Erdös Conjecture on Connected Residual Graphs

Jiangdong Liao
College of Mathematics and Computer Sciences, Yangtze Normal University, Fuling 408100, Chongqing, P.R. China, Email: Ljd88073@163.com
Gonglun Long
Information Technology Center of Chongqing Normal University, Chongqing 401331, P.R. China
Mingyong Li
College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, P.R. China

Abstract

A graph G is said to be F-residual if for every point u in G, the graph obtained by removing the closed neighborhood of \mathbf{u} from G is isomorphic to F. Similarly, if the remove of m consecutive closed neighborhoods yields Kn, then G is called m-Kn-residual graph. Erdös determine the minimum order of the \mathbf{m}-Kn-residual graph for all \mathbf{m} and n, the minimum order of the connected Kn -residual graph is found and all the extremal graphs are specified. Jiangdong Liao and Shihui Yang determine the minimum order of the connected $2-\mathrm{Kn}$-residual graph is found and all the extremal graphs are specified expected for $n=3$, and in this paper, we prove that the minimum order of the connected 3-Kn-residual graph is found and all the extremal graphs are specified expected for $n=5,7,9,10$, and we revised Erdös conjecture.

Index Terms-Residual-graph, Closed neighborhood, Adjacent, Cartesian product

I. Introduction

A graph G is said to be F-residual if for every point u in G, the graph obtained by removing the closed neighborhood of u from G is isomorphic to F. If G is a graph such that the deletion from G of the points in each closed neighborhood results in the complete graph Kn residual graph. We inductively define multiply-Knresidual graph by saying that G is $\mathrm{m}-\mathrm{F}$-residual if the removal of the closed neighborhood of any point of G result in an (m-1)-F-residual graph, where of course a 1-F-residual graph is simply an F-residual graph.

It is natural to ask what is the minimum number of points that an $\mathrm{m}-\mathrm{Kn}$-residual graph must contain. We easily prove that this number is $(\mathrm{m}+1) \mathrm{n}$ and that the only $\mathrm{m}-\mathrm{Kn}$-residual graph with this number of point is $(\mathrm{m}+1) \mathrm{Kn}$. In [2] they show that a connected Kn -residual graph must have at least $2 \mathrm{n}+2$ points if $\mathrm{n} \neq 2$. Furthermore, the cartesian product $G \cong K n+1 \times K 2$ is the

[^0]only such graph with $2 \mathrm{n}+2$ points for $\mathrm{n} \neq 2 ; 3 ; 4$. They complete the result by determining all connected Kn residual graph of minimal order for $\mathrm{n}=2,3,4$.

The concept of residual graphs was firrst in-duced[1], by Paul. Erdös, Frank. Harary and Maria.Klawe.They studied residually complete graphs, determined the minimum order of $m-K n$-residual graphs are $(m+1) n$, and $(\mathrm{m}+1) \mathrm{Kn}$ is the corresponding extremal graph for any posi-tive integers m and $n . \mathrm{C} 5$ is the unique connected $K 2$ residual graph with least order 5 . For $1<\mathrm{n} \neq 2$, the least order of connected $K n$-residual graphs is $2(\mathrm{n}+1)$, for $\mathrm{n} \neq 2 ; 3 ; 4 \mathrm{Kn}+1 \times \mathrm{K} 2$ is unique connected Kn -residual graphs with least order. The authors[2] proved that for any positive integers n and k, there exist $K n$-residual graphs with even order $2(\mathrm{n}+\mathrm{k})$. For $\mathrm{n}=2 ; 3 ; 4$ there exist Kn -residual graphs with odd order $2 \mathrm{n}+3$. And for $\mathrm{n}=6$, C5[K3] is the unique connected. K6-residual graph with least odd order 15 . In this paper we proved that for any positive odd number t and $\mathrm{n}=2 \mathrm{t}, \mathrm{C} 5[\mathrm{Kt}]$ is the unique connected Kn -residual graphs with least odd order 5t. The least odd order of $K n$-residual graphs is $5(\mathrm{n}+1) / 2$. It is easy to prove that for any odd number n, there is no Kn residual graphs with odd order. For $\mathrm{t}=5, \mathrm{n}=2 ; 4 ; 6 ; 8$, we construct the corresponding connected Kn -residual graphs with odd order $2 \mathrm{n}+\mathrm{t}=9 ; 13 ; 17 ; 21$ respectively. For t is odd, $\mathrm{n}=2 \mathrm{t}-2$ and $\mathrm{n}=2 \mathrm{t}-4$, we constructed the corresponding connected Kn -residual graphs with odd order $2 \mathrm{n}+\mathrm{t}$ as well.

We state the following conjecture [2].
Conjecture 1. If $\mathrm{n} \neq 2$, then every connected $\mathrm{m}-\mathrm{Kn}$ residual graph has at least $\operatorname{Min}\{2 n(m+1) ;(n+m)(m+$ 1) $\}$ points.

Conjecture 2. For n large, there is a unique smallest connected $\mathrm{m}-\mathrm{Kn}$-residual graph.
The known supportting results are summarized in the following theorem.

