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Abstract— We investigate the problem of finding the 

frequent items in a continuous data stream. We present an 

algorithm called λ-Count for computing frequency counts 

over a user specified threshold on a data stream. To 

emphasize the importance of the more recent data items, a 

fading factor  is used. Our algorithm can detect ε-

approximate frequent items of a data stream using O(logλε) 

memory space and O(1) time to process each data record. 

The computation time for answering each query is 

O( lo g   ), and for answering a query about the 

frequentness of a given data item is O(1). Experimental 

study shows that λ-Count outperforms other methods in 

terms of accuracy, memory requirement, and processing 

speed. 

 

Index Terms— Data mining, data stream, frequent items 

 

I.  INTRODUCTION 

In recent years, researchers have paid more attention to 

mining stream data. Mining frequent item sets from 

stream data is an important task in stream data analysis. 

Frequency is a fundamental characteristic in many data 

mining tasks such as association rule mining and iceberg 

queries. It has applications in many areas such as sensor 

data mining, business decision support, analysis of web 

query logs, direct marketing, network measurement, and 

internet traffic analysis. Correspondingly, the input 

stream data could be stock tickers, bandwidth statistics 

for billing purposes, network traffic measurements, web-

server click streams, and data feeds from sensor networks. 

Traditional mining algorithms assume a finite dataset and 

multiple scans on the data. For the stream data 

applications, the volume of data is usually too large to be 

stored in memory or to be scanned for more than once. 

Furthermore, for data streams, there can only be 

sequential but not random access. Therefore, traditional 

frequent item mining algorithms are not applicable to 

stream data.  

The problem is difficult because of the high throughput 

of the data streams , possibly in the order of gigabytes per 

second. Any feasible algorithm for detecting frequent 

data item must perform data processing and query fast 

enough so as to match the speed of arriving data in the 

stream. In addition, the algorithm can use only limited 

memory space and store only the sketch or synopsis of 

the data items in the stream.  

Several solutions for finding frequent items in stream 

data have been proposed. Several   algorithms use 

random sampling [1,5,6,7,8,9,10,11,12,13,14] to estimate 

the frequencies of the data items. For example, the Sticky 

Sampling [1] algorithm is a sampling based algorithm for 

computing an ε -deficient synopsis over a data stream. It 

is a probabilistic one-pass algorithm that provides an 

accuracy guarantee on the set of frequent data items and 

their frequencies reported. The second class of algorithms 

are deterministic algorithms [2,3,4,15,16,17,18,25]. The 

MG algorithm by Misra and Gries [4] is a well-known 

deterministic algorithm to detect frequent stream data. 

In many applications, recent data in the stream is more 

meaningful. For instance, in an athlete ranking system, 

more recent records typically should carry more weight. 

One way to handle such problem is to use a sliding 

window model [19-22,29,31]. In this model, only the 

most recent data items in a time period of a fixed length 

are stored and processed, and only the frequent data items 

in this period are detected. The advantage of this method 

is that it can get rid of the stale data and only consider the 

fresh data, which are meaningful in many cases. To 

emphasize the importance of the recent data, there is 

another model for frequency measures in data stream 

which is called time fading model [32]. In this model, 

data items in the entire stream is taken into account to 

compute the frequency of each data item, but more recent 

data items contribute more to the frequency than the older 

ones. This is achieved by introducing a fading factor 

0<λ<1. A data item that is n time points in the past is 

weighted λ
n
. Thus, the weight is exponentially decreasing. 
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In general, the closer to 1 the fading factor λ is, the more 

important the history is taken into account. There are two 

advantages of the fading model over the sliding window 

model. One is that in the fading model, frequency takes 

into account the old data items in the history, while the 

sliding window model only observes within a limited 

time window and entirely ignores all the data items 

outside the window. This is undesirable in many real 

applications. The second is that in the fading model, 

when more data arrive continuously, the frequency 

changes smoothly without a sudden jump which may 

occur in the sliding window model.         

    In this paper, we propose an efficient frequency 

estimation algorithm based on the fading model which 

needs as little space and running time as possible. We 

propose an algorithm called λ-Count which can detect ε-

approximate frequent items in data stream. The algorithm 

requires O(logλε) memory space and O(1) time for 

processing one input data item. Moreover, the 

computation time for answering each query is O( lo g   ), 

and for answering query about the frequentness of a given 

data item is O(1). Through extensive experiments, we 

show that λ-Count outperforms other methods such as LC 

and EC in terms of the accuracy, memory requirement, 

and processing speed. 

