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Abstract—A graph G is said to be F-residual if for every 
point u in G, the graph obtained by removing the closed 
neighborhood of u from G is isomorphic to F. Similarly, if 
the remove of m consecutive closed neighborhoods yields 
Kn, then G is called m-Kn-residual graph. Erdös determine 
the minimum order of the m-Kn-residual graph for all m 
and n, the minimum order of the connected Kn-residual 
graph is found and all the extremal graphs are specified. 
Jiangdong Liao and Shihui Yang determine the minimum 
order of the connected 2-Kn-residual graph is found and all 
the extremal graphs are specified expected for n=3, and in 
this paper, we prove that the minimum order of the 
connected 3-Kn-residual graph is found and all the extremal 
graphs are specified expected for n=5, 7, 9,10, and we 
revised Erdös conjecture.  

 
Index Terms—Residual-graph, Closed neighborhood, 
Adjacent, Cartesian product 

 

I.   INTRODUCTION 

A graph G is said to be F-residual if for every point u 
in G, the graph obtained by removing the closed 
neighborhood of u from G is isomorphic to F. If G is a 
graph such that the deletion from G of the points in each 
closed neighborhood results in the complete graph Kn-
residual graph. We inductively define multiply-Kn-
residual graph by saying that G is m-F-residual if the 
removal of the closed neighborhood of any point of G 
result in an (m−1)-F-residual graph, where of course a 1-
F-residual graph is simply an F-residual graph. 

It is natural to ask what is the minimum number of 
points that an m-Kn-residual graph must contain. We 
easily prove that this number is (m+1)n and that the only 
m-Kn-residual graph with this number of point is 
(m+1)Kn. In [2] they show that a connected Kn-residual 
graph must have at least 2n+2 points if n ≠ 2. 
Furthermore, the cartesian product G ≅  Kn+1× K2 is the 

only such graph with 2n+2 points for n ≠ 2; 3; 4. They 
complete the result by determining all connected Kn-
residual graph of minimal order for n = 2, 3, 4. 

The concept of residual graphs was firrst in-duced[1], 
by Paul. Erdös, Frank. Harary and Maria.Klawe.They 
studied residually complete graphs, determined the 
minimum order of m-Kn-residual graphs are (m+1)n, and 
(m+1)Kn is the corresponding extremal graph for any 
posi-tive integers m and n.C5 is the unique connected K2-
residual graph with least order 5. For1< n ≠ 2, the least 
order of connected Kn-residual graphs is 2(n+1), for 
n ≠ 2; 3; 4 Kn+1×K2 is unique connected Kn-residual 
graphs with least order. The authors[2] proved that for 
any positive integers n and k, there exist Kn-residual 
graphs with even order 2(n + k). For n= 2; 3; 4 there exist 
Kn-residual graphs with odd order 2n+3. And for n = 6, 
C5[K3] is the unique connected. K6-residual graph with 
least odd order 15. In this paper we proved that for any 
positive odd number t and n = 2t, C5[Kt] is the unique 
connected Kn-residual graphs with least odd order 5t. The 
least odd order of Kn-residual graphs is 5(n + 1)/2. It is 
easy to prove that for any odd number n, there is no Kn-
residual graphs with odd order. For t = 5,n = 2; 4; 6; 8, we 
construct the corresponding connected Kn-residual graphs 
with odd order 2n+t = 9; 13; 17; 21 respectively. For t is 
odd, n = 2t−2 and n = 2t−4, we constructed the 
corresponding connected Kn-residual graphs with odd 
order 2n + t as well. 
 

We state the following conjecture [2].  
 
Conjecture 1. If n ≠ 2, then every connected m-Kn-
residual graph has at least Min{2n(m + 1); (n + m)(m + 
1)} points. 
Conjecture 2. For n large, there is a unique smallest 
connected m-Kn-residual graph. 
The known supportting results are summarized in the 
following theorem. 

