

A Fast and Efficient Algorithm for Finding

Frequent Items over Data Stream

Ling Chen
Department of Computer Science, Yangzhou University, Jiangsu, China

State Key Lab of Novel Software Tech, Nanjing University, Nanjing , China

Email: lchen@yzu.edu.cn

Yixin Chen
4Department of Computer Science, Washington University in St Louis, USA

chen@cse.wustl.edu

 Li Tu
Department of Computer Science, Jiangyin Polytechnic College, Jiangyin 214405, China

Email: litu@yzu.edu.cn

Abstract— We investigate the problem of finding the

frequent items in a continuous data stream. We present an

algorithm called λ-Count for computing frequency counts

over a user specified threshold on a data stream. To

emphasize the importance of the more recent data items, a

fading factor is used. Our algorithm can detect ε-

approximate frequent items of a data stream using O(logλε)

memory space and O(1) time to process each data record.

The computation time for answering each query is

O(lo g), and for answering a query about the

frequentness of a given data item is O(1). Experimental

study shows that λ-Count outperforms other methods in

terms of accuracy, memory requirement, and processing

speed.

Index Terms— Data mining, data stream, frequent items

I. INTRODUCTION

In recent years, researchers have paid more attention to

mining stream data. Mining frequent item sets from

stream data is an important task in stream data analysis.

Frequency is a fundamental characteristic in many data

mining tasks such as association rule mining and iceberg

queries. It has applications in many areas such as sensor

data mining, business decision support, analysis of web

query logs, direct marketing, network measurement, and

internet traffic analysis. Correspondingly, the input

stream data could be stock tickers, bandwidth statistics

for billing purposes, network traffic measurements, web-

server click streams, and data feeds from sensor networks.

Traditional mining algorithms assume a finite dataset and

multiple scans on the data. For the stream data

applications, the volume of data is usually too large to be

stored in memory or to be scanned for more than once.

Furthermore, for data streams, there can only be

sequential but not random access. Therefore, traditional

frequent item mining algorithms are not applicable to

stream data.

The problem is difficult because of the high throughput

of the data streams , possibly in the order of gigabytes per

second. Any feasible algorithm for detecting frequent

data item must perform data processing and query fast

enough so as to match the speed of arriving data in the

stream. In addition, the algorithm can use only limited

memory space and store only the sketch or synopsis of

the data items in the stream.

Several solutions for finding frequent items in stream

data have been proposed. Several algorithms use

random sampling [1,5,6,7,8,9,10,11,12,13,14] to estimate

the frequencies of the data items. For example, the Sticky

Sampling [1] algorithm is a sampling based algorithm for

computing an ε -deficient synopsis over a data stream. It

is a probabilistic one-pass algorithm that provides an

accuracy guarantee on the set of frequent data items and

their frequencies reported. The second class of algorithms

are deterministic algorithms [2,3,4,15,16,17,18,25]. The

MG algorithm by Misra and Gries [4] is a well-known

deterministic algorithm to detect frequent stream data.

In many applications, recent data in the stream is more

meaningful. For instance, in an athlete ranking system,

more recent records typically should carry more weight.

One way to handle such problem is to use a sliding

window model [19-22,29,31]. In this model, only the

most recent data items in a time period of a fixed length

are stored and processed, and only the frequent data items

in this period are detected. The advantage of this method

is that it can get rid of the stale data and only consider the

fresh data, which are meaningful in many cases. To

emphasize the importance of the recent data, there is

another model for frequency measures in data stream

which is called time fading model [32]. In this model,

data items in the entire stream is taken into account to

compute the frequency of each data item, but more recent

data items contribute more to the frequency than the older

ones. This is achieved by introducing a fading factor

0<λ<1. A data item that is n time points in the past is

weighted λ
n
. Thus, the weight is exponentially decreasing.

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1545

© 2012 ACADEMY PUBLISHER

mailto:chen@cse.wustl.edu
mailto:litu@yzu.edu.cn

In general, the closer to 1 the fading factor λ is, the more

important the history is taken into account. There are two

advantages of the fading model over the sliding window

model. One is that in the fading model, frequency takes

into account the old data items in the history, while the

sliding window model only observes within a limited

time window and entirely ignores all the data items

outside the window. This is undesirable in many real

applications. The second is that in the fading model,

when more data arrive continuously, the frequency

changes smoothly without a sudden jump which may

occur in the sliding window model.

 In this paper, we propose an efficient frequency

estimation algorithm based on the fading model which

needs as little space and running time as possible. We

propose an algorithm called λ-Count which can detect ε-

approximate frequent items in data stream. The algorithm

requires O(logλε) memory space and O(1) time for

processing one input data item. Moreover, the

computation time for answering each query is O(lo g),

and for answering query about the frequentness of a given

data item is O(1). Through extensive experiments, we

show that λ-Count outperforms other methods such as LC

and EC in terms of the accuracy, memory requirement,

and processing speed.

The rest of the paper is organized as follows. Section 2

reviews related work. Section 3 formally defines the

problem and describes a data fading model. Section 4

describes the framework of the λ-Count algorithm and

analyzes its space and time complexity. Section 5 reports

our experimental results and Section 6 gives conclusions.

II. RELATED WORK

Problems related to frequency estimate have been

actively studied. Algorithms for identifying frequent

items and other statistics in the entire data stream have

been proposed.