Theorem 1.1 (Erdös [2]). (1) If G is F-residual, then for any point u in G, the degree

$$
\mathrm{d}(\mathrm{u})=\mathrm{P}(\mathrm{G})-\mathrm{P}(\mathrm{~F})-1 .
$$

(2) Every $\mathrm{m}-\mathrm{Kn}$-residual graph has at least $(\mathrm{m}+1) \mathrm{n}$ points, and $(\mathrm{m}+1) \mathrm{Kn}$ is the only $\mathrm{m}-\mathrm{Kn}$-residual graph with $(m+1) n$ points.
(3) Every connected Kn-residual graph has at least $2 n$ +2 points if $\mathrm{n} \neq 2$.
(4) If $\mathrm{n} \neq 2$, then $\mathrm{G} \cong \mathrm{Kn}+1 \times \mathrm{K} 2$ is a connected Kn residual graph of minimum order, and except for $\mathrm{n}=3$ and $n=4$, it is the only such graph.

In this paper, [Theorem 3.1, Theorem 3.2] we show that a connected $3-\mathrm{Kn}$-residual graph must have at least $4 n+12$ points if $n \geq 11$. Furthermore, the cartesian product $\mathrm{G} \cong \mathrm{Kn}+3 \times \mathrm{K} 4$ is the only such graph with $4 \mathrm{n}+12$ points for $\mathrm{n} \geq 11$, we construct the result by determining all connected $3-\mathrm{Kn}$-residual graph of minimal order for n $=3,4,6$, and connected 3 -K8-residual graph has only one graph $\mathrm{G} \cong \mathrm{K} 11 \times \mathrm{K} 4$ with mini- mum order. In Section 4, we revise Erdös conjecture.

In general the notation follows that of [1]. In particular $\mathrm{P}(\mathrm{G})$ is the number of points in a graph $\mathrm{G}, \mathrm{N}(\mathrm{u})$ is the neighbor- hood a point u consisting of all points adjacent to u. $N^{*}(u)$ is the closed neigh- borhood of u.

Definition 1.1. Let $\mathrm{F} \subset \mathrm{G}$,
then $\mathrm{dG}(\mathrm{F})=$

$$
\sum_{x \in F} d_{G}(x)-\sum_{x \in F} d_{F}(x)
$$

Definition 1.2. If $x \in X$ and $y \in Y$ are adjacent, then X and Y are said to be adjacent, and vice verse. For any point $x \in X$ and any point $y \in Y$, if x is adjacent to y then said to X is complete adjacent to Y .

Definition 1.3. $G==_{i=1}^{m} G_{i}$, where $G i$ is a subgraph G, $\mathrm{G} \cong \mathrm{F}, \mathrm{Gi} \cap \mathrm{Gj}=\varnothing$, and Gi is nonadjacent to $\mathrm{Gj}(\mathrm{i}, \mathrm{j}=1$; $2 \cdots \mathrm{~m} ; \mathrm{i} \neq \mathrm{j}$), denoted by $\mathrm{G} \cong \mathrm{mF}$.

II. 2-KN-Residual Graph

We begin third section with a simple obser-vation which will turn out to be extremely useful lemmas, these lemmas in [3].

Lemma 2.1. Let G be a Kn-residual graph for n is odd, then $\mathrm{P}(\mathrm{G})$ is even.

Lemma 2.2. Let G be a Kn-residual graph with $\mathrm{P}(\mathrm{G}) \neq 2 \mathrm{n}+3$ for $\mathrm{n} \neq 2,4,6$.

Lemma 2.3. Let G be a connected $2-\mathrm{Kn}$ - residual graph with $\mathrm{P}(\mathrm{G})=3 \mathrm{n}+\mathrm{t}$ for $\mathrm{n} \geqslant 3$, where $1 \leqslant \mathrm{t} \leqslant 2 \mathrm{n}$. Then
(1) $\mathrm{n} \leqslant \mathrm{d}(\mathrm{u}) \leqslant \mathrm{n}+\mathrm{t}-1, \forall \mathrm{u} \in \mathrm{G}$;
(2) $\mathrm{d}(\mathrm{u}) \neq \mathrm{n}+\mathrm{t}-2, \forall \mathrm{u} \in \mathrm{G}$;
(3)There exist some point $\mathrm{u} \in \mathrm{G}$, thus $\mathrm{d}(\mathrm{u}) \neq \mathrm{n}+\mathrm{t}-$ 1 ;
(4) $\mathrm{d}(\mathrm{u}) \neq \mathrm{n}+\mathrm{t}-4$, for $\mathrm{n} 6=4,6$.

Lemma 2.4. Let G be a connected 2 -Kn-residual graph with $\mathrm{P}(\mathrm{G})=3 \mathrm{n}+\mathrm{t}$ for $\mathrm{n} \geqslant 3$, where $1 \leqslant \mathrm{t} \leqslant 2 \mathrm{n}$. Then $\mathrm{d}(\mathrm{u}) \neq \mathrm{n}, \forall \mathrm{u} \in \mathrm{G}$.

Lemma 2.5. Let G be a 2 -Kn-residual graph with $P(G) \geqslant 3 n+4$ for $n \geqslant 3$.