 
Theorem 1.1 (Erdös [2]). (1) If G is F-residual, then 

for any point u in G, the degree  
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d(u) = P(G) −P(F) −1. 
(2) Every m-Kn-residual graph has at least (m+1)n 

points, and (m+1)Kn is the only  m-Kn-residual graph 
with (m + 1)n points. 

(3) Every connected Kn-residual graph  has at least 2n 
+ 2 points if n ≠ 2. 

(4) If n ≠ 2, then G ≅ Kn+1× K2 is a connected Kn-
residual graph of minimum order, and except for n = 3 
and n = 4, it is the only such graph. 

 
In this paper, [Theorem 3.1, Theorem 3.2] we show 

that a connected 3-Kn-residual graph must have at least 
4n+12 points if n≥11. Furthermore, the cartesian product 
G ≅  Kn+3 × K4 is the only such graph with  4n + 12 
points for n ≥ 11, we construct the result by determining 
all connected 3-Kn-residual graph of minimal order for n 
= 3, 4, 6, and connected 3-K8-residual graph  has only 
one graph G ≅  K11 × K4 with mini- mum order. In 
Section 4, we revise Erdös conjecture. 

In general the notation follows that of [1]. In particular 
P(G) is the number of points in a graph G, N(u) is the 
neighbor- hood a point u consisting of all points adjacent 
to u.

* ( )N u is the closed neigh- borhood of u. 
 

  Definition 1.1. Let F ⊂ G,  
then   dG(F)=  

( ) ( )G F
x F x F

d x d x
∈ ∈

−∑ ∑
 

 
Definition 1.2. If x∈X and y∈Y are adjacent, then X 

and Y are said to be adjacent, and vice verse. For any 
point x∈X and any point y∈Y, if x is adjacent to y then 
said to X is complete adjacent to Y . 

 

Definition 1.3. G = 1

m

ii
G

=
∪ , where Gi is a  subgraph G, 

G ≅ F, Gi ∩ Gj =∅ , and Gi is nonadjacent to Gj(i, j = 1; 
2 m; i ≠ j), denoted by G ≅ mF. 

II.  2-KN-RESIDUAL GRAPH 

We begin third section with a simple obser-vation 
which will turn out to be extremely useful lemmas, these 
lemmas in [3].  

 
Lemma 2.1. Let G be a Kn-residual graph for n is 

odd,then P(G) is even. 
 
Lemma 2.2. Let G be a Kn-residual graph with 

P(G) ≠ 2n + 3 for n ≠ 2, 4, 6. 
 
Lemma 2.3. Let G be a connected 2-Kn- residual 

graph with P(G) =3n+t for n≥ 3, where 1≤ t ≤ 2n. 
Then 

(1) n ≤ d(u)≤ n+t−1, ∀u∈G; 
(2) d(u) ≠ n + t − 2, ∀u∈G; 
(3)There exist some point u∈G, thus d(u) ≠ n + t − 

1; 
(4) d(u) ≠ n + t − 4, for n 6= 4, 6. 

 
Lemma 2.4. Let G be a connected 2-Kn-residual graph 

with P(G)=3n +t for n≥  3, where 1≤ t≤2n. Then 
d(u) ≠ n, ∀u∈G. 

 
Lemma 2.5. Let G be a 2-Kn-residual graph with 

P(G)≥ 3n+4 for n≥ 3. 
 

Lemma 2.6. The connected 2-Kn-residual graph with 
P(G) =3n+t for n ≥ 3. If there exist u ∈G, d(u) = n+1, 
then exist there d(v)=n+t− 1, where v∈G. 

 
Lemma 2.7. The connected 2-Kn-residual graph with 

P(G)=3n+t for n and t are odd, then d(u) is odd. 
 

Lemma 2.8. Let G=<H1∪H2∪X> be a connected 
Kn-residual graph with P(G)=2n+t for n≥3 and t < 2n, 
where H1≌Kn and H2=Kn, |X| =t, then 

(1). H1 is adjacent to H2; 
(2). Hj is not complete adjacent to X, where j= 1, 2. 