 Lossy Counting [1] was among the first algorithms

for finding frequent items from a data stream. Lossy

Counting is a one-pass algorithm that provides an

accuracy guarantee on the set of frequent data items and

their frequencies reported. Given a user-specified support

threshold S, and an error threshold ε, Lossy Counting

guarantees that: 1) All items whose true frequency

exceeds SN are detected, where N is the total number of

data items processed. Namely, there are no false

negatives. 2) No item whose true frequency is less than

(S-ε)N is output. 3) The estimated frequency of any item

is less than its true frequency by at most εN. Nuno

Homem et al. [28] presented an algorithm for identifying

the most k frequent elements by merging the commonly

used counter-based and sketch-based techniques. The

algorithm also provides guarantees on the error estimate,

order of elements and the stochastic bounds on the error

and expected error estimates. Karp et al. [2], and

Demaine et al. [3] applied a deterministic MG algorithm

[4] to detect frequent stream data. They reduced the

processing time of MG algorithm to O(1) by managing all

counters in a hash table. The algorithm can easily be

adapted to find ε-approximate frequent items in the entire

data stream without making any assumption on the

distribution of the item frequencies. This algorithm needs

1/ε counters for the most frequent data items in the stream.

Processing the arrival data items entails incrementing or

decrementing some counters.

Many algorithms for frequent item counting use

random sampling. They make assumptions on the

distribution of the item frequencies and the quality of

their results is guaranteed probabilistically. Flajolet and

Martin [5] and Whang et al. [6] proposed probabilistic

algorithms to estimate the number of distinct items in a

large collection of data in a single pass. Golab et al. [7]

gave an algorithm for the case when the item frequencies

are multinomially-distributed. Gibbons and Matias [8]

presented sampling algorithms to recognize top-k queries.

H. Liu et al. [9] presented an error-adaptive and time-

aware maintenance algorithm for frequency counts over

data streams. G.S. Manku et al. [1] advanced a sampling

based algorithm called sticky sampling for computing an

ε-deficient synopsis over a data stream of singleton items.

It scans the data in the stream and randomly samples the

data items based on three user-specified parameters:

support S, error bound ε, and probability of failure δ.

Many algorithms use hashing technique to map the

data items in a stream to a hash table which can be stored

in the main memory. Estan and Varghese [10] presented a

sampling algorithm and a hash-based algorithm for

frequent item detecting. Based on the hashing technique,

Charikar et al. presented an algorithm named Count

Sketch [11], which requires O(k/ε
2
logn) memory space

and O(k/ε
2
logn) computation time to process one data

item. The algorithm can output the items with frequency

larger than 1/(k+1) under the probability of 1-δ. Cormod

et al. presented an algorithm called groupTest [12] which

requires O(k(logk+log(1/ δ))logM) memory and O(logk)

time for each item. Jin et al. [13] advanced an algorithm

hCount which uses O(ε
-1

log(-M/logδ)) memory and

O(log(-M/logδ)) time for each data element. The

algorithm can detect the ε-approximate results under the

probability of 1-δ. Fang et al. [14] also advanced several

algorithms based on hashing to compute iceberg queries,

but each requires at least two passes over the data stream.

In addition to randomized algorithms, many

deterministic algorithms for detecting frequent item in

data stream are also reported. Calders et al. [15] proposed

an algorithm for mining frequent items in a data stream.

They defined a new frequency measure such that the

current frequency of a data item is its maximal frequency

over all possible windows in the stream from any time

point in the past until the current time. B. Lin [16] et al.

proposed an adaptive frequency counting algorithm to

handle bursty data in the stream. They used a feedback

mechanism that dynamically adjusts mining speed to

cope with the changing arrival rate. Greenwald and

Khanna [17] considered the problem of ε-approximate

quantitative summaries. Wang [18] et al. proposed an

algorithm to find ε-approximate frequent items in a data

stream, its space complexity is O(ε
-1

)and the processing

time for each item is O(1) in average. Moreover, the

1546 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

frequency error bound of the results returned by the
proposed algorithm is (1−S+ε)εN.

In many applications, recent data in the stream is more
meaningful. The algorithms mentioned above does not
discount the effect of old data, all data items in the whole
history of the data stream are given equal weights. This is
undesirable in solving many application problems. One
way to handle such problems is to use a sliding window
model. Recently several data mining algorithms over
sliding windows are proposed. Arasu and Manku [19]
gave the first deterministic algorithm for finding ε-
approximate frequent items over a sliding window. It
requires O((1/ε)log(1/ε)) time for each query/update and
uses O((1/ε)log2(1/ε)) space. Their algorithm divides the
sliding window into several possibly overlapping sub-
windows with different sizes. The algorithm applies the
MG algorithm to each of these sub-windows to find the
frequent items in these sub-windows. These sub-windows
are organized into levels so that whenever there is a query
on the frequent items, one can traverse these sub-
windows efficiently to identify the frequent data items. In
[30] Regant Y. S. Hung et al. studied the space
complexity of the ε-approximate quantizes problem, and
proved that any comparison-based algorithm for finding
ε-approximate quantizes in a data stream needs
an Ω((1/ε)log(1/ε)) space. Golab et al. [20] gave some
heuristic algorithms for identifying frequent items over a
sliding window. Lee and Ting [21] proposed an
approximate frequent stream data mining algorithm
which requires O(1/ε) space. Their algorithm needs
O(1/ε) processing time for update and query. L. Zhang
and Y. Guan [22] proposed a stream data frequency
estimation algorithm over sliding windows. Their
algorithm requires O(1/ε) memory space and O(1) time
for query/update. Other recent works on mining frequent
items in data stream have been surveyed in
[23,24,26,27,37]. The major algorithms for mining
approximate frequent items in data stream are listed in
Table 1.

III. CONCEPTS AND DEFINITIONS

In this section we describe a data fading model by
using a fading factor λ to discount the frequencies of the
old data in a stream. We also give a formal definition of
our mining problem. In this paper, we use a standard
stream model with discrete time steps labeled as 0, 1, 2,
3…, and only one data record a(t) ∈ X arrives at each
time step, where X={x1, x2, …, xm} is a domain
containing discrete values.

To emphasize the importance of recent data, we use a
fading factor)1,0(∈λ in calculating the data items’ support
counts. For each data item x, its support count decreases
as x ages. We call such modified support counts the
density of the data item. In each time step, the density of
a data item will be reduced by the fading factor λ.

