed pair in T do 

/* Suppose the inversed pair is (x,y), y is the child 
                                    node of x , w is the parent of x */ 
2    Delete subtree(y) from the children set of x;  
3    node_sup(x)=node_sup(x)-node_sup(y); 
4    Add a path  “u→  v→ subtree-(y)” as a child of w; 
5    node_item(u)=node_item(y); 
6    node_sup(u)=node_sup(y); 
7    node_item(v)=node_item(x); 
8    node_sup(v)=node_sup(y); 
9    if w has another child p such that 
             node_item(p)=node_item(u) then  
10      emerge subtree(p) and subtree(u); 
11  end if 
12  end while 
End. 
 
Let the length of the window be 4, Fig.4 illustrates the 

process of constructing the first DFP-tree of the database 
in Fig.2. In Fig.4, (a), (b) , (c)  and (d) show the changing 
of DPF-tree when the first four transactions are inserted, 
while (e) is the FCIT TABLE II for the first sliding 
window. 

 
(a) Inserting transaction.bc 

 

 
(b) Inserting transaction.ab 

 

 
(c) Inserting transaction.acd 

 

 
(d) Inserting transaction.acd 

 

TABLE II.   
FCIT  

sup set 
3 a 

3 c 

2 acd 
2 b 

(e) The FCIT TABLE II 

Figure 4.  Building the first DFP-tree and FCIT TABLE II. 

 
When the fourth transaction coming into the sliding 

window, supports of a, b and c can be found, which are 
identical in the previous window, have been changed. 
The supports of a and c in the new window are greater 
than that of b. Therefore, locations of their nodes in the 
DFP-tree should be rearranged by the procedure 
Adjust(T). The process of rearranging the nodes in DFP-
tree is shown in Fig.5. 

 

 
(a) Generate new route after exchanging a and.b 
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(b) Merging the same nodes. 

 

 
(c) Exchange b and.c 

Figure 5.  Rearrange the order of the nodes in DFP-tree. 

 

E.  Adding a Transaction  
When a new transaction enteres the sliding window, it 

should be added into DFP-tree and FCIT should be 
modified accordingly. A procedure AddTransDFP(T,t) is 
presented to add a new transaction into the DFP-tree. 
Also a procedure AddTransFCIT(T,t) is presented to 
modify the FCIT table when adding a new transaction. 

(1) AddTransDFP(T,t) 
The procedure AddTransDFP(T,t) is to add a new 

transaction t into the DFP-tree rooted at T. When a 
transaction is to be added into the DFP-tree, its items are 
processed in order according to descending support 
count. Suppose the first item of the inserted transaction t 
is b, the algorithm first finds a child of T representing 
item b, and then recursively constructs the path according 
to the rest part of t. If T has no such a child representing 
item b, a new child of T representing item b is created. 

The procedure AddTransDFP(T,t) is shown as follows: 
 
Procedure: AddTransDFP(T,t)  
Input: T: Root of  the DFP-tree 

t: The transaction to be added 
Output: the updated DFP-tree rooted at T 
Begin 

/* Suppose t=(b|B), b is the first item in t, 
B is the suffix of t after b */ 

1   if T has a child x such that node_item(x) =b then 
2           node_sup(x)=node_sup(x) +1; 
3    else create a new node x as a child of T; 
4           node_sup(x)=1; 
5           node_item(x)=b; 
6           make node_link(x) to the end of link b 
7   end if 
8   if B is not empty then 
9       AddTransDFP(x,B); 
10  end if 
End. 
 

Fig.6 shows the new DFP-tree after inserting new 
transaction   into the current window of Fig.5. 

 

 
Figure 6.  The DFP-tree after inserting.abd 

 
When new transaction abd is received, the algorithm 

detects if there exists a child of root T representing item 
a. Since node (a:3) has already exists in DFP-tree, the 
algorithm modifies (a:3) into (a:4) and detects if it has a 
child representing item b. Since node (b:1) has already 
exists, the algorithm modifies (b:1) into (b:2) and detects 
if it has a child representing item d. Since (b:2) has no 
child, the algorithm simply adds a child node (d:1). The 
pointer of item d in head table is modified accordingly. 