The rest of the paper is organized as follows. Section 2 

reviews related work. Section 3 formally defines the 

problem and describes a data fading model. Section 4 

describes the framework of the λ-Count algorithm and 

analyzes its space and time complexity. Section 5 reports 

our experimental results and Section 6 gives conclusions. 

II.  RELATED WORK 

Problems related to frequency estimate have been 

actively studied. Algorithms for identifying frequent 

items and other statistics in the entire data stream have 

been proposed.   

    Lossy Counting [1] was among the first algorithms 

for finding frequent items from a data stream. Lossy 

Counting is a one-pass algorithm that provides an 

accuracy guarantee on the set of frequent data items and 

their frequencies reported. Given a user-specified support 

threshold S, and an error threshold ε, Lossy Counting 

guarantees that: 1) All items whose true frequency 

exceeds SN are detected, where N is the total number of 

data items processed. Namely, there are no false 

negatives. 2) No item whose true frequency is less than 

(S-ε)N is output. 3) The estimated frequency of any item 

is less than its true frequency by at most εN. Nuno 

Homem et al. [28] presented an algorithm for identifying 

the most k frequent elements by merging the commonly 

used counter-based and sketch-based techniques. The 

algorithm also provides guarantees on the error estimate, 

order of elements and the stochastic bounds on the error 

and expected error estimates. Karp et al. [2], and 

Demaine et al. [3] applied a deterministic MG algorithm 

[4] to detect frequent stream data. They reduced the 

processing time of MG algorithm to O(1) by managing all 

counters in a hash table. The algorithm can easily be 

adapted to find ε-approximate frequent items in the entire 

data stream without making any assumption on the 

distribution of the item frequencies. This algorithm needs 

1/ε counters for the most frequent data items in the stream. 

Processing the arrival data items entails incrementing or 

decrementing some counters.  

Many algorithms for frequent item counting use 

random sampling. They make assumptions on the 

distribution of the item frequencies and the quality of 

their results is guaranteed probabilistically. Flajolet and 

Martin [5] and Whang et al. [6] proposed probabilistic 

algorithms to estimate the number of distinct items in a 

large collection of data in a single pass. Golab et al. [7] 

gave an algorithm for the case when the item frequencies 

are multinomially-distributed. Gibbons and Matias [8] 

presented sampling algorithms to recognize top-k queries. 

H. Liu et al. [9] presented an error-adaptive and time-

aware maintenance algorithm for frequency counts over 

data streams. G.S. Manku et al. [1] advanced a sampling 

based algorithm called sticky sampling for computing an 

ε-deficient synopsis over a data stream of singleton items. 

It scans the data in the stream and randomly samples the 

data items based on three user-specified parameters: 

support S, error bound ε, and probability of failure δ.   

Many algorithms use hashing technique to map the 

data items in a stream to a hash table which can be stored 

in the main memory. Estan and Varghese [10] presented a 

sampling algorithm and a hash-based algorithm for 

frequent item detecting.  Based on the hashing technique, 

Charikar et al. presented an algorithm named Count 

Sketch [11], which requires O(k/ε
2
logn) memory space 

and O(k/ε
2
logn) computation time to process one data 

item. The algorithm can output the items with frequency 

larger than 1/(k+1) under the probability of 1-δ. Cormod 

et al. presented an algorithm called groupTest [12] which 

requires O(k(logk+log(1/ δ))logM) memory and O(logk) 

time for each item. Jin et al. [13] advanced an algorithm 

hCount which uses O(ε
-1

log(-M/logδ)) memory and 

O(log(-M/logδ)) time for each data element. The 

algorithm can detect the ε-approximate results under the 

probability of 1-δ.  Fang et al. [14] also advanced several 

algorithms based on hashing to compute iceberg queries, 

but each requires at least two passes over the data stream. 

In addition to randomized algorithms, many 

deterministic algorithms for detecting frequent item in 

data stream are also reported. Calders et al. [15] proposed 

an algorithm for mining frequent items in a data stream. 