Definition 1 (Density of a data item) The density
of a data item x ∈ X at time t is defined as

0 0
(,)

(, 1) (,) 1, 2,3,...
t

D x t
D x t t x tλ δ

=⎧
= ⎨ − + =⎩

 (1)

Here, 1 ()
(,)

0 o therw ise
a t x

x tδ
=⎧

= ⎨
⎩

, where a(t) is the

data record received at time t.
The density of a data item is constantly changing.

However, we found that it is unnecessary to update the
density values of all data items at every time step.
Instead, it is possible to update the density of a data item
only when this item is received from the data stream. For
each item, the time when it was last received should be
recorded. Suppose a new data item x is received at time
tn, and suppose the last time x was received before is ts (tn
> ts), then the density of x can be updated as follows:

(,) (,) +1n s

n

t t
sD x t D x t λ −= (2)

Lemma 1 Let X(t) be the set of all the data items that

are received at least once from time 0 to t, we have:

1)
()

1(,)
1x X t

D x t
λ∈

≤
−∑ , for any t=1, 2, …. .

 2)
()

1lim (,)
1t x X t

D x t
λ→∞

∈

=
−∑

 Proof: For a given time t,
()

(,)
x X t

D x t
∈
∑ is the sum

of density of the t+1 data records that arrive at time steps
0, 1, … , t. For each time step t’, 0≤t’≤t, the data record
contributes λt-t’ to the total density. Therefore, we have

()

(,)
x X t

D x t
∈
∑ = 1

'

' 0

1 1
1 1

tt
t t

t

λλ
λ λ

+
−

=

−
= ≤

− −∑ .

Also, it is clear that:

1

()

1 1lim (,) lim
1 1

t

t tx X t
D x t λ

λ λ

+

→∞ →∞
∈

−
= =

− −∑ . Q.E.D.

Since a data stream may consist of potentially huge

volume of data items, the number of the data items in the
stream could become very large, and the count of each
item could overflow. From Lemma 1, we can see when a
fading factor is used, the summation of the densities of
the data items is independent of the number of the data
items in the stream, and the density of each data item is
within the range of [0, 1/(1)λ−]and never overflows.

Like most previous work, our λ-Count algorithm takes
two user-specified parameters, a support threshold
S∈(0,1), and an error parameter ε∈(0,1)such that ε<S.

Definition 2 (Frequent data item) Let S be a user
specified threshold, at time t, a data item x is a frequent
item if its density D(x,t)satisfies D(x,t)

1
S
λ

≥
−

.

Given ε as a user specified relative error bound and
ε<S, we are asked to maintain some data items with
density at least

1
S ε

λ
−
−

, which are called ε-approximate

frequent items.
Our algorithm outputs a list of ε-approximate frequent

items along with their estimated densities. Similar to
Lossy Counting, the answers produced by our algorithm
have the following guarantees:

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1547

© 2012 ACADEMY PUBLISHER

1. All items whose densities exceed
1

S

will be

found, which means there are no false negatives.

 2. No item whose density is less than
1

S

 will be

found.

3. The estimated density for each item is no more

than its actual density. The difference between the

estimated density and the actual density is no more

than
1

.

IV. THE λ-COUNT ALGORITHM

We now present the proposed λ-Count algorithm. We

first describe the algorithm and prove its optimality. Then,

we discuss some key implementation details and analyze

the complexity of the algorithm.

A. Description of the algorithm

In our λ-Count algorithm, for each data item, it suffices

to store a characteristic vector which consists of the

necessary information of the data item. The λ-Count

algorithm processes the incoming data from stream and

updates a summary structure called item_list which is a

list of frequent data item candidates. Each entry of

item_list is a characteristic vector of a data item x:

C(x)=[x, De(x, ts), ts], where ts is the last time when x was

received, and De(x, ts) is the estimated density of the data

item x at time ts.

The item_list is organized in a queue structure and has

a size limitation of L= log . These entries in item_list

are arranged in the descending order of their ts values.

The entry with the least ts value is located at the head of

the queue while the one with largest ts value is at the tail

of the queue. Whenever the size of item_list goes beyond

L, the entry at the head of item_list should be deleted.

Whenever a new entry is going to be inserted to item_list,

it should be placed at the tail of the queue.

When a new data record x is received from the stream,

the algorithm creates or updates its characteristic vector

in item_list. If the characteristic vector of x already exits

in item_list, the algorithm modifies its density and ts

value before moving it to the tail of the queue; otherwise,

the algorithm creates a new entry for x and inserts it to

the tail of the queue.

The framework of the algorithm is given in Algorithm

1.

Algorithm 1: λ-Count

 input: str: the data stream;

 λ： the fading factor;

 ε: the density error bound;

 S: the density threshold;

output: item_list: list of frequent data item candidates;

 begin

 1. set t=0; L= log ;

 2. while not terminate do

 3. receive a data item x from the data stream str;

 4. if x is not in item_list then

 5. create a new entry [x, 1, t];

 6. If |item_list| L (item_list is full) then

7. delete the entry at the head of item_list;

8. endif

 9. insert the new entry [x, 1, t] to the tail of

item_list;

 10. else

 11. update the corresponding entry [x, De(x, ts), ts]

TABLE I. ALGORITHMS FOR MINING APPROXIMATE FREQUENT ITEMS OF DATA STREAM

Algorithm
Frequency
or density

bound

Randomize or
deterministic

Space requirement
Time for each
item

Emphasize the
recent data

Refer-
ence

MG εN D O(ε-1) O(ε-1) No [4]

Lossy
counting

εN D O(ε-1log εN) O(log εN) No [1]

Sticky
sampling

εN R O(ε-1log s-1δ-1) O(1) No [1]