Lemma 2.6. The connected $2-\mathrm{Kn}$-residual graph with $\mathrm{P}(\mathrm{G})=3 \mathrm{n}+\mathrm{t}$ for $\mathrm{n} \geqslant 3$. If there exist $\mathrm{u} \in \mathrm{G}, \mathrm{d}(\mathrm{u})=\mathrm{n}+1$, then exist there $\mathrm{d}(\mathrm{v})=\mathrm{n}+\mathrm{t}-1$, where $\mathrm{v} \in \mathrm{G}$.

Lemma 2.7. The connected 2-Kn-residual graph with $\mathrm{P}(\mathrm{G})=3 \mathrm{n}+\mathrm{t}$ for n and t are odd, then $\mathrm{d}(\mathrm{u})$ is odd.

Lemma 2.8. Let $\mathrm{G}=<\mathrm{H} 1 \cup \mathrm{H} 2 \cup \mathrm{X}>$ be a connected Kn-residual graph with $P(G)=2 n+t$ for $n \geqslant 3$ and $t<2 n$, where $\mathrm{H} 1 \cong \mathrm{Kn}$ and $\mathrm{H} 2=\mathrm{Kn},|\mathrm{X}|=\mathrm{t}$, then
(1). H 1 is adjacent to H 2 ;
(2). Hj is not complete adjacent to X , where $\mathrm{j}=1,2$.

Lemma 2.9. Let G be a connected 2-Kn-residual graph with $\mathrm{P}(\mathrm{G})=3 \mathrm{n}+\mathrm{t}$ for $\mathrm{n} \geq 5$ and $4 \leq \mathrm{t} \leq 6$, then there dose not exist three mutually non adjacent points whose degree are $\mathrm{n}+\mathrm{t}-1$.

Lemma 2.10. Let G be a connected $2-\mathrm{Kn}$-residual graph with $\mathrm{P}(\mathrm{G})=3 \mathrm{n}+\mathrm{t}$ for $\mathrm{n} \geq 5$ and $\mathrm{n} \neq 6$, where $4 \leq \mathrm{t} \leq 6$, then there does not exist mutually nonadjacent points whose degree are $\mathrm{n}+\mathrm{t}-1$.

Lemma 2.11. Let G be a connected $2-\mathrm{Kn}$ - residual graph with $P(G)=3 n+t$ for $n \geq 5$, where $4 \leq t \leq 6$, then there does not exist complete mutually adjacent points whose degree are $\mathrm{n}+\mathrm{t}-1$.

Theorem 2.1. Every connected $2-\mathrm{Kn}$-residual graph has at least $3 n+6$ for $n \geq 5$.

Lemma 2.12. Let G be a connected $2-\mathrm{Kn}$-residual graph with $\mathrm{P}(\mathrm{G})=3 \mathrm{n}+6$ for $\mathrm{n} \geq 5$ and $\mathrm{n} \neq 6$, then $\mathrm{d}(\mathrm{u})=\mathrm{n}+$ $3, \forall u \in G$.

Theorem 2.2. If $\mathrm{n} \geq 5$, then $G \mathrm{Kn}+2 \times \mathrm{K} 3$ is a connected $2-\mathrm{Kn}$-residual graph of minimum order, and expect for $\mathrm{n}=6$, it is only such graph.

We now prove the remainder of the Theorem 2.2 involving the small cases $n \leq 4$. For $n=1$, a connected 2-K1-residual graph is the only regular graph C 5 . For $\mathrm{n}=2$, Erdös [2] construct a connected 2-K2-residual graph in Fig. 3. For $\mathrm{n}=4$ suppose G is a connected 2 -K4-residual graph with $\mathrm{P}(\mathrm{G})=16<3 \times 4+6=18$, the graph in Fig.1. For $\mathrm{n}=6$ we construct a connected $2-\mathrm{K} 6$ - residual graph $\mathrm{G} \cong \mathrm{K} 8 \times \mathrm{K} 3$ in Fig. 1

Fig. 1. 2-K2-residual graph

III. 3-Kn-Residual Graph

Lemma 3.1. Let G be a connected $3-\mathrm{Kn}$ - residual graph with $P(G)=4 n+t$ for $n \geq 7$, where $1 \leq t \leq 2 n$. Then
(1) $\mathrm{n}+3 \leq \mathrm{d}(\mathrm{u}) \leq \mathrm{n}+\mathrm{t}-1 ; \quad \forall u \in G$;
(2) $d(u) \neq n+t-4$, $\mathrm{d}(\mathrm{u}) \neq \mathrm{n}+\mathrm{t}-5$, $\mathrm{d}(\mathrm{u}) \neq \mathrm{n}+\mathrm{t}-6$, $\mathrm{d}(\mathrm{u}) \neq \mathrm{n}+\mathrm{t}-8$ for $\forall u \in G$.
 graph, let $\mathrm{d}(\mathrm{u})=\mathrm{n}+\mathrm{t}$, then $\mathrm{P}(\mathrm{G} 1)=3 \mathrm{n}$, by Theorem 2.2 we have
$\mathrm{P}(\mathrm{G} 1) \geq 3 \mathrm{n}+6$, a contradiction.
By Theorem 2.2 we have

$$
\mathrm{d}(\mathrm{u}) \geq \mathrm{n}+3 .
$$

So $\mathrm{n}+3 \leq \mathrm{d}(\mathrm{u}) \leq \mathrm{n}+\mathrm{t}-1, \quad \forall u \in G$.
(2) $\operatorname{Set} \mathrm{G}^{-\mathrm{N}^{*}}(\mathrm{u})=\mathrm{G} 1 ; \forall u \in G$, G1 is a $2-\mathrm{Kn}-$ residual graph, by Theorem 2.2 we have