They defined a new frequency measure such that the 

current frequency of a data item is its maximal frequency 

over all possible windows in the stream from any time 

point in the past until the current time. B. Lin [16] et al. 

proposed an adaptive frequency counting algorithm to 

handle bursty data in the stream. They used a feedback 

mechanism that dynamically adjusts mining speed to 

cope with the changing arrival rate. Greenwald and 

Khanna [17] considered the problem of ε-approximate 

quantitative summaries. Wang [18] et al. proposed an 

algorithm to find ε-approximate frequent items in a data 

stream, its space complexity is O(ε
-1

)and the processing 

time for each item is O(1) in average. Moreover, the 
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frequency error bound of the results returned by the 
proposed algorithm is (1−S+ε)εN.  

In many applications, recent data in the stream is more 
meaningful. The algorithms mentioned above does not 
discount the effect of old data, all data items in the whole 
history of the data stream are given equal weights. This is 
undesirable in solving many application problems. One 
way to handle such problems is to use a sliding window 
model. Recently several data mining algorithms over 
sliding windows are proposed. Arasu and Manku [19] 
gave the first deterministic algorithm for finding ε-
approximate frequent items over a sliding window. It 
requires O((1/ε)log(1/ε)) time for each query/update and 
uses O((1/ε)log2(1/ε)) space. Their algorithm divides the 
sliding window into several possibly overlapping sub-
windows with different sizes. The algorithm applies the 
MG algorithm to each of these sub-windows to find the 
frequent items in these sub-windows. These sub-windows 
are organized into levels so that whenever there is a query 
on the frequent items, one can traverse these sub-
windows efficiently to identify the frequent data items. In 
[30] Regant Y. S. Hung et al. studied the space 
complexity of the ε-approximate quantizes problem, and 
proved that any comparison-based algorithm for finding 
ε-approximate quantizes in a data stream needs 
an  Ω((1/ε)log(1/ε))  space. Golab et al. [20] gave some 
heuristic algorithms for identifying frequent items over a 
sliding window. Lee and Ting [21] proposed an 
approximate frequent stream data mining algorithm 
which requires O(1/ε) space. Their algorithm needs 
O(1/ε) processing time for update and query. L. Zhang 
and Y. Guan [22] proposed a stream data frequency 
estimation algorithm over sliding windows. Their 
algorithm requires O(1/ε) memory space and O(1) time 
for query/update. Other recent works on mining frequent 
items in data stream have been surveyed in 
[23,24,26,27,37]. The major algorithms for mining 
approximate frequent items in data stream are listed in 
Table 1.  

III.  CONCEPTS AND DEFINITIONS 

In this section we describe a data fading model by 
using a fading factor λ to discount the frequencies of the 
old data in a stream. We also give a formal definition of 
our mining problem. In this paper, we use a standard 
stream model with discrete time steps labeled as 0, 1, 2, 
3…, and only one data record a(t) ∈ X arrives at each 
time step, where X={x1, x2, …, xm} is a domain 
containing discrete values.     

To emphasize the importance of recent data, we use a 
fading factor )1,0(∈λ  in calculating the data items’ support 
counts. For each data item x, its support count decreases 
as x ages. We call such modified support counts the 
density of the data item. In each time step, the density of 
a data item will be reduced by the fading factor λ.      

Definition 1  (Density of a data item) The density 
of a data item x ∈ X at time t is defined as  

0 0
( , )

( , 1) ( , ) 1, 2,3,...
t

D x t
D x t t x tλ δ

=⎧
= ⎨ − + =⎩

                  (1)             

Here, 1 ( )
( , )

0 o therw ise
a t x

x tδ
=⎧

= ⎨
⎩

, where a(t) is the 

data record received at time t. 
The density of a data item is constantly changing. 

However, we found that it is unnecessary to update the 
density values of all data items at every time step. 
Instead, it is possible to update the density of a data item 
only when this item is received from the data stream. For 
each item, the time when it was last received should be 
recorded. Suppose a new data item x is received at time 
tn, and suppose the last time x was received before is ts (tn 
> ts), then the density of x can be updated as follows: 

 
( , ) ( , ) +1n s

n

t t
sD x t D x t λ −=                      (2) 

                
Lemma 1   Let X(t) be the set of all the data items that 

are received at least once from time 0 to t, we have:  

1)   
( )

1( , )
1x X t

D x t
λ∈

≤
−∑  ,    for any t=1, 2, …. . 