 
Lemma 2.9. Let G be a connected 2-Kn-residual graph 

with P(G) = 3n+t  for n ≥ 5 and   4 ≤t≤ 6, then there dose 
not exist three mutually non adjacent points whose degree 
are n + t−1. 

 
Lemma 2.10. Let G be a connected 2-Kn-residual 

graph with P(G) = 3n+t for n ≥5 and n≠6, where 4 ≤t≤ 6, 
then there does not exist mutually nonadjacent points 
whose degree are  n + t−1. 

 
Lemma 2.11. Let G be a connected 2-Kn-  residual 

graph with P(G) =3n + t for n≥5, where 4≤t≤6, then there 
does not exist complete mutually adjacent points whose 
degree are n+ t−1.  

 
Theorem 2.1. Every connected 2-Kn-residual graph 

has at least 3n+6 for n≥ 5. 
 

Lemma 2.12. Let G be a connected 2-Kn-residual 
graph with P(G)=3n+6 for n≥ 5 and n≠ 6, then d(u) = n + 
3, Gu ∈∀ . 

 
Theorem 2.2. If n≥ 5, then G�Kn+2×K3 is a 

connected 2-Kn-residual graph of minimum order, and 
expect for n=6, it is only such graph. 

 
We now prove the remainder of the Theorem 2.2 

involving the small cases n ≤ 4. For n = 1, a connected 2-
K1-residual graph is the only regular graph C5. For n = 2, 
Erdös [2] construct a connected 2-K2-residual graph in 
Fig. 3. For n =4 suppose G is a connected 2-K4-residual 
graph with P(G) = 16<3×4 + 6=18, the graph in Fig.1. 
For n = 6 we construct a connected 2-K6- residual graph 
G ≅ K8×K3 in Fig. 1 

 

1498 JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER



 
 

Fig. 1. 2-K2-residual graph 
 

III.  3-KN-RESIDUAL GRAPH 

 
Lemma 3.1.  Let G be a connected 3-Kn- residual 

graph with P(G) = 4n+t for n≥ 7, where 1≤t≤2n. Then 
(1) n + 3 ≤d(u)≤ n + t-1; Gu ∈∀ ; 
(2) d(u) ≠ n + t-4, 

         d(u) ≠n + t-5, 
       d(u) ≠n + t-6,  

d(u) ≠n + t-8  for Gu ∈∀ . 
 

Proof.(1) Since G−N*(u) =G1 is a 2-Kn-residual 
graph, let d(u) = n+ t,  then P(G1)= 3n, by Theorem 2.2 
we have    

P(G1) ≥3n + 6, a contradiction.  
By Theorem 2.2 we have  

d(u)≥n + 3. 

So n + 3≤d(u)≤n + t-1, Gu∈∀ . 
(2) Set G−N*(u) = G1; Gu∈∀ , G1 is a 2-Kn-residual 

graph, by Theorem 2.2 we have 
P(G1) ≠3n+3; 3n+4; 3n + 5 for n≥7,  
P(G1) ≠3n + 7 for n ≠4; 6,  

 then  
d(u) = P(G)−P(G1)−1 ≠n +t−4; n +t−5;  n + t−6;  n 

+ t −8, for n ≥7. 
 
By proof method of Lemma 2.9, we  have 
 
Lemma 3.2. Let G be a connected 3-Kn-residual graph 

with P(G) =4n+ t for n ≥ 11 and 1≤ t ≤2n, then there dose 
not exist four mutually nonadjacent vertices whose 
degree are n + t −1. 

 
By proof method of Lemma 2.10, we have 
 
Lemma 3.3. Let G be a connected 3-Kn- residual 

graph with P(G)=4n+t for n ≥11 and 1 ≤ t ≤2n, then there 
dose not exist three mutually nonadjacent points whose 
degree are n + t − 1. 

 
Lemma 3.4.  Let G be a connected 3-Kn-residual 

graph with P(G) =4n+t for n≥11, where 1≤t≤2n, then 
there does not exist mutually nonadjacent points whose 
degree are n + t − 1. 