(2) AddTransFCIT(L,t) 
When a new transaction enters the data stream, FCIT 

should be modified accordingly by adding the new 
frequent itemsets detected in the DFP-tree. A procedure 
AddTransFCIT(L,t) is presented to modify the FCIT table 
when adding a new transaction t. 

When inserting a new transaction t, we first detect: 
1) If there already exists the same itemset t in FCIT, its 

support should be increased by 1. 
2) If the FCIT table has already included some sup-sets 

of the new transaction t, the new transaction t is a 
frequent closed itemset and should be inserted into FCIT. 
Its support is set equal to the support of the largest 
support of its supsets plus 1. 

3) If there exists a subset r of the new transaction t in 
FCIT, support of r should be increased by 1. 

The procedure of AddTransFCIT(L,t) is as follows: 
 
Procedure: AddTransFCIT(L,t) 
Input: L: the FCIT table; 

t: The new transaction added; 
Output: the updated frequent closed itemsets table L; 
Begin 
1  if t is in L then sup(t)=sup(t)+1; 
2  else 
3        if there exists s which has the maximal 
4            support in the supersets of t in FCIT then  
5              add t into L; 
6              sup(t)=sup(s)+1 
7        else  
8              Search t in the DFP-tree; 
9              if t is a newly generated frequent closed 
10                 itemset then add t into L; 
11            end if 
12      end if 
13   end if 
14   for all subset r of t do 
15        If there exists r in L then  
16             sup(r)=sup(r)+1; 
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17       else 
18           Search r in the DFP-tree; 
19          if r is a newly generated frequent closed 
20              itemset then add r into L; 
21            end if 
22       end if 
23  end for 
End.  
  

F.  Deleting a Transaction   
Once a new transaction is added into the window, the 

oldest one in the window must be discarded, and the 
DFP-tree and FCIT table should be modified accordingly. 
A procedure DeleteTransDFP is presented to delete an 
old transaction from the DFP-tree. Also a procedure 
DeleteTransFCIT is presented to modify the FCIT table 
when deleting an old transaction. 

(1) Delete TransDFP(L,t)  
The procedure DeleteTransDFP(T,t) is to delete a 

transaction t from the DFP-tree rooted at T. Since each 
transaction in the DFP-tree is represented by a path 
starting from the root, to delete a transaction from the 
DFP-tree, the counts of the nodes on the path can be 
simply decreased. The procedure of DeleteTransDFP(T,t) 
is described as follows: 

 
Procedure: DeleteTransDFP(T,t) 
Input: T: Root of  the DFP-tree; 

 t: The transaction to be deleted; 
Output: the updated DFP-tree rooted at T; 
Begin 
   /* suppose t=[b|B]*/ 
1  Find node X in T’s children such that  item(X)=b; 
2  if  such X exists then 
3      node_sup(X)=node_sup(X)-1; 
4      DeleteTransDFP(X,B); 
5  end if  
End. 
 
Adding or deleting a transaction in the DFP-tree may 

cause disorder on the supports of the nodes in the paths. 
Therefore it is necessary to call procedure Adjust(T) to 
rearrange the nodes in the DFP-tree. 

Fig.7 and Fig.8 illustrate the changes of DFP-tree after 
deleting transaction bc from the tree in Fig.6. 

  

 
Figure 7.  Deleting transaction bc from DFP-tree. 

 

 
Figure 8.  The change of DFP-tree after deleting.bc 

 
 (2) DeleteTransFCIT(L,t) 
The procedure DeleteTransFCIT(L,t) is to delete a 

transaction t from the FCIT table L. Since no new 
frequent closed itemset could appear when deleting an 
old transaction, the number of the enties in FCIT will not 
increase. When deleting a transaction t, we should detect 
whether there exist t or the subsets of t in FCIT table. The 
set which consists of t and its subsets in FCIT are defined 
as F(t). If F(t) is not empty, the supports of all itemsets in 
F(t) should be decreased by 1, and may be removed from 
FCIT if such a itemset becomes infrequent or not closed. 
The procedure DeleteTransFCIT(L,t) is described as 
follows: 

 
Procedure: DeleteTransFCIT(L,t) 
Input: L: the FCIT table; 

 t: the transaction to be deleted; 
Output: modified FCIT table L 
Begin 
1  Detect if there exist t and its subsets in L; 

/* define the set which consists of t  
and its subsets in L as F(t) */  

2   if F(t) is not empty then  
3       for each itemset r in F(t) do 
4             sup(r)=sup(r)-1; 
5            if sup(r)<minsup then delete r from L 
6               else 
7                  if there exsits a superset s of r in L  
8                         such that sup(s)=sup(r) then 
9                             delete r from L; 
10                end if 
11         end if 
12     end for 
13  end if 
End. 
 