 2)   
( )

1lim ( , )
1t x X t

D x t
λ→∞

∈

=
−∑  

   Proof:  For a given time t, 
( )

( , )
x X t

D x t
∈
∑  is the sum 

of density of the t+1 data records that arrive at time steps 
0, 1, … , t. For each time step t’, 0≤t’≤t, the data record 
contributes λt-t’ to the total density. Therefore, we have  

( )

( , )
x X t

D x t
∈
∑ = 1

'

' 0

1 1
1 1

tt
t t

t

λλ
λ λ

+
−

=

−
= ≤

− −∑  .  

Also, it is clear that: 
  

1

( )

1 1lim ( , ) lim
1 1

t

t tx X t
D x t λ

λ λ

+

→∞ →∞
∈

−
= =

− −∑ .               Q.E.D. 

                                   
Since a data stream may consist of potentially huge 

volume of data items, the number of the data items in the 
stream could become very large, and the count of each 
item could overflow. From Lemma 1, we can see when a 
fading factor is used, the summation of the densities of 
the data items is independent of the number of the data 
items in the stream, and the density of each data item is 
within the range of [0, 1/(1 )λ− ]and never overflows.    

Like most previous work, our λ-Count algorithm takes 
two user-specified parameters, a support threshold 
S∈(0,1), and an error parameter ε∈(0,1)such that ε<S.  

Definition 2 (Frequent data item) Let S be a user 
specified threshold, at time t, a data item x is a frequent 
item if its density D(x,t)satisfies D(x,t)

1
S
λ

≥
−

.  

Given ε as a user specified relative error bound and 
ε<S, we are asked to maintain some data items with 
density at least 

1
S ε

λ
−
−

, which are called ε-approximate 

frequent items.  
Our algorithm outputs a list of ε-approximate frequent 

items along with their estimated densities. Similar to 
Lossy Counting, the answers produced by our algorithm 
have the following guarantees: 
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1. All items whose densities exceed 
1

S


will be 

found, which means there are no false negatives. 

    2. No item whose density is less than 
1

S 






 will be 

found.   

3. The estimated density for each item is no more 

than its actual density. The difference between the 

estimated density and the actual density is no more 

than
1




.   

IV. THE  λ-COUNT ALGORITHM 

We now present the proposed λ-Count algorithm. We 

first describe the algorithm and prove its optimality. Then, 

we discuss some key implementation details and analyze 

the complexity of the algorithm. 

A.  Description of the algorithm 

In our λ-Count algorithm, for each data item, it suffices 

to store a characteristic vector which consists of the 

necessary information of the data item. The λ-Count 

algorithm processes the incoming data from stream and 

updates a summary structure called item_list which is a 

list of frequent data item candidates. Each entry of 

item_list is a characteristic vector of a data item x: 

C(x)=[x, De(x, ts), ts], where ts is the last time when x was 

received, and De(x, ts) is the estimated density of the data 

item x at time ts.  

The item_list is organized in a queue structure and has 

a size limitation of  L= log  . These entries in item_list 

are arranged in the descending order of their ts values. 

The entry with the least ts value is located at the head of 

the queue while the one with largest ts value is at the tail 

of the queue. Whenever the size of item_list goes beyond 

L, the entry at the head of item_list should be deleted. 

Whenever a new entry is going to be inserted to item_list, 

it should be placed at the tail of the queue.   

When a new data record x is received from the stream, 

the algorithm creates or updates its characteristic vector 

in item_list. If the characteristic vector of x already exits 

in item_list, the algorithm modifies its density and ts 

value before moving it to the tail of the queue; otherwise, 

the algorithm creates a new entry for x and inserts it to 

the tail of the queue.      

The framework of the algorithm is given in Algorithm 

1. 