Count sketch εN R O(k/ε2logn) O(k/ε2logn) No [11]

Group test εN R
O(k(logk+log(1/
δ))logM

O(logk) No [12]

hCount εN R O(ε-1log(-M/logδ)) O(log(-M/logδ)) No [13]

EC (1−s+ε)εN D O(ε-1) O(1) No [18]

By Arasu &

Manku
εN D

1 1
logO

21 1
logO

Yes (Sliding

window)
[19]

By Lee &
Ting

εN D O(ε-1) O(ε-1)
Yes (Sliding
window)

[21]

Snapshot-
advanced

εN D O(ε-1) O(1)
Yes (Sliding
window)

[22]

λCount ε/(1- λ) D O(log) O(1)
Yes (Fading
factor)

this
paper

1548 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

to [x, (,) 1st t

e sD x t
 , t];

 12. move the entry[x, (,) 1st t

e sD x t
 , t] to the tail

 of item_list;

 13. end if;

 14. t=t+1

 15. end while

 end

Since the density of a data item may be deleted

previously, the estimated density recorded in the entry in

item_list may be less than the actual density of the data

item. We will show that the error is within a bound ε/(1-

λ). If a data item x is not listed in item_list, it is possible

that x has been deleted from item_list several times,

causing its historical density to be discarded. We will

show that if x is not listed in item_list, then it cannot be a

frequent item even if it has never been deleted from

item_list. In other words, all the frequent items will be

kept in item_list and there is no false negative.

Theorem 1 Suppose an entry C(x)=[x, De(x, ts), ts] of

data item x is deleted from item_list at time t, then its

actual density D(x,t) at time t satisfies D (x, t)

/ (1)
.

 Proof: Suppose ever since the beginning of the data

stream, the item x has previously been deleted at time

steps t1, t2,…,tp, and now is deleted at time t. We denote t

as tp+1. The density of the ith deletion is acquired during

the period of (
l

it ,
r

it), where
l

it and
r

it are the time steps

when x is first and last received in this period,

respectively. It is obvious that
l

it
r

it < ti, for

i=1,2,…p+1, where, p+1t t and p+1

r

st t . Then the

characteristic vector of x at time ti is C(x)=[x, De(x,
r

it),

r

it]. Since we have (,) (,)
r

i it tr

e i e iD x t D x t
 , the density

of x at time t= tp+1 should be
1

1

(,) (,)
r

i i i

p
t t t tr

e i

i

D x t D x t

1

2

1

(1 ...)
r l r
i i i

p
t t t t

i

1

1

r
i

l
i

tp
t k

i k t

1 1 1

1

1
1

r r l
p p

r
p

l

t t t
t tt k k

kk t

1 1

1 1

1
1

1

r l
p

r
p p

t t
t t

. (3)

When x is deleted from item_list, it must locate at the

head of item_list and has the least ts value in item_list.

Since the length of item_list is L= log , and every entry

in item_list has a different ts value, we know

1 1

r

p pt t =t-ts>L. Thus, we have

1 1
r

p pt t

log

.st t L

Therefore from (3) we have,

 D(x,t)
1 1

1 1

1
1

1

r l
p

r
p p

t t
t t

1 1
1

1

r l
pt t

 1

.

 Q.E.D.

From Theorem 1 we know that if a data item does not

appear in item_list at time t, then its actual density must

satisfy D(x,t)<
1

.

Theorem 2. At time t, for any entry C(x)=[x, De(x, ts),

ts] in item_list , we have

 a) De(x, ts) D(x, ts) De(x, ts)+
1

 , (4)

 and b) De(x, t) D(x, t) De(x, t)+
1

st t

 . (5)

 Here, D(x,t) is the actual density of data item x at

time t.

 Proof. a) If x has not been previously deleted, De(x,

ts)= D(x, ts). Otherwise, since x has been previously

deleted from item_list, we have De(x, ts) D(x, ts). From

Theorem 1, we infer that the actual density of x when it is

last deleted is at most
1

. Therefore, we have

D(x, ts) De(x, ts) +
1

.

 b) Since De(x, t) = De(x, ts)
st t

, D(x, t)= D(x, ts)

st t

 and De(x, ts) D(x, ts), it is obvous that De(x, t)

D(x, t).

 Since D(x, t)= D(x, ts)
st t

, from (4) we have

D(x, t) [De(x, ts)+
1

] st t

= De(x,

ts)
st t
+

1

st t
= De(x, t) +

1

st t
.

 Q.E.D.
 From Theorem 2, we can see that De(x, t) is always

less than D(x,t). The error of using De(x, t) to

approximate D(x, t) is less than
1

st t .

 When item_list is full, it has L entries, the errors of

which are less than

1

 ,

2

1

 , …, 1

L

 ,

respectively. The average error is less than
11

.
(1) 1

L

L

=
2

(1)
<

(1) (1-)L L

.

 Based on the Theorems above, the algorithm for

answering a query at time t is as follows.

Algorithm 2 λ-Count-Query(t,S)

input: item_list=[C(1), C(2),…,C(L)]: list of frequent

data item candidates;

 S: the density threshold;

 λ：the fading factor;

 ε: the density error bound;

output: F: the set of ε-frequent data items;

begin

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1549

© 2012 ACADEMY PUBLISHER

 H(x2)

 H(xL)

 H(x1)

1. F =Ф ;

2. for i=1 to L do

3. get C(i)=[x, De(x,ts), ts] and compute

De(x, t) = De(x,ts)
st t

;

4. if De(x, t)> 1

S

 then F=F {x} endif;

5. end for

6. output F;

end

The following Theorem shows that algorithm λ-Count-

Query can correctly detect ε-approximate frequent items.