$$
\begin{aligned}
& \mathrm{P}(\mathrm{G} 1) \neq 3 \mathrm{n}+3 ; 3 \mathrm{n}+4 ; 3 \mathrm{n}+5 \text { for } \mathrm{n} \geq 7, \\
& \mathrm{P}(\mathrm{G} 1) \neq 3 \mathrm{n}+7 \text { for } \mathrm{n} \neq 4 ; 6, \\
& \mathrm{~d}(\mathrm{u})=\mathrm{P}(\mathrm{G})-\mathrm{P}(\mathrm{G} 1)-1 \neq \mathrm{n}+\mathrm{t}-4 ; \mathrm{n}+\mathrm{t}-5 ; \mathrm{n}+\mathrm{t}-6 ; \mathrm{n} \\
& +\mathrm{t}-8, \text { for } \mathrm{n} \geq 7 \text {. }
\end{aligned}
$$

then

By proof method of Lemma 2.9, we have
Lemma 3.2. Let G be a connected 3-Kn-residual graph with $\mathrm{P}(\mathrm{G})=4 \mathrm{n}+\mathrm{t}$ for $\mathrm{n} \geq 11$ and $1 \leq \mathrm{t} \leq 2 \mathrm{n}$, then there dose not exist four mutually nonadjacent vertices whose degree are $\mathrm{n}+\mathrm{t}-1$.

By proof method of Lemma 2.10, we have
Lemma 3.3. Let G be a connected $3-\mathrm{Kn}$ - residual graph with $\mathrm{P}(\mathrm{G})=4 \mathrm{n}+\mathrm{t}$ for $\mathrm{n} \geq 11$ and $1 \leq \mathrm{t} \leq 2 \mathrm{n}$, then there dose not exist three mutually nonadjacent points whose degree are $\mathrm{n}+\mathrm{t}-1$.

Lemma 3.4. Let G be a connected $3-\mathrm{Kn}$-residual graph with $\mathrm{P}(\mathrm{G})=4 \mathrm{n}+\mathrm{t}$ for $\mathrm{n} \geq 11$, where $1 \leq \mathrm{t} \leq 2 \mathrm{n}$, then there does not exist mutually nonadjacent points whose degree are $\mathrm{n}+\mathrm{t}-1$.

By proof method of Lemma 2.11, we have
Lemma 3.5. Let G be a connected $3-\mathrm{Kn}$-residual graph with $P(G)=4 n+t$, for $n \geq 11$, where $1 \leq t \leq 2 n$, then there does not exist complete mutually adjacent points whose degree are $n+t-1$.

By proof method of Lemma 2.12, we have
Lemma 3.6. Let G be a connected $3-\mathrm{Kn}$-residual graph with $P(G)=4 n+t$, for $n \geq 11$, where $1 \leq t \leq 2 n$, then there does not exist case that G has just only one point of degree is $\mathrm{n}+\mathrm{t}-1$.

So, let G be a connected 3-Kn-residual graph with $\mathrm{P}(\mathrm{G})=4 \mathrm{n}+\mathrm{t}$, where $1 \leq \mathrm{t} \leq 2 \mathrm{n}$, by Lemma 3.2, 3.3, 3.4, 3.5, 3.6, we have $\mathrm{d}(\mathrm{u}) \neq \mathrm{n}+\mathrm{t}-1$ for $\forall_{\mathrm{u}} \in \mathrm{G}$, Shihui Yang and Huiming Duan [3] determined $d(u) \neq \mathrm{n}+\mathrm{t}-3$, $\mathrm{d}(\mathrm{u}) \neq \mathrm{n}+\mathrm{t}-5$ for $\forall \mathrm{u} \in \mathrm{G}$. By proof method of Theorem 2.2 and Theorem 2.3, we have

Theorem 3.1. Every connected 3-Kn-residual graph has at least $4 n+12$ for $n \geq 11$.

Proof. Let $\mathrm{P}(\mathrm{G})=4 \mathrm{n}+\mathrm{t}$, by Lemma 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 we have

$$
\mathrm{n}+4 \leq \mathrm{d}(\mathrm{u}) \leq \mathrm{n}+\mathrm{t}-7
$$

then $t \geq 11$.
We now prove that $\mathrm{t} \neq 11$.
Suppose that $\mathrm{t}=11$, then $\mathrm{d}(\mathrm{u})=\mathrm{n}+4, \forall u \in G$, if u is nonadjacent to v , where $\mathrm{u}, \mathrm{v} \in \mathrm{G}$, set

$$
\begin{aligned}
& \mathrm{N}^{*}(\mathrm{u}) \cap \mathrm{N}^{*}(\mathrm{v})=\mathrm{X} \\
& \mathrm{G} 1=\mathrm{G}-\mathrm{N}^{*}(\mathrm{u}) ; \\
& \mathrm{G} 2=\mathrm{G}-\mathrm{N}^{*}(\mathrm{v}),
\end{aligned}
$$