Algorithm 1: λ-Count 

 input:   str:  the data stream;  

         λ：  the fading factor; 

         ε:   the density error bound; 

         S:   the density threshold; 

output: item_list: list of frequent data item candidates;    

 begin     

 1.  set t=0; L= log  ; 

 2.  while not terminate do  

 3.     receive a data item x from the data stream str;  

 4.     if x is not in item_list  then  

 5.         create a new entry [x, 1, t]; 

 6.          If |item_list| L  (item_list  is full) then 

7.               delete the entry at the head of item_list; 

8.          endif 

  9.         insert the new entry [x, 1, t] to the tail of  

item_list;  

 10.     else   

 11.         update the corresponding entry [x, De(x, ts), ts]  

TABLE I.  ALGORITHMS FOR MINING APPROXIMATE FREQUENT ITEMS OF DATA STREAM 

Algorithm 
Frequency 
or density 

bound 

Randomize or 
deterministic 

Space requirement 
Time for each 
item 

Emphasize the 
recent data 

Refer-
ence 

MG εN D O(ε-1) O(ε-1) No [4] 

Lossy 
counting 

εN D O(ε-1log εN) O(log εN) No [1] 

Sticky 
sampling 

εN R O(ε-1log s-1δ-1) O(1) No [1] 

Count sketch εN R O(k/ε2logn) O(k/ε2logn) No [11] 

Group test εN R 
O(k(logk+log(1/ 
δ))logM 

O(logk) No [12] 

hCount εN R O(ε-1log(-M/logδ)) O(log(-M/logδ)) No [13] 

EC (1−s+ε )εN D O(ε-1) O(1) No [18] 

By Arasu & 

Manku 
εN D 

1 1
logO

 

 
 
   

21 1
logO

 

 
 
   

Yes (Sliding 

window) 
[19] 

By Lee & 
Ting 

εN D O(ε-1) O(ε-1) 
Yes (Sliding 
window) 

[21] 

Snapshot- 
advanced 

εN D O(ε-1) O(1) 
Yes (Sliding 
window) 

[22] 

λCount ε/(1- λ) D O( log  ) O(1) 
Yes (Fading 
factor) 

this 
paper 
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to [x, ( , ) 1st t

e sD x t  
 , t]; 

 12.        move the entry[x, ( , ) 1st t

e sD x t  
 , t] to the tail 

 of item_list; 

 13.    end if;  

 14.    t=t+1 

 15.  end while  

 end  

 

Since the density of a data item may be deleted 

previously, the estimated density recorded in the entry in 

item_list may be less than the actual density of the data 

item. We will show that the error is within a bound ε/(1-

λ). If a data item x is not listed in item_list, it is possible 

that x has been deleted from item_list several times, 

causing its historical density to be discarded. We will 

show that if x is not listed in item_list, then it cannot be a 

frequent item even if it has never been deleted from 

item_list. In other words, all the frequent items will be 

kept in item_list and there is no false negative. 

 

Theorem 1  Suppose an entry C(x)=[x, De(x, ts), ts] of 

data item x is deleted from item_list at time t, then its 

actual density D(x,t) at time t satisfies D (x, t) 

/ (1 )  
.      

  Proof:   Suppose ever since the beginning of the data 

stream, the item x has previously been deleted at time 

steps t1, t2,…,tp, and now is deleted at time t. We denote t 

as tp+1. The density of the ith deletion is acquired during 

the period of (
l

it ,
r

it ), where
l

it and
r

it are the time steps 

when x is first and last received in this period, 

respectively. It is obvious that 
l

it 
r

it < ti, for 

i=1,2,…p+1, where, p+1t t  and p+1

r

st t . Then the 

characteristic vector of x at time ti is C(x)=[x, De(x,
r

it ), 

r

it ].  Since we have ( , ) ( , )
r

i it tr

e i e iD x t D x t  
 , the density 

of x at time t= tp+1 should be 
1

1

( , ) ( , )
r

i i i

p
t t t tr

e i

i

D x t D x t  


 




1

2

1

(1 ... )
r l r
i i i

p
t t t t

i

   


 



      

        
1

1

r
i

l
i

tp
t k

i k t






 


1 1 1

1

1
1

r r l
p p

r
p

l

t t t
t tt k k

kk t

  
 








     

1 1

1 1

1
1

1

r l
p

r
p p

t t
t t 






 

 
 




.             (3) 

 

When x is deleted from item_list, it must locate at the 

head of item_list and has the least ts value in item_list. 

Since the length of item_list is L= log  , and every entry 

in item_list has a different ts value, we know 

1 1

r

p pt t  =t-ts>L. Thus, we have  

1 1
r

p pt t
  


log

.st t L     
    

Therefore from (3) we have, 

 

    D(x,t) 
1 1

1 1

1
1

1

r l
p

r
p p

t t
t t 






 

 
 




1 1
1

1

r l
pt t






 



 1







. 