 Theorem 3. The λ-Count-Query algorithm has the

following guarantees:

 a) All items whose densities exceed
1

S

will be

output; there are no false negatives.

 b) No item whose density is less than
1

S

 will be

output.

c) The estimated density for each item is no more than

the actual density. The error of the estimated density is

less than
1

.

 Proof:

a) From Theorem 2 we know

De(x, t) De(x, t) D(x, t) -
1

st t

.

 If density of a data item x satisfies D(x, t)>
1

S

,

then De(x, t)
1

S

-

1
st t

>

1

S

.

 According to the λ-Count-Query algorithm, x will

be output.

b) If an item x’s density is less than
1

S

, then

from Theorem 2 we know De(x, t) D(x, t) <
1

S

.

 Therefore, x will not be output by the λ-Count-

Query algorithm.

c) From Theorem 2, it is obvious that De(x, t)

D(x, t), and D(x, t) - De(x, t)
1

t ts

<

1

.

Q.E.D.

For a given data item x, the algorithm for answering

the query of whether x is a frequent item is as follows.

Algorithm 3 λ-Count-item-Query(x,t,S)

input: item_list=[C(1), C(2),…, C(L)]: list of frequent

data item candidates;

 S: the density threshold;

 λ：the fading factor;

 ε: the density error bound;

output: f: a flag indicating whether x is a frequent

item;

begin

 1 f=false;

 2. if x is in the item_list then

 3. get [x, De(x,ts), ts] and compute

De(x, t) = De(x,ts)
st t
;

 4. if De(x, t)>
1

S

 then f=true endif ;

 5. end if

 6. output f ;

 end

B. Data structure and complexity

In every time step, the λ-Count algorithm processes the

income data and updates a summery structure item_list.

Each entry of item_list is a vector [x, De(x, ts), ts, psucc,

ppre], where De(x, ts) is the estimated density of the data

item x at time ts, ts is the last time when item x was

received, psucc and ppre are pointers to its successor and

predecessor respectively. The maximal length of item_list

is L= log . To accelerate the process of updating

item_list, it is organized as a hash table using a hash

function H. For a data item x, its address is H(x). Entries

in item_list are arranged in a queue structure in the

descending order of their ts values. The queue is

constructed as a doubly linked list, as shown in Figure 1.

Figure 1 The data structure of item_list.

 Now we examine the operations and analyze the time

complexity of the algorithm λ-Count.

Delete an entry (Line 7 of Algorithm 1). Since we

always delete the entry at the head of the queue, the time

cost is O(1).

Insert an entry (Line 9). Since we always insert the

entry to the tail of the queue, the time cost is O(1).

Update an entry when receiving a new data item (Line

11). Since we use the hash function to get the address of

an item, the time cost is O(1).

Move an entry to the tail of the queue (Line 12). Given

the doubly linked list structure of item_list, this operation

can be done by first saving the vector of the entry to a

buffer, deleting the entry from the queue, and then

inserting the vector in the buffer to the tail of item_list.

 x1

 tsL De(xL, tsL) xL

De(x1, ts1) ts1

De(x2, ts2) x2 ts2

 Ф

 psucc

 ppre

 psucc

 Ф ppre

Queue head

Queue tail

Hash

Function

H(x)

 x1

 x2

 xL

1550 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

Since item_list is a doubly linked queue, each of those

operations costs O(1) time.

From the above, we conclude that λ-Count processes

one incoming data record in O(1) time. Since the

maximum size of item_list is L= log , algorithm λ-

Count requires no more thanO(log) memory space.

Moreover, from the Algorithm 2 and Algorithm 3 we can

see that the computation time for answering each query

using λ-Count-Query is O(log), and the time for

answering a query about the frequentness of a given data

item is O(1) using algorithm λ-Count-item-Query.

V. EXPERIMENTAL RESULTS

We evaluated our algorithm and compared its

performance against the revised versions of Lossy

Counting (LC) [1] and EC [21] on the time fading model.

We focus on the algorithms' computing time, memory

requirement, recall and precision in handling data streams.

 All experiments were run on a PC with 1.0GHz

Pentium III CPU running Windows 2000. In our

experiments, we set S=0.01 and λ=0.99.

A. Synthetic data sets

We generate four datasets based on Zipf distributions,

with parameters 0.5, 0.75, 1, 1.25, respectively. Each

dataset contains one million data records. We compare

LC, EC and λ-Count with two error bound settings,

ε=0.0005 and ε=0.001.

Figure 2 and Figure 3 compare the memory

requirements of the three algorithms. We can see that λ-

Count requires the least memory for all the different

settings of Zipf parameter and ε. In fact, the memory size

of λ-Count is always around logλε, while the sampling

sizes of EC and LC are at least 1/ε and 1
O log N

,

respectively. Since N is the number of data items received

from the stream, LC may require huge memory space

with the lapse of time.

Figure 4 and Figure 5 compare the average time for

processing 1M data records by the three algorithms. We

see that λ-Count is the fastest. In fact, λ-Count requires

only O(1) time for processing one data item, while LC

has a processing time of O(1/ε). For EC, although

theoretically it has a processing time of O(1), it has a

larger hidden constant than λ-Count. This is because, to

delete a data in the list, λ-Count only needs to delete the

head of the queue, while EC needs to do multiple

decrement operations. Therefore, λ-Count is much faster

than the other two algorithms.

We also test and compare the quality of the results by

the three algorithms in terms of recall and precision

defined as follows.

recall=
number of the truly frequent items reported by the algorithm

number of all the truly frequent items

precision=
number of the truly frequent items reported by the algorithm

number of the frequent items reported by the algorithm

Since all the algorithms have no false negatives, all the

frequent items can be detected, their recalls are all 100% .

Figure 6 shows the precision of the three algorithms on

synthetic data with Zipf parameter 1.25. From the figure

we can see that all the algorithms can achieve high

precision. But precisions of algorithms LC and EC

decrease when the length of the stream increases, while λ-

Count obtains high precision close to 100% regardless of

the length of the data stream.