 

By proof method of Lemma 2.11, we  have 
 
Lemma 3.5.  Let G be a connected 3-Kn-residual 

graph with P(G) = 4n + t, for n ≥ 11, where 1≤t≤2n, then 
there does not exist complete mutually adjacent points 
whose degree are n + t − 1. 

 
By proof method of Lemma 2.12, we have 
 
Lemma 3.6.  Let G be a connected 3-Kn-residual 

graph with P(G)=4n+t, for n≥ 11, where 1 ≤ t ≤ 2n, then 
there does not exist case that G has just only one point of 
degree is n + t − 1. 

 
So, let G be a connected 3-Kn-residual graph with 

P(G) = 4n + t, where 1 ≤ t ≤ 2n, by Lemma  3.2, 3.3, 3.4, 
3.5, 3.6, we have d(u)≠ n + t − 1 for∀u ∈ G, Shihui 
Yang and Huiming Duan [3] determined d(u)≠  n+t−3, 
d(u)≠ n+t−5 for∀ u ∈G. By proof method of  Theorem 
2.2 and Theorem 2.3, we have 

 
Theorem 3.1. Every connected 3-Kn-residual graph 

has at least 4n + 12 for n≥11. 
 
Proof. Let P(G)=4n+t, by Lemma 3.1, 3.2, 3.3, 3.4, 

3.5, 3.6 we have  
n+4 ≤d(u)≤ n+t-7 

then       t≥11.  
We now prove that t ≠11.  
Suppose that t=11, then d(u) = n + 4, Gu ∈∀ , if u is 

nonadjacent to v, where u,  v∈G, set 
N*(u)∩ N*(v) = X; 
G1 = G−N*(u); 
G2 = G−N*(v), 

then u∈G2,  v ∈G1. Set 
G-N*(u)-N*(v) = G-N*(v) −N*(u) = H ≅ Kn. By      

P(G1) = P(G2) = 3n + 6,  
dG1(w) = dG2(w) = n + 3, ∀ w∈H,  

then 
N*(v)-X has (n+3)-dH(w) = (n+3)－(n－1) = 4 

points adjacent to w∈H in G1, and 
N*(u)－X has four points adjacent to  w∈H in G2.  

By (N*(u) −X)∩ N*(v)－X) = ∅ , thus  
d(w)≥ dH(w) + 4 + 4 = n−1+ 4 + 4 = n + 7, contrary to 

d(w) = n + 4. 
 So        P(G) ≥4n+12. 
 
Lemma 3.7. Let G be a connected 3-Kn-residual graph 

with P(G)=4n+12 for n≥11,then                        d(u) = n + 
5; Gu ∈∀ . 

 
Proof. Since d(u) ≥n+3, t = 12, d(u) ≠  n+t－8 = n+4, 

then              d(u)≥n+5.  
By Lemma 3.1, 3.2,3.3,3.4,3.5,3.6 and Theorem 3.1 we 
have d(u) = n+5; Gu ∈∀  
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Theorem 3.2. If n ≥11, then G�Kn+3×K4  is a 
connected 3-Kn-residual graph of minimum order, it is 
only such graph. 
 

Proof. Fact 1. Let F =<H1∪ H2∪ H3> ≅ Kn+2×K3,  
where H1 ≅  H2 ≅ H3 ≅  Kn+2, then 

 Hi and Hj have bijection 
                 θ : V (Hi) → V (Hj), 
and u1∈Hi is adjacent to µ(u1)∈Hj , 

where i ≠j; i; j = 1; 2; 3. 
If H ⊂ F and H ≅ Ks; 3≤ s≤n + 2, then 

   H ⊂ H1 or H ⊂ H2 or H ⊂ H3.  
Fact 2. By Lemma 3.2 we have         

d(u) = n+5, G1 = G－N*(u),∀ u ⊂ G, 
 P(G1) = 3n + 6 

so G1 ≅  Kn+2×K3, set 

G1=< 1H ∪ 2H ∪ 3H >=<
1,2, , 2
1,2,3|j j n

r rx = +
= >,,                

where rH =< xr

1

, xr

2

,…, x
n

r

2+

>,  

and x
i

l  is adjacent to x j

m  if i = j,             

xi

l  is nonadjacent to x
j

m  if i ≠ j. 
wherel ≠m; l,m = 1, 2, 3                       (3.1)                   