then $u \in G 2, v \in G 1$. Set
$\mathrm{G}-\mathrm{N}^{*}(\mathrm{u})-\mathrm{N}^{*}(\mathrm{v})=\mathrm{G}-\mathrm{N}^{*}(\mathrm{v})-\mathrm{N}^{*}(\mathrm{u})=\mathrm{H} \cong \mathrm{Kn}$. By $\mathrm{P}(\mathrm{G} 1)=\mathrm{P}(\mathrm{G} 2)=3 \mathrm{n}+6$,

$$
\operatorname{dG} 1(\mathrm{w})=\mathrm{dG} 2(\mathrm{w})=\mathrm{n}+3, \quad \forall \mathrm{w} \in \mathrm{H},
$$

then

$$
\mathrm{N}^{*}(\mathrm{v})-\mathrm{X} \text { has }(\mathrm{n}+3)-\mathrm{dH}(\mathrm{w})=(\mathrm{n}+3)-(\mathrm{n}-1)=4
$$

points adjacent to ${ }_{\mathrm{w}} \in \mathrm{H}$ in G1, and
$N^{*}(\mathrm{u})-\mathrm{X}$ has four points adjacent to $\mathrm{w}^{\in} \mathrm{H}$ in G 2 .
By $\left.\left(\mathrm{N}^{*}(\mathrm{u})-\mathrm{X}\right) \bigcap_{\mathrm{N}}(\mathrm{v})-\mathrm{X}\right)=\varnothing$, thus
$\mathrm{d}(\mathrm{w}) \geq \mathrm{dH}(\mathrm{w})+4+4=\mathrm{n}-1+4+4=\mathrm{n}+7$, contrary to $\mathrm{d}(\mathrm{w})=\mathrm{n}+4$.

So $\quad P(G) \geq 4 n+12$.
Lemma 3.7. Let G be a connected 3-Kn-residual graph with $\mathrm{P}(\mathrm{G})=4 \mathrm{n}+12$ for $\mathrm{n} \geq 11$, then $\mathrm{d}(\mathrm{u})=\mathrm{n}+$ 5; $\forall u \in G$.

Proof. Since $d(u) \geq n+3, t=12, d(u) \neq n+t-8=n+4$, then $\quad \mathrm{d}(\mathrm{u}) \geq \mathrm{n}+5$.
By Lemma 3.1, 3.2,3.3,3.4,3.5,3.6 and Theorem 3.1 we have $\mathrm{d}(\mathrm{u})=\mathrm{n}+5 ; \forall u \in G$

Theorem 3.2. If $\mathrm{n} \geq 11$, then $\mathrm{G} \mathrm{Kn}+3 \times \mathrm{K} 4$ is a connected $3-\mathrm{Kn}$-residual graph of minimum order, it is only such graph.

Proof. Fact 1. Let $\mathrm{F}=<\mathrm{H} 1 \cup \mathrm{H} 2 \cup \mathrm{H} 3>\cong \mathrm{Kn}+2 \times \mathrm{K} 3$, where $\mathrm{H} 1 \cong \mathrm{H} 2 \cong \mathrm{H} 3 \cong \mathrm{Kn}+2$, then

Hi and Hj have bijection

$$
\theta: \mathrm{V}(\mathrm{Hi}) \rightarrow \mathrm{V}(\mathrm{Hj})
$$

and $\mathrm{u} 1 \in \mathrm{Hi}$ is adjacent to $\mu(\mathrm{u} 1) \in \mathrm{Hj}$,
where $\mathrm{i} \neq \mathrm{j} ; \mathrm{i} ; \mathrm{j}=1 ; 2 ; 3$.
If $\mathrm{H} \subset \mathrm{F}$ and $\mathrm{H} \cong \mathrm{Ks} ; 3 \leq \mathrm{s} \leq \mathrm{n}+2$, then
$\mathrm{H} \subset \mathrm{H} 1$ or $\mathrm{H} \subset \mathrm{H} 2$ or $\mathrm{H} \subset \mathrm{H} 3$.
Fact 2. By Lemma 3.2 we have

$$
\begin{aligned}
& \mathrm{d}(\mathrm{u})=\mathrm{n}+5, \mathrm{G} 1=\mathrm{G}-\mathrm{N}^{*}(\mathrm{u}), \forall \mathrm{u} \subset \mathrm{G} \\
& \mathrm{P}(\mathrm{G} 1)=3 \mathrm{n}+6
\end{aligned}
$$

so G1 $\cong \mathrm{Kn}+2 \times \mathrm{K} 3$, set
$\mathrm{G} 1=<\overline{H_{1}} \cup \overline{H_{2}} \cup \overline{H_{3}}>=\left\langle\left._{r}^{j}\right|_{r=1,2,3} ^{j=1,2, \cdots, n+2}>\right.$,
where $\overline{H_{r}}=<X_{r}^{1}, X_{r}^{2}, \ldots, X_{r}^{n+2}>$,
and X_{l}^{i} is adjacent to X_{m}^{j} if $\mathrm{i}=\mathrm{j}$,
X_{l}^{i} is nonadjacent to X_{m}^{j} if $\mathrm{i} \neq \mathrm{j}$.
wherel $\neq \mathrm{m} ; 1, \mathrm{~m}=1,2,3$
Set G2 $=\mathrm{G}-\mathrm{N}^{*}\left(\boldsymbol{X}_{2}^{n+2}\right)$