 Figure 2 Comparison of the memory requirement of the three
algorithms on datasets with different distributions (1M, ε=0.0005).

Figure 3 Comparison of the memory requirement of the three

algorithms on datasets with different distributions (1M, ε=0.001).

Figure 4 Comparison of time cost of the three algorithms on different

distribution data (1M, ε=0.0005)

Figure 5 Comparison of time cost of the three algorithms on different

distribution data (1M, ε=0.001)

B. Real datasets

In this section, we adopt the log file data of visitors to the

1998 Soccer World Cup official website [33]. This log

file records all of the visit requests for the Word Cup

official website during 1998 World Cup. Each request

consists of 8 attributes including visit time, IP address,

the ID of the visited web page and so on. We pick up all

0

500

1000

1500

2000

2500

3000

3500

4000

0.5 0.75 1 1.25

Zipf parameter

Me
mo
ry
(n
um
be
r
of
 e
nt
ry
)

LC EC Our algorithm

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.5 0.75 1 1.25

Zipf parameter

Me
mo
ry
(n
um
be
r
of
 e
nt
ry
)

LC EC Our algorithm

0

5

10

15

20

25

30

35

40

0.5 0.75 1 1.25

Zipf parameter

Ti
me
 c
os
t(
ms
/K
)

LC EC Our algorithm

0

5

10

15

20

25

30

0.5 0.75 1 1.25

Zipf parameter

Ti
me
 c
os
t(
ms
/K
)

LC EC Our algorithm

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1551

© 2012 ACADEMY PUBLISHER

Figure 6 Precision of three algorithms on Zipf 1.25(ε=0.001)

of the IDs of the visited web pages as the experimental

data set and find out the most frequently visited pages.

Figure 7 and Figure 8 show the comparison of the

memory requirement of the three algorithms on different

data sets with ε=0.0005 and ε=0.001. From Figure 7 and

Figure 8, we can see that λ-Count requires less memory

than LC and EC.

Figure 7 Comparison of the memory requirement of the three

algorithms on World CUP-98 data(ε=0.0005)

 Figure 8 Comparison of the memory requirement of the three
algorithms on World CUP-98 data(ε=0.001)

Figure 9 and Figure 10 compare the average time by

the three algorithms for processing World CUP-98 data

with ε=0.0005 and ε=0.001. From the figures, we can see

that λ-Count is much faster than the other two algorithms.

Figure 9 Comparison of time cost of the three algorithms on World

CUP-98 data(ε=0.0005)

Our experimental results show that the recalls of the

three algorithms are all 100%. Furthermore, in Figure 11

we show precisions of λ-Count and other two algorithms

on different sizes of World Cup 98 data sets. From the

figure we can see that λ-Count has higher precision than

the other two algorithms.

Figure 10 Comparison of the time costs of the three algorithms on

World CUP-98 data(ε=0.001)

Figure 11 Precision of three algorithms on World CUP-98 data

(ε=0.001)

VI. CONCLUSIONS

In many modern applications, data arrives at a system

as a continuous stream of transactions. Traditional stream

mining algorithms were generally designed to handle all

data items in the streams with equal weights. To

emphasis the importance of the more recent data items,

we present an algorithm λ-Count for computing

frequency counts based on a fading model with a fading

factor . Our algorithm can detect ε-approximate frequent

items of a data stream using O(logλε) memory space and

the processing time for each data item is O(1). Moreover,

the computing time for answering each query is

O(log), and for answering query about the

frequentness of a given data item is O(1). Through

extensive experiments on both real and synthetic data, we

show that λ-Count outperforms other methods in terms of

accuracy, memory requirement, and processing speed.

ACKNOWLEDGMENT

This research was supported in part by the Chinese

National Natural Science Foundation under grant No.

61070047, 61070133 and 60773103, Natural Science

Foundation of Jiangsu Province under contract

BK21010134, and Natural Science Foundation of

Education Department of Jiangsu Province under contract

08KJB520012 and 09KJB20013.

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10

Length of stream(100K)

Me
mo
ry
(n
um
be
r
of
 e
nt
ry
)

LC Our algorithm EC

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9

Length of stream(100K)

Ti
me
 c
os
t(
ms
/K
)

LC Our algorithm EC

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10

Length of stream(100K)

Ti
me
 c
os
t(
ms
/K
)

LC Our algorithm EC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100

Length of stream(K)

Pr
ec
is
io
n

LC EC λ -Count

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

Length of stream(100K)

Me
mo
ry
(n
um
be
r
of
 e
nt
ry
)

LC Our algorithm EC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100

Length of the stream (K)

Pr
ec
is
io
n

LC EC λ -Count

1552 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

REFERENCES

[1] G. S. Manku and R. Motwani, Approximate frequency

counts over data streams. In Proc. of 28th Intl. Conf on

Very Large Data Bases, pages, 2002, pp.346-357

[2] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple

algorithm for finding frequent elements in streams and

bags. ACM Transactions on Database Systems,

vol.28,2003,pp.51-55

[3] E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro.

Frequency estimation of internet packet streams with

limited space. In Proceeding of the 10th Annual European

Symposium on Algorithms, 2002,pp.348-360

[4] J. Misra and D. Gries. Finding repeated elements. Science

of Computer Programming, vol.2, 1982,pp.143-152

[5] P. Flajolet, G.N.Martin, Probabilistic counting algorithms

for data base applications, Journal of Computer and

System Sciences, vol. 31,1985, pp. 182-209

[6] K. Y. Whang, B. T. Vander-Zanden, H.M. Taylor, A

linear-time probabilistic counting algorithm for a database

applications, ACM Trans. Database Systems, vol.15, 1990,

pp. 208-229

[7] L. Golab, D. DeHaan, A. Lopez-Ortiz, and E. D. Demaine.