Set G2 = G－N*( x
n 2

2

+

)  

=< H *
0 ∪ H *

1 ∪ H *
3 > 

≅ Kn+2 × K3,  
by(3.1) we have 

Kn+1 ≅ 1H － xn 2

1

+

 

=< x 1

1 , x 2

1 ,…,x
n 1

1

+

> ⊂ G2, 
 by Fact 1 without loss of generality we 
may assume that 

< x1

1 , x 2

1 ,…,x
n 1

1

+

> ⊂ H*
1  

=< x0

1 , x
1

1 ,…, x
n 1

1

+

>, 

< x1

3 , x
2

3 ,…, x
n 1

3

+

> ⊂ H *
3  

=< x0

3 , x
1

3 ,…, x
n 1

3

+

 >                (3.2)                     

If 0
jx ∈ *

0H is adjacent to x j

3 , where j=0, 1,… , 

 n+1, obvious x
0

0  = u,   then 

H *
0  =< x0

0 , x
1

0 ,…, x
n 1

0

+

>. 

We now prove x
0

1 is adjacent to x
n 2

1

+

.  
Suppose the contrary, set  

G3 = G－N*( xn 2

1

+

); x
0

1 ∈  G3,  

by (3.1) and (3.2) we have x0

1 is adjacent to 

{ x1

1 , x
2

1 ,…, xn 1

1

+

} ⊂ N*( xn 2

1

+

 ),         thus 

d( x0

1 ) ≥  dG3( x0

1 ) + n + 1 = n + 2 + n + 1 > n + 5,  

a contradiction.  

So x
0

1 is adjacent to xn 2

1

+

 , hence 
x0

1 is adjacent to 1H .  

Set H1 =< x0

1 , x
1

1 ,…, x
n 2

1

+

> ≅ Kn+3. 

Similar x0

3  is adjacent to x
n 2

3

+

,  
x0

3 is adjacent to 3H .  

Set H3 =< x0

1 , x
1

1 ,…, x
n 2

1

+

 > ≅ Kn+3. 

Similar x0

2 ∈  N*(u) is complete adjacent to 2H , 

obvious x
0

2 ≠ x
0

1 , x
0

2 ≠ x
0

3 ,  
so 

H2 =< x0

2 , x
1

2 ,…, x
n 2

2

+

> ≅  Kn+3. 

Similar, in G－N*( xn 2

2

+

) 

          =< H *

0 ∪ H *
1 ∪ H *

3 >, 

we have x
n 2

0

+
∈N*( xn 2

2

+

 )=< H *
0 ∪ H *

1 >complete 

adjacent to H*
0 .  

Obvious x
n 2

0

+

∈(H2 ∪ xn 2

1

+ ∪ xn 2

3

+

) ⊂ N*( xn 2

2

+

)         

So H0 =< x0

0 , x
1

0 ,…, x
n 2

0

+

> ≅ Kn+3. 
Fact 3. Any point in Hr is adjacent to single point in 

Hs ≠ r. Suppose the contrary, let xj∈H0 be nonadjacent 

to H2, then G
*

= 
*

0 2 3( )j
nG N x K K+− ≅ × , 

but  H ≅ Kn+3,H2 ⊂ G
*

, contrary to *
2 3nG K K+≅ ×                  

    x 0
j

is adjacent to H2. If H2 has two points adjacent to 

0
jx , by dH0( 0

jx ) = n + 2,   d 0
jx ) = n + 4, so 0

jx  is 
nonadjacent to  H1 ∪ H2,     a       contradiction. 