 The FCIT TABLE III of the second sliding window of 

database in Fig.1 is as follows:  

TABLE III.   
FCIT  

sup set 
4 a 

3 ad 

2 ab 
2 acd 
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IV.  EXPERIMENTAL RESULTS  

The quality and efficiency of our Algorithm 
Stream_FCI is evaluated through extensive experiments 
on the real data set and compare with algorithms 
Moment[4] and FPCFI-DS[10]. We focus on the 
algorithms’ memory costs, computation times for 
building the first window and the average time of the 
sliding window moving.  

All experiments were carried out on a 2.8GHz CPU 
and 1G RAM PC running Windows version XP; the 
program developed in Visual studio C++6.0.  

A.  Test Data Sets   
The testing datasets Mushroom[11] and 

T10I4D100K[11] are used. Mushroom is a dense dataset 
which contains 8124 pieces of records. T10I4D100K 
adopts three common parameters: T (the longest length of 
the transaction); I (the average length of the transaction); 
D (the number of the items in the datasets). The the 
longest length of the transactions in T10I4D100K is 10, 
and the average length of the transactions is 4, the 
number of the items in the datasets is 100K. Similar to 
[12], system tool is used to observe the change of the 
memory usage. The average time for processing the 
sliding window is obtained by 100 trials. The sizes of the 
sliding window are 5K and 60K for mining on dense and 
sparse dataset respectively.  

B.  Experimental Results and Analysis   
The memory costs by Moment, FPCFI-DS and 

Stream_FCI are first compared. Fig.9 shows the memory 
requirements of the three algorithms. From the figure we 
can see that for processing both dense and sparse dataset, 
Moment requires the most memory space and 
Stream_FCI requires the least. The main reason is that 
Stream_FCI only searches in the DFP-tree to establish 
FCIT without generating all candidate itemsets or using 
an extra data array. 

We also test the three algorithms to compare their 
times for building the first window. Fig.10 shows the test 
results, from which it can be seen that when minsup 
changes from 1 to 0.1, Stream_FCI is obviously faster 
than Moment, but a little slower than FPCFI-DS. The 
reason is that when building the first window, 
Stream_FCI needs to adjust the nodes in the DFP-tree so 
that the nodes in each path are arranged in the descending 
order of their supports. But after generating the first DFP-
tree and the FCIT, Stream_FCI is faster than the other 
two algorithms. 

 

 
(a) Mushroom. 

 

 
(b) T10I4D100K. 

 
Figure 9.  Memory usage. 

 

 
(a) Mushroom. 

 

 
(b) T10I4D100K. 

 
Figure 10.  The time of building the first window. 

 
The comparison of the average time to processing each 

sliding window by the three algorithms is shown in 
Fig.11. The processing of one window consists of adding 
a new transaction entering the current window and 
deleting an old one from it. From Fig.11 it can be found 
that Stream_FCI is faster than other two algorithms 
especially when the value minsup is decreasing.  

 

 
(a) Mushroom. 
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(b) T10I4D100K. 

 
Figure 11.  The average time of window sliding. 

 

V.  CONCLUSION  

To mining the closed  frequent itemsets in data 
streams, this paper presents an algorithm Stream_FCI on 
the model of sliding window. The algorithm detects the 
frequent closed itemsets in each sliding window using a 
DFP-tree with a head table. In processing each new 
transaction, the algorithm changes the head table and 
modifies the DFP-tree according to the changed items in 
the head table. The algorithm also adopts a table FCIT to 
store the frequent closed itemsets so as to avoid the time-
consuming operations of searching in the whole DFP-tree 
for adding or deleting transactions. Our experimental 
results show that the algorithm is more efficient and has 
lower time and memory complexity than the similar 
algorithms Moment and FPCFI-DS.  
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