Finding frequent items in sliding windows with

multinomially-distributed item frequencies. In Proceedings

of the 16th International Conference on Scientific and

Statistical Database Management, 2004, pp. 425-426

[8] P. B. Gibbons and Y. Matias. New sampling-based

summary statistics for improving approximate query

answer, Proc. SIGMOD, 1998, pp.331-341

[9] Hongyan Liu, Ying Liu, Jiawei Han, Jun He, Error-

adaptive and time-aware maintenance of frequency counts

over data streams, Proceeding of WAIN 2006, INCS 4016,

pp. 484-495

[10] C. Estan and G. Varghese. New directions in traffic

measurement and accounting: focusing on the elephants,

ignoring the mice. ACM Transactions on Computer

System, vol. 21, 2003,pp. 270-313

[11] Charikar M, Chen K, Farach-Colton M. Finding frequent

items in data streams. In: Widmayer P, Ruiz FT, Bueno

RM, Hennessy M, Eidenbenz S, Conejo R, eds. Proc. of

the Int’l Colloquium on Automata, Languages and

Programming. Malaga: Springer-Verlag, 2002. 693-703.

[12] Cormode G, Muthukrishnan S. What’s hot and what’s

not: Tracking most frequent items dynamically. In: Halevy

AY, Ives ZG, Doan AH, eds. Proc. of the 22nd ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems. San Diego: ACM Press, 2003. 296-306.

[13] Jin C, Qian W, Sha C, Yu JX, Zhou A. Dynamically

maintaining frequent items over a data stream. In:

Carbonell J, ed. Proc. of the 2003 ACM CIKM Int’l Conf.

on Information and Knowledge Management. New Orleans:

ACM Press, 2003, pp. 287-294.

[14] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani,

and J. D. Ullman. Computing iceberg queries efficiently. In

Proceedings of 24th International Conference on Very

Large Data Bases (VLDB 1998), New York, USA, Aug.

1998.

[15] Toon Calders, Nele Dexers, Bart Goethals, Mining

frequent itemsets in a stream, ACM

[16] Bill Lin, Wai-Shing Ho, Ben Kao, Chun-Kit Chui,

Adaptive frequency counting over bursty data streams,

Proceedings of the 2007 IEEE Symposium on

Computational Intelligence and data mining, 2007, pp.

516-523

[17] M. Greenwald and S. Khanna. Space-efficient online

computation of quantile summaries. In Proc. SIGMOD,

2001.

[18] Wei-Ping WANG, Jian-Zhong LI, Dong-Dong ZHANG ,

Long-Jiang GUO, An efficient algorithm for mining

approximate frequent item over data streams, Journal of

Software, vol.18, no.4, 2007, pp.884-892.

[19] A. Arasu and G. Manku. Approximate counts and quantiles

over sliding windows. In Proceedings of the 23rd ACM

Symposium on Principles of Database Systems, 2004, pp.

286-296

[20] L. Golab, D. DeHaan, E. D. Demaine, A. Lopez-Ortiz, and

J. I. Munro. Identifying frequent items in sliding windows

over on-line packet streams. In Proceedings of the Internet

Measurement Conference, 2003, pp.173-178

[21] L. Lee and H. Ting. A simpler and more efficient

deterministic scheme for finding frequent items over

sliding windows. Proceedings of the 23rd ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems (PODS 2006), Chicago, USA, June

2006.

[22] Linfeng Zhang, Yong Guan, Frequency estimation over

sliding windows, Proceedings of SIGKDD 2007,

[23] B. Babcock, S. Babu, M. Datar, R. Motwani, and J.

Widom. Models and issues in data stream systems. Proc.

PODS, 2002.

[24] S. Muthukrishnan. Data streams: Algorithms and

applications. Technical Report, Rutgers University,

Piscataway, USA, 2003.

[25] Hüseyin Akcan, Alex Astashyn, Hervé Brőnnimann ，

Deterministic algorithms for sampling count data， Data

& Knowledge Engineering，vol. 64, 2008, pp.405–418

[26] Nishad Manerikar, Themis Palpanas, Frequent items in

streaming data: An experimental evaluation of the state-of-

the-art, Data & Knowledge Engineering, Volume 68, Issue

4, April 2009, pp.415-430

[27] Bibudh Lahiri, Srikanta Tirthapura Identifying frequent

items in a network using gossip, Journal of Parallel and

Distributed Computing, Volume 70, Issue 12, December

2010, pp.1241-1253.

[28] 4Nuno Homem, Joao Paulo Carvalho, Finding top-

k elements in data streams, Information Sciences, Volume

180, Issue 24, 15 December 2010, pp. 4958-4974.

[29] Nuno Homem and Joao Paulo Carvalho, Finding top-

k elements in a time-sliding window, Evolving Systems,

2011, Volume 2, Number 1, Pages 51-70.

[30] Regant Y. S. Hung and Hingfung F. Ting,

An Ω(1/εlog(1/ε)) Space Lower Bound for Finding ε-

Approximate Quantiles in a Data Stream, Lecture

Notes in Computer Science, 2010, Volume

6213, Frontiers in Algorithmics, 2010, pp.89-100.

[31] C. Busch and S. Tirthapura. A deterministic algorithm for

summarizing asynchronous streams over sliding windows.

Proceedings of the 24th International Symposium on

Theoretical Aspects of Computer Science (STACS 2007),

Aachen, Germany, Feb. 2007.

[32] Zhang, Shan; Chen, Ling; Tu, Li, Frequent Items Mining

on Data Stream Based on Time Fading Factor, 2009.

AICI '09. International Conference on Artificial

Intelligence and Computational Intelligence, Volume:

4 ,2009 , pp. 336 - 340.