$$
\begin{aligned}
& =<H_{0}^{*} \cup H ; \cup H_{3>}^{*} \\
& \cong \mathrm{Kn}+2 \times \mathrm{K} 3,
\end{aligned}
$$

by(3.1) we have

$$
\begin{aligned}
\mathrm{Kn}+1 & \cong \overline{H_{1}}
\end{aligned}-X_{1}^{n+2} .
$$

by Fact 1 without loss of generality we may assume that
$<X_{1}^{1}, X_{1}^{2}, \ldots, X_{1}^{n+1}>\subset H_{1}^{*}$

$$
=<X_{1}^{0}, X_{1}^{1}, \ldots, X_{1}^{n+1}>
$$

$<X_{3}^{1}, X_{3}^{2}, \ldots, X_{3}^{n+1}>\subset H_{3}^{*}$

$$
\begin{equation*}
=<X_{3}^{0}, X_{3}^{1}, \ldots, X_{3}^{n+1}> \tag{3.2}
\end{equation*}
$$

If $X_{0}^{j} \in H_{0}^{*}$ is adjacent to X_{3}^{j}, where $\mathrm{j}=0,1, \ldots$, $\mathrm{n}+1$, obvious $X_{0}^{0}=\mathrm{u}$, then

$$
H_{0}^{*}=<X_{0}^{0}, X_{0}^{1}, \ldots, X_{0}^{n+1}>
$$

We now prove X_{1}^{0} is adjacent to X_{1}^{n+2}.
Suppose the contrary, set

$$
\mathrm{G} 3=\mathrm{G}-\mathrm{N}^{*}\left(X_{1}^{n+2}\right) ; X_{1}^{0} \in \mathrm{G} 3,
$$

by (3.1) and (3.2) we have X_{1}^{0} is adjacent to $\left\{X_{1}^{1}, X_{1}^{2}, \ldots, X_{1}^{n+1}\right\} \subset \mathrm{N}^{*}\left(X_{1}^{n+2}\right), \quad$ thus
$\mathrm{d}\left(X_{1}^{0}\right) \geq \mathrm{dG} 3\left(X_{1}^{0}\right)+\mathrm{n}+1=\mathrm{n}+2+\mathrm{n}+1>\mathrm{n}+5$,
a contradiction.
So X_{1}^{0} is adjacent to X_{1}^{n+2}, hence

$$
X_{1}^{0} \text { is adjacent to } \overline{H_{1}}
$$

Set $\mathrm{H} 1=<X_{1}^{0}, X_{1}^{1}, \ldots, X_{1}^{n+2}>\cong \mathrm{Kn}+3$.
Similar X_{3}^{0} is adjacent to X_{3}^{n+2},
X_{3}^{0} is adjacent to $\overline{H_{3}}$.
Set $\mathrm{H} 3=<X_{1}^{0}, X_{1}^{1}, \ldots, X_{1}^{n+2}>\cong \mathrm{Kn}+3$.
Similar $X_{2}^{0} \in \mathrm{~N}^{*}(\mathrm{u})$ is complete adjacent to $\overline{H_{2}}$, obvious $X_{2}^{0} \neq X_{1}^{0}, X_{2}^{0} \neq X_{3}^{0}$,
so

$$
\mathrm{H} 2=<X_{2}^{0}, X_{2}^{1}, \ldots, X_{2}^{n+2}>\cong \mathrm{Kn}+3 .
$$

Similar, in $\mathrm{G}-\mathrm{N}^{*}\left(X_{2}^{n+2}\right)$

$$
=<H_{0}^{*} \cup H_{1}^{*} \cup H_{3}^{*}>
$$

we have $X_{0}^{n+2} \in \mathrm{~N}^{*}\left(X_{2}^{n+2}\right)=<H_{0}^{*} \cup H_{1}^{*}>$ complete adjacent to H_{0}^{*}.
Obvious $X_{0}^{n+2} \bar{\epsilon}_{\left(\mathrm{H} 2 \cup X_{1}^{n+2} \cup X_{3}^{n+2}\right) \subset \mathrm{N}^{*}\left(X_{2}^{n+2}\right)}$
So $\mathrm{H} 0=<x_{0}^{0}, x_{0}^{1}, \ldots, x_{0}^{n+2}>\cong \mathrm{Kn}+3$.
Fact 3. Any point in Hr is adjacent to single point in $\mathrm{Hs} \neq \mathrm{r}$. Suppose the contrary, let $\mathrm{xj} \in \mathrm{H} 0$ be nonadjacent to H 2 , then $\mathrm{G}^{*}=$

$$
G-N^{*}\left(x_{0}^{j}\right) \cong K_{n+2} \times K_{3},
$$

but $\mathrm{H} \cong \mathrm{Kn}+3, \mathrm{H} 2 \subset \mathrm{G}^{*}$, contrary to $G^{*} \cong K_{n+2} \times K_{3}$
x^{j} is adjacent to H 2 . If H 2 has two points adjacent to x_{0}^{j}, by $\left.\mathrm{dH} 0\left(x_{0}^{j}\right)=\mathrm{n}+2, \quad \mathrm{~d} x_{0}^{j}\right)=\mathrm{n}+4$, so x_{0}^{j} is nonadjacent to $\mathrm{H} 1 \cup \mathrm{H} 2, \quad$ a \quad contradiction.