                                                                  Q.E.D. 

From Theorem 1 we know that if a data item does not 

appear in item_list at time t, then its actual density must 

satisfy D(x,t)< 
1




.  

Theorem 2.  At time t, for any entry C(x)=[x, De(x, ts), 

ts] in item_list , we have  

          a)     De(x, ts)  D(x, ts)   De(x, ts)+
1




 ,    (4) 

   and   b)     De(x, t)  D(x, t)   De(x, t)+
1

st t








 .    (5) 

   Here, D(x,t) is the actual density of data item x at 

time t.  

  

   Proof.  a)  If x has not been previously deleted, De(x, 

ts)= D(x, ts). Otherwise, since x has been previously 

deleted from item_list, we have De(x, ts)  D(x, ts). From 

Theorem 1, we infer that the actual density of x when it is 

last deleted is at most
1




.  Therefore, we have 

D(x, ts)   De(x, ts) +
1




. 

    b)  Since De(x, t) = De(x, ts)
st t 

, D(x, t)= D(x, ts) 

st t 

 and De(x, ts)  D(x, ts), it is obvous that De(x, t)  

D(x, t).   

   Since  D(x, t)= D(x, ts) 
st t 

, from (4) we have  

D(x, t)   [ De(x, ts)+
1




] st t 

= De(x, 

ts)
st t 
+

1





st t 
= De(x, t) +

1





st t 
.        

                                                                        Q.E.D.     
    From Theorem 2, we can see that De(x, t) is always 

less than D(x,t). The error of using De(x, t) to 

approximate D(x, t) is less than 
1




st t  . 

  When item_list is full, it has L entries, the errors of 

which are less than 

1




 , 

2

1




 , …, 1

L


 , 

respectively. The average error is less than 
11

.
(1 ) 1

L

L

 

 



 

=
2

(1 )
<

(1 ) (1- )L L

  

 




.                                      

   Based on the Theorems above, the algorithm for 

answering a query at time t is as follows.  

Algorithm 2   λ-Count-Query(t,S)  

input:   item_list=[ C(1), C(2),…,C(L)]: list of frequent  

data item candidates; 

              S:  the density threshold;  

              λ：the fading factor; 

              ε:  the density error bound; 

output:  F:  the set of ε-frequent data items;  

begin  
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 H(x2) 

 H(xL) 

 H(x1) 

1. F =Ф ; 

2. for i=1 to L do  

3.     get C(i)=[x, De(x,ts), ts ] and compute  

De(x, t) = De(x,ts)
st t 

; 

4.      if  De(x, t)> 1

S 





  then F=F {x} endif; 

5.  end for 

6.  output F; 

end  

 

The following Theorem shows that algorithm λ-Count-

Query can correctly detect ε-approximate frequent items. 

 

 Theorem 3. The λ-Count-Query algorithm has the 

following guarantees: 

    a) All items whose densities exceed 
1

S


will be 

output; there are no false negatives. 

    b) No item whose density is less than 
1

S 






 will be 

output.   

c) The estimated density for each item is no more than 

the actual density. The error of the estimated density is 

less than
1




.   

 Proof:  

a)   From Theorem 2 we know  

De(x, t)  De(x, t)  D(x, t) -
1

st t







. 

      If density of a data item x satisfies D(x, t)>
1

S


, 

then  De(x, t)  
1

S


- 

1
st t







>

1

S 






. 

     According to the λ-Count-Query algorithm, x will 

be output.  

b)  If an item x’s density is less than 
1

S 






, then 

from Theorem 2 we know   De(x, t)  D(x, t) < 
1

S 






. 

       Therefore, x will not be output by the λ-Count-

Query algorithm. 

c)  From Theorem 2, it is obvious that De(x, t)  

D(x, t), and    D(x, t) - De(x, t)
1

t ts






<

1




. 

Q.E.D. 

 
For a given data item x, the algorithm for answering 

the query of whether x is a frequent item is as follows. 