[33] http://ita.ee.lbl.gov/html/contrib/WorldCup.html.2004

[34] Hongyan Liu, Ying Lu, Jiawei Han, et al. Error-Adaptive

and Time-Aware Maintenance of Frequency Counts over

Data Streams. Advances in Web-Age Information

Management (WAIM 2006). 2006. pp. 484-495.

JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1553

© 2012 ACADEMY PUBLISHER

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYX-4V353XP-1&_user=10&_coverDate=04%2F30%2F2009&_alid=1644304071&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5630&_sort=r&_st=13&_docanchor=&view=c&_ct=8437&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=fdd98d5ddc6ff39b204a5a580333e635&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYX-4V353XP-1&_user=10&_coverDate=04%2F30%2F2009&_alid=1644304071&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5630&_sort=r&_st=13&_docanchor=&view=c&_ct=8437&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=fdd98d5ddc6ff39b204a5a580333e635&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYX-4V353XP-1&_user=10&_coverDate=04%2F30%2F2009&_alid=1644304071&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5630&_sort=r&_st=13&_docanchor=&view=c&_ct=8437&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=fdd98d5ddc6ff39b204a5a580333e635&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKJ-50R6KC0-1&_user=10&_coverDate=12%2F31%2F2010&_alid=1644304071&_rdoc=17&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6908&_sort=r&_st=13&_docanchor=&view=c&_ct=8437&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=731aba741327c243148dc86dbb7267a8&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKJ-50R6KC0-1&_user=10&_coverDate=12%2F31%2F2010&_alid=1644304071&_rdoc=17&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6908&_sort=r&_st=13&_docanchor=&view=c&_ct=8437&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=731aba741327c243148dc86dbb7267a8&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0C-50VKMF7-1&_user=10&_coverDate=12%2F15%2F2010&_alid=1644304071&_rdoc=22&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5643&_sort=r&_st=13&_docanchor=&view=c&_ct=8437&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8db81a5a50bf4663d1899f534ea44249&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0C-50VKMF7-1&_user=10&_coverDate=12%2F15%2F2010&_alid=1644304071&_rdoc=22&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5643&_sort=r&_st=13&_docanchor=&view=c&_ct=8437&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8db81a5a50bf4663d1899f534ea44249&searchtype=a
http://www.springerlink.com/content/?Author=Nuno+Homem
http://www.springerlink.com/content/?Author=Joao+Paulo+Carvalho
http://www.springerlink.com/content/j897007vph538667/
http://www.springerlink.com/content/j897007vph538667/
http://www.springerlink.com/content/1868-6478/
http://www.springerlink.com/content/1868-6478/2/1/
http://www.springerlink.com/content/?Author=Regant+Y.+S.+Hung
http://www.springerlink.com/content/?Author=Hingfung+F.+Ting
http://www.springerlink.com/content/xv359m2470856q41/
http://www.springerlink.com/content/xv359m2470856q41/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/978-3-642-14552-0/
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5376330&queryText%3Dfrequent+item+mining+in+data+stream%26openedRefinements%3D*%26ranges%3D2008_2010_Publication_Year%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5376330&queryText%3Dfrequent+item+mining+in+data+stream%26openedRefinements%3D*%26ranges%3D2008_2010_Publication_Year%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5375738
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5375738
http://ita.ee.lbl.gov/html/contrib/WorldCup.html.2004

[35] A. Manjhi et al., Finding (recently) frequent items in

distributed data streams, CMU-CS-04-121, Technical

report.

[36] G. Cormode and M. Hadjieleftheriou, Finding frequent

items in data streams, VLDB'08, 2009, pp. 1530-1541

[37] H. Liu, Y. Liu, J. Han, Methods for mining frequent items

in data streams: an overview. Knowledge Information

System, vol. 26, 2011. pp.1-30

Ling Chen Currently he is a professor of the Department of

Computer Science, Information Technology College, Yangzhou

University, Jiangsu Province, P.R. China. His research interests

include computational intelligence, evolutional optimization and

data mining. He is a member of IEEE CS society, ACM and

senior mumber of Chinese Computer Society. He has co-edited

6 books/proceedings, and published more than 200 research

papers including over 60 journal papers. He was awarded the

Government Special Allowance by the State Council, the title of

“National Excellent Teacher” by the Ministry of Education, the

title of “Young and Middle-aged experts with outstanding

contributions” by the Government of Jiangsu Province, the title

of “Famous University Teacher of Jiangsu Province” by the

Province Government and the Award of Progress in Science and

Technology by the Government of Anhui Province.

His recent research has been supported by National

Science Foundation of China, Science Foundation of Jiangsu

Province. He has organized several academic conferences and

workshops and has also served as a program committee member

for several major international conferences.

Yixin Chen He is an Associate Professor of Computer

Science at the Washington University in St Louis, USA. His

research interests include planning and scheduling,

computational optimization, data mining, and machine learning.

His work on planning has won First Prizes in optimal and

satisfying tracks in the International Planning Competitions

(2004 & 2006) and the Best Paper Award at the International

Conference on Tools for AI (2005), the Outstanding Paper

Award at the AAAI Conference on Artificial Intelligence

(AAAI-10). He has received an Early Career Principal

Investigator Award from the Department of Energy (2006) and

a Microsoft Research New Faculty Fellowship (2007). He is a

senior munber of IEEE. He serves on the Editorial Board of

Journal of Artificial Intelligence Research and IEEE

Transactions on Knowledge and Data Engineering. He received

a Ph.D. in Computing Science from University of Illinois at

Urbana-Champaign in 2005.

Li Tu She received a Ph.D. in Computing Science from

Nanjing University of Aeronautics and Astronautics in 2009.

Currently she is a lecturer in Department of Computer Science,

Jiangyin Polytechnic College, Jiangsu, P.R.China. Her research

interests include data mining and artificial intelligence. She has

published more than 30 research papers including over 10

journal papers.

1554 JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