Fact 4. By Fact 3 we have 0
1x  is adjacent to H2. If 0

1x  

adjacent to x
0

2
j≠

 , by x
0

2
j≠

 is adjacent to 1
jx , thus H1 has 

two points adjacent to 2
jx , contrary to Fact 3.  

So 0
1x is adjacent to 0

2x  . 

Similar 0
3x  is adjacent to 0

2x  , 

 2
0
nx +  is adjacent to 2

1
nx + ,  

2
0
nx + is adjacent to 2

3
nx + . 

Fact 5. Since 0
jx is adjacent to 2

jx for j = 0,  n + 2, let 

0
jx be nonadjacent to 2

jx for j ≠ 0, n + 2, 

 by Fact 3 we have 0
jx adjacent to 0

i jx ≠ .  

Since 0
jx is adjacent to 1

jx and 3
jx , set  

* j
0(x )G N−  

1 1 2 2 2 3( ) ( ) ( )j j jH x H x H x=< − ∪ − ∪ − >  
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2 3nK K+≅ ×                                           (3.3) 
By Fact 4 we have 2

tx adjacent to 1
tx and 3

tx  for t ≠ i, j, 

by (3.1) we have 2
ix adjacent to 1

jx and 3
jx , contrary to 

(3.1).  
So 0

jx  is adjacent to 2
jx . 

Hence   0,1,2, 2
0,1,2,3|j j n

r rG X x = +
==< >< > ,  

where i
rx is adjacent to j

sx if and only if r = s, i ≠ j or i = j, r ≠ s.  
So    G ≅ Kn+3×K4. 
 

We now prove the remainder of the Theorem 3.2 
involving the small cases n ≤ 11. For n = 2, Erdös [2] 
construct a connected 3-K2-residual graph in Fig. 2.  For 
n = 3 suppose G is a connected 3-K3-residual graph with 
P(G) = 20<4 × 3+12=24, the graph in Fig.3. In the 
Section2, we by connected 2-K2-residual graph construct 
connected 2-K4-residual graph and connected 2-K6-
residual graph, similar by con-nected 3-K2-residual graph 
construct con-nected 3-K4-residual graph G1, connected 
3-K6-residual graph G2 and connected 3-K8-residual 
graph G3,where P(G1)= 22, P(G2) =33, P(G3) = 44.  For 
n= 8 we construct a connected 3-K8-residual graph 
G3 ≅ K11×K4.     

 

 
 

Fig. 2. 3-K2-residual graph 
 

 
 

Fig. 3. 3-K3-residual graph 
 

In the above Fig. 3, we can see that all points in the 
same square adjacent. 

 
 

IV.  MULTIPLY-KN-RESIDUAL GRAPHS 

 
To conclude the paper, let us present a conjecture. A 

connected (m−1)-Kn-residual graph, denoted by (m−1)-
Knm-1-residual graph, a connected m-Kn-residual graph, 
denoted by m-Knm-residual graph.We revised Erdös 
conjecture. 

 
Conjecture 3. For all m and n, then every  connected 

m-Kn-residual graph has at least min{2n(m+1), 

(n+m)(m+1), 2(3 2)n m+ }  points. 
 

For example: connected 2-K2-residual graph, connected 
2-K4-residual graph, connected 3-K2-residual graph, 
connected 3-K4-residual graph, connected 3-K6-residual 
graph. 
 

Conjecture 4. If nm ≥ nm−1 + 2m−1 for m ≤ n and 
m ≠ 4y + 1, where y is a Natural Number and n1=5, then 
G ≅ Kn+m×Km+1 is  a connected m-Kn-residual graph 
of minimum order, it is only such graph. 

 
We have determined the minimum order of the 

connected m-Kn-residual graph for  all m and n large, 
Kn+m×Km+1 is the only such graph with (n+m)(m+1) 
points. We suppose that Erdös conjectures is true for  n≥
n0. 

problem 1. What is n0 ? 
problem 2. What are the extremal graphs  on connected 

m-Kn-residual graph for n < n0? 
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