 

Algorithm 3   λ-Count-item-Query(x,t,S)  

input:  item_list=[ C(1), C(2),…, C(L)]: list of frequent  

data item candidates; 

              S:  the density threshold;  

              λ：the fading factor; 

              ε:  the density error bound; 

output:  f:  a flag indicating whether x is a frequent  

item;  

begin 

      1  f=false;   

      2.  if x is in the item_list then 

      3.     get [x, De(x,ts), ts ] and compute 

De(x, t) = De(x,ts)
st t 
; 

       4.     if  De(x, t)> 
1

S 






 then f=true endif ; 

       5.  end if 

       6.  output f ; 

  end  

 

B.  Data structure and complexity 

In every time step, the λ-Count algorithm processes the 

income data and updates a summery structure item_list. 

Each entry of item_list is a vector [x, De(x, ts), ts, psucc, 

ppre], where De(x, ts) is the estimated density of the data 

item x at time ts, ts is the last time when item x was 

received, psucc and ppre are pointers to its successor and 

predecessor respectively. The maximal length of item_list 

is  L= log  . To accelerate the process of updating 

item_list, it is organized as a hash table using a hash 

function H. For a data item x, its address is H(x). Entries 

in item_list are arranged in a queue structure in the 

descending order of their ts values. The queue is 

constructed as a doubly linked list, as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure  1 The data structure of item_list. 

 

 Now we examine the operations and analyze the time 

complexity of the algorithm λ-Count.  

Delete an entry (Line 7 of Algorithm 1). Since we 

always delete the entry at the head of the queue, the time 

cost is O(1). 

Insert an entry (Line 9). Since we always insert the 

entry to the tail of the queue, the time cost is O(1). 

Update an entry when receiving a new data item (Line 

11). Since we use the hash function to get the address of 

an item, the time cost is O(1). 

Move an entry to the tail of the queue (Line 12). Given 

the doubly linked list structure of item_list, this operation 

can be done by first saving the vector of the entry to a 

buffer, deleting the entry from the queue, and then 

inserting the vector in the buffer to the tail of item_list. 

 x1 

 tsL De(xL, tsL)  xL 

De(x1, ts1)  ts1 

De(x2, ts2)  x2  ts2 

 Ф  

 psucc 

 
 ppre 

 

 psucc 

 Ф   ppre 

 

Queue head 

Queue tail 

 

 

Hash 

Function 

H(x) 

 x1 

 x2 

 xL 
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Since item_list is a doubly linked queue, each of those 

operations costs O(1) time.  

From the above, we conclude that λ-Count processes 

one incoming data record in O(1) time. Since the 

maximum size of item_list is  L= log  , algorithm λ-

Count requires no more thanO( log  ) memory space. 

Moreover, from the Algorithm 2 and Algorithm 3 we can 

see that the computation time for answering each query 

using λ-Count-Query is O( log  ), and the time for 

answering a query about the frequentness of a given data 

item is O(1) using algorithm λ-Count-item-Query.  

V.  EXPERIMENTAL RESULTS 

We evaluated our algorithm and compared its 

performance against the revised versions of Lossy 

Counting (LC) [1] and EC [21] on the time fading model. 

We focus on the algorithms' computing time, memory 

requirement, recall and precision in handling data streams.  

    All experiments were run on a PC with 1.0GHz 

Pentium III CPU running Windows 2000. In our 

experiments, we set S=0.01 and λ=0.99. 

A. Synthetic data sets 

We generate four datasets based on Zipf distributions, 

with parameters 0.5, 0.75, 1, 1.25, respectively. Each 

dataset contains one million data records. We compare 

LC, EC and λ-Count with two error bound settings, 

ε=0.0005 and ε=0.001. 

Figure 2 and Figure 3 compare the memory 

requirements of the three algorithms. We can see that λ-

Count requires the least memory for all the different 

settings of Zipf parameter and ε. In fact, the memory size 

of λ-Count is always around logλε, while the sampling 

sizes of EC and LC are at least 1/ε and 1
O log N



 
 
 

, 

respectively. Since N is the number of data items received 

from the stream, LC may require huge memory space 

with the lapse of time.  

Figure 4 and Figure 5 compare the average time for 

processing 1M data records by the three algorithms. We 

see that λ-Count is the fastest. In fact, λ-Count requires 

only O(1) time for processing one data item, while LC 

has a processing time of O(1/ε). For EC, although 

theoretically it has a processing time of O(1), it has a 

larger hidden constant than λ-Count. This is because, to 

delete a data in the list, λ-Count only needs to delete the 

head of the queue, while EC needs to do multiple 

decrement operations. Therefore, λ-Count is much faster 

than the other two algorithms. 