Fact 4. By Fact 3 we have x_{1}^{0} is adjacent to H2. If x_{1}^{0} adjacent to $\mathrm{x}^{2 \neq 0}$, by $\mathrm{x}^{2 \neq 0}$ is adjacent to x_{1}^{j}, thus H1 has two points adjacent to x_{2}^{j}, contrary to Fact 3 .
So x_{1}^{0} is adjacent to x_{2}^{0}.
Similar x_{3}^{0} is adjacent to x_{2}^{0},

$$
\begin{aligned}
& x_{0}^{n+2} \text { is adjacent to } x_{1}^{n+2} \\
& x_{0}^{n+2} \text { is adjacent to } x_{3}^{n+2}
\end{aligned}
$$

Fact 5. Since x_{0}^{j} is adjacent to x_{2}^{j} for $\mathrm{j}=0, \mathrm{n}+2$, let x_{0}^{j} be nonadjacent to x_{2}^{j} for $\mathrm{j} \neq 0, \mathrm{n}+2$,
by Fact 3 we have x_{0}^{j} adjacent to $x_{0}^{i \neq j}$.
Since x_{0}^{j} is adjacent to X_{1}^{j} and X_{3}^{j}, set

$$
\begin{aligned}
& G-N^{*}\left(\mathrm{x}_{0}^{\mathrm{j}}\right) \\
& \quad=<\left(H_{1}-x_{1}^{j}\right) \cup\left(H_{2}-x_{2}^{j}\right) \cup\left(H_{2}-x_{3}^{j}\right)>
\end{aligned}
$$

$$
\begin{equation*}
\cong K_{n+2} \times K_{3} \tag{3.3}
\end{equation*}
$$

By Fact 4 we have x_{2}^{t} adjacent to x_{1}^{t} and x_{3}^{t} for $\mathrm{t} \neq \mathrm{i}, \mathrm{j}$, by (3.1) we have x_{2}^{i} adjacent to x_{1}^{j} and x_{3}^{j}, contrary to (3.1).

So x_{0}^{j} is adjacent to x_{2}^{j}.

$$
\text { Hence } G=<X><\left.x_{r}^{j}\right|_{r=0,1,2,3} ^{j=0,1,2, n+2}>,
$$

where x_{r}^{i} is adjacent to x_{s}^{j} if and only if $\mathrm{r}=\mathrm{s}, \mathrm{i} \neq \mathrm{j}$ or $\mathrm{i}=\mathrm{j}, \mathrm{r} \neq \mathrm{s}$.

$$
\text { So } \quad G \cong K n+3 \times K 4 \text {. }
$$

We now prove the remainder of the Theorem 3.2 involving the small cases $\mathrm{n} \leq 11$. For $\mathrm{n}=2$, Erdös [2] construct a connected 3-K2-residual graph in Fig. 2. For $\mathrm{n}=3$ suppose G is a connected 3-K3-residual graph with $\mathrm{P}(\mathrm{G})=20<4 \times 3+12=24$, the graph in Fig.3. In the Section2, we by connected 2 -K2-residual graph construct connected 2-K4-residual graph and connected 2-K6residual graph, similar by con-nected 3-K2-residual graph construct con-nected 3-K4-residual graph G1, connected 3-K6-residual graph G2 and connected 3-K8-residual graph G3, where $\mathrm{P}(\mathrm{G} 1)=22, \mathrm{P}(\mathrm{G} 2)=33, \mathrm{P}(\mathrm{G} 3)=44$. For $\mathrm{n}=8$ we construct a connected 3-K8-residual graph $\mathrm{G} 3 \cong \mathrm{~K} 11 \times \mathrm{K} 4$.

Fig. 2. 3-K2-residual graph

Fig. 3. 3-K3-residual graph
In the above Fig. 3, we can see that all points in the same square adjacent.

IV. Multiply-Kn-Residual Graphs

To conclude the paper, let us present a conjecture. A connected ($\mathrm{m}-1$)-Kn-residual graph, denoted by ($\mathrm{m}-1$)-Knm-1-residual graph, a connected m-Kn-residual graph, denoted by m-Knm-residual graph.We revised Erdös conjecture.

Conjecture 3. For all m and n, then every connected $m-K n-r e s i d u a l ~ g r a p h ~ h a s ~ a t ~ l e a s t ~ m i n ~\{2 n(m+1)$, $\left.(\mathrm{n}+\mathrm{m})(\mathrm{m}+1), \frac{n}{2}(3 m+2)\right\}$ points.

For example: connected 2-K2-residual graph, connected 2-K4-residual graph, connected 3-K2-residual graph, connected 3-K4-residual graph, connected 3-K6-residual graph.

Conjecture 4. If $\mathrm{nm} \geq_{\mathrm{nm}}-1+2 \mathrm{~m}-1$ for $\mathrm{m} \leq_{\mathrm{n}}$ and $\mathrm{m} \neq 4 \mathrm{y}+1$, where y is a Natural Number and $\mathrm{n} 1=5$, then $\mathrm{G} \cong \mathrm{Kn}+\mathrm{m} \times \mathrm{Km}+1$ is a connected $\mathrm{m}-\mathrm{Kn}$-residual graph of minimum order, it is only such graph.

We have determined the minimum order of the connected m -Kn-residual graph for all m and n large, $\mathrm{Kn}+\mathrm{m} \times \mathrm{Km}+1$ is the only such graph with $(\mathrm{n}+\mathrm{m})(\mathrm{m}+1)$ points. We suppose that Erdös conjectures is true for $n \geqslant$ n0.
problem 1. What is n 0 ?
problem 2. What are the extremal graphs on connected m -Kn-residual graph for $\mathrm{n}<\mathrm{n} 0$?

REFERENCES

[1] J.A. Bondy and U.S.R. Murty, U. S. R. Graph Theory, Springer Series: Graduate Texts in Mathematics , Vol. 244 , 2008.
[2] P. Erdös, F. Harary and M. Klawe, Residually-CompleteGraphs, Annals of Discrete Mathematics, Vol. 6, pp 117123 (1980).
[3] Jiangdong LIAO and Shihui YANG, On M ultiply-Residually-Complete Graphs(unpublished).
[4] YANG Shihui. Residually Complete Graph with Odd Order, Acta Mathematics Applicate Sinca, Vol. 34 No. 4, July, 2011, pp: 1-8(in Chinese).
[5] Yang Shihui, Duan Huiming. Residually-complete Graphs with Weakly-minimum Order. Southwest China Normal University (Natural Science), 2006, 6: 7-10 (in Chinese).
[6] Yang Shihui, Liu Xuewen. F[Kt]- residual Graphs. Southwest China Normal University (Natural Science, 2003, 6: 373-376 (in Chinese).
[7] DONG Fang-ying; ZHANG Guo-fen. Normalization for microarray data: the weight function of local weight regression. Journal of Zhejiang University (Science Edition), Vol. 37 No. 1 Jan. 2010, pp: 22-29.
[8] He Xiaoqun \& Liu Wenqing. Preli- minary Discussion on Weighted Least Square Method and Its Residual Plot: Also Answering Associate Professor Sun Xiaosu. Statistical Research. No. 4 , 2006, pp: 53-57.
[9] A. A. Chernyak. Residual reliability of P-threshold graphs. Discrete Applied Mathematics, Volume 135, Issues 1-3, 15 January 2004, Pages 83-95.
[10] Matthias Aschenbrenner and Stefan Friedl. Residual properties of graph manifold groups. Topology and its Applications Volume 158, Issue 10, 15 June 2011, Pages 1179-1191.
[11] Primož Lukšič, Tomaž Pisanski. Distance-residual subgraphs. Discrete Mathematics, Volume 310, Issue 12, 28 June 2010, Pages 1653-1660.
[12] Joachim B. Kaffanke, Tony Stöcker, Sandro Romanzetti, Thomas Dierkes, Martin O. Leach, N. Jon Shah. Phasecycled averaging for the suppression of residual magnetisation in SPI sequ- ences. Journal of Magnetic Resonance, Volume 199, Issue 2, August 2009, Pages 117125.
[13] C. Sueur, G. DauphinTanguy. Bondgraph modelling of flexible robots: the residual flexibility. Journal of the Franklin Institute, Volume 329, Issue 6, November 1992, Pages 1109-1128.
[14] [Laurent Coupry. A simple linear algorithm for the edgedisjoint (s, t)- paths problem in undirected planar graphs. Information Processing Letters, Volume 64, Issue 2, 28 October 1997, Pages 83-86.
[15] A.K. Samantaray, K. Medjaher, B. Ould Bouamama, M. Staroswiecki, G. Dauphin-Tanguy. Diagnostic bond graphs for online fault detection and isolation. Simulation

Modelling Practice and Theory, Volume 14, Issue 3, April 2006, Pages 237-262.
[16] Chavdar Dangalchev Residual closeness in networks Physica A: Statistical Mechanics and its Applications, Volume 365, Issue 2, 15 June 2006, Pages 556-564
[17] Marston Conder, Roman Nedela Symmetric cubic graphs of small girth Journal of Combinatorial Theory, Series B, Volume 97, Issue 5, September 2007, Pages 757-768
[18] Tuan-Fang Fan, Churn-Jung Liau, Tsau-Young LinA theoretical investigation of regular equivalences for fuzzy graphs International Journal of Approximate Reasoning, Volume 49, Issue 3, November 2008, Pages 678-688
[19] Wassim El Osta, Belkacem Ould Bouamama, Christophe Sueur Monitorability indexes and bond graphs for fault tolerance analysis Fault Detection, Supervision and Safety of Technical Processes 2006, Pages 1485-1490
[20] Charles J. Colbourn, A. Satyanarayana, C. Suffel, K. Sutner Computing residual connectedness reliability for restricted networks Discrete Applied Mathematics, Volume 44, Issues 1-3, 19 July 1993, Pages 221-232
[21] M. Shirvani On residually finite graph products Journal of Pure and Applied Algebra, Volume 49, Issue 3, December 1987, Pages 281-282

[^0]: Manuscript received May 10, 2011; revised June 20, 2011, accepted July 1, 2011.

 Partially supported by Foundation Project of China Yangtze Normal University