We also test and compare the quality of the results by 

the three algorithms in terms of recall and precision 

defined as follows.    

recall=
number of the truly frequent items reported by the algorithm

number of all the truly frequent items
 

precision=
number of the truly frequent items reported by the algorithm

number of the frequent items reported by the algorithm
  

Since all the algorithms have no false negatives, all the 

frequent items can be detected, their recalls are all 100% . 

Figure 6 shows the precision of the three algorithms on 

synthetic data with Zipf parameter 1.25. From the figure 

we can see that all the algorithms can achieve high 

precision. But precisions of algorithms LC and EC 

decrease when the length of the stream increases, while λ-

Count obtains high precision close to 100% regardless of 

the length of the data stream. 

 

 

 

 

 

 

 

 

 
 

  Figure 2 Comparison of the memory requirement of the three 
algorithms on datasets with different distributions (1M, ε=0.0005). 

 
 

 

 
 

 
 

 

 
 

 
 

Figure 3  Comparison of the memory requirement of the three 

algorithms on datasets with different distributions (1M, ε=0.001). 
 

 
 

 

 
 

 
 

 

 
 

 
 

Figure 4  Comparison of time cost of the three algorithms on different 

distribution data (1M, ε=0.0005) 
 

 
 

 

 
 

 
 

 

 
 

 
 

Figure 5   Comparison of time cost of the three algorithms on different 

distribution data (1M,  ε=0.001) 

B.  Real datasets 

In this section, we adopt the log file data of visitors to the 

1998 Soccer World Cup official website [33]. This log 

file records all of the visit requests for the Word Cup 

official website during 1998 World Cup. Each request 

consists of 8 attributes including visit time, IP address, 

the ID of the visited web page and so on. We pick up all  
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Figure  6 Precision of three algorithms on Zipf 1.25( ε=0.001) 

 

of the IDs of the visited web pages as the experimental 

data set and find out the most frequently visited pages. 

Figure 7 and Figure 8 show the comparison of the 

memory requirement of the three algorithms on different 

data sets with ε=0.0005 and ε=0.001. From Figure 7 and 

Figure 8, we can see that λ-Count requires less memory 

than LC and EC.  

 

 

 

 

 

 

 

 

 

 
Figure 7  Comparison of the memory requirement of the three 

algorithms on World CUP-98 data(ε=0.0005)  
 

 

 

 
 
 

 
 

 

 
 

 
 

 

 Figure 8  Comparison of the memory requirement of the three 
algorithms on World CUP-98 data(ε=0.001) 

 

Figure 9 and Figure 10 compare the average time by 

the three algorithms for processing World CUP-98 data 

with ε=0.0005 and ε=0.001. From the figures, we can see 

that λ-Count is much faster than the other two algorithms.  
 

 
 

 

 
 

 
 

 

 
 

 
Figure 9  Comparison of time cost of the three algorithms on World 

CUP-98 data(ε=0.0005) 

Our experimental results show that the recalls of the 

three algorithms are all 100%.  Furthermore, in Figure 11 

we show precisions of λ-Count and other two algorithms 

on different sizes of World Cup 98 data sets. From the 

figure we can see that λ-Count has  higher precision than 

the other two algorithms.   
 

 
 

 

 
 

 
 

 

 
 

 

 

Figure 10  Comparison of the time costs of the three algorithms on 

World CUP-98 data(ε=0.001) 
 

 

 

 

 

 

 

 

 

 
Figure 11  Precision of three algorithms on World CUP-98 data 

( ε=0.001) 

VI. CONCLUSIONS 

In many modern applications, data arrives at a system 

as a continuous stream of transactions. Traditional stream 

mining algorithms were generally designed to handle all 

data items in the streams with equal weights. To 

emphasis the importance of the more recent data items, 

we present an algorithm λ-Count for computing 

frequency counts based on a fading model with a fading 

factor . Our algorithm can detect ε-approximate frequent 

items of a data stream using O(logλε) memory space and 

the processing time for each data item is O(1). Moreover, 

the computing time for answering each query is 

O( log  ), and for answering query about the 

frequentness of a given data item is O(1). Through 

extensive experiments on both real and synthetic data, we 

show that λ-Count outperforms other methods in terms of 

accuracy, memory requirement, and processing speed. 
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