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Abstract—In this paper. We introduce a general iterative 
method for the family of mappings and prove the strong 
convergence of the new iterative scheme in Banach space. 
The new iterative method includes the iterative scheme of 
Khan and Domlo and Fukhar-ud-din [Common fixed points 
Noor iteration for a finite family of asymptotically quasi-
nonexpansive mappings in Banach spaces. J. Math. Anal. 
Appl. 341 (2008) 1–11]. The results generalize the 
corresponding results. 
 
Index Terms—strong convergence, common fixed point, 
generalized asymptotically quasi-nonexpansive mapping, 
viscosity iteration sequence, modified W-mapping 
 

I.  INTRODUCTION 

Let C  be a nonempty subset of a real Banach space 
E  and T  a self-mapping of C . The set of fixed points 
of T  denote by )(TF  and we assume that )(TF  φ≠ . 
The mapping T  is said to be generalized asymptotically 
quasi-nonexpansive [1] if there exists two sequences 

}{ nu , }{ nh  in ),0[ ∞+  with 0lim =
∞→ nn

u  and 

0lim =
∞→ nn

h  such that 

nn
n hpxupxT +−+≤− )1( , 

 Cx ∈∀ , )(TFp ∈ , (1.1) 

where …,2,1=n . If 0=nh  for all 1≥n , then T  
becomes asymptotically quasi-nonexpansive mapping; if 

0=nu  and 0=nh  for all 1≥n , then T  becomes 
quasi-nonexpansive mapping. It is known that an 
asymptotically nonexpansive mapping is an 
asymptotically quasi-nonexpansive. 

Let C  be a nonempty closed convex subset of a real 
Banach E , }{ nS  a family of generalized asymptotically 

nonexpansive mappings of C  into itself and let 
}1,,:{ kiNinin ≤≤∈α  be a sequence of real 

numbers such that 10 ≤≤ ina  for every ,, Nin ∈  

ki ≤≤1 . Then we consider the following mapping of 
C  into itself: 
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Such a mapping nW  is called the modified W-mapping 

generated by kSSS ,,, 21 …  and knnn ααα ,,, 21 …  (See 
[4]). 

In 2008, Khan, Domlo and Fukhar-ud-din [2] 
introduced the following iteration process for a family of 
asymptotically quasi-nonexpansive mappings, for an 
arbitrary Cx ∈1 : 
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# (1.3) 

where nn xy =0 , ]1,0[⊂inα ),,2,1( ki …= , 

…,2,1=n  and proved that the iterative sequence 

}{ nx  defined by (1.3), converges strongly to a common 
fixed point of the family of mappings if and only if 

0),(inflim =→∞ Fxd nn , where =),( Fxd n  

px
Fp

−
∈

inf . (1.3) may denote by 

 nnn xWx =+1 , (1.4) 

where k
iiS 1}{ =  is a family of asymptotically quasi-

nonexpansive mappings of C  into itself. 
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Recently, Chang, lee, chan and kim [3] introduced the 
following iteration process of asymptotically 
nonexpansive mappings in Banach space: 
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where }{ nλ , ]1,0[}{ ⊂nβ ， f  is a  fixed contractive 
mapping, and gave the sufficient and necessary condition 
for the iterative sequence }{ nx  converges to the fixed 

points of S . 
For a family of mappings, it is quite significant to 

devise a general iteration scheme which extends the 
iteration (1.3) and the iteration (1.5), simultaneously. 
Thereby, to achieve this goal, we introduce a new 
iteration process for a family of mappings as follows: 

Let C  be a nonempty closed convex subset of a real 
Banach E , →CSi :{  },,2,1, kiC …=  a family of 
generalized asymptotically quasi-nonexpansive mappings 
and CCf →:  a fixed contractive mapping with 

contractive coefficient ]1,0[∈α . For a given Cx ∈1 , 
the iteration scheme is defined as follows: 

 ,)1()(1 nnnnnn xWxfx λλ −+=+  (1.6) 

where ]1,0[}{ ∈nλ . Further, let },:{ NnCCTn ∈→  
be a family of mappings. We propose the following 
iteration scheme: 

 ,)1()(1 nnnnnn xTxfx λλ −+=+  (1.7) 

where ]1,0[}{ ∈nλ . 
The purpose of this paper is to study the convergence 

problem of the iterative sequences }{ nx  defined by (1.6) 
and (1.7). The results extend the results of [2]. 

II.  PRELIMINARIES 

Lemma 2.1 (see [5]) Let }{ na ， }{ nδ  and }{ nγ  be 
sequences of nonnegative real sequences satisfying the 
following conditions:  

nnnn aa γδ ++=+ )1(1 , Nn ∈∀ , 

where ∞<Σ∞
= nn δ1  and  ∞<Σ∞

= nn γ1 , then nn a∞→lim  

exists. Moreover, if in addition, 0inflim =∞→ nn a , 

then 0lim =∞→ nn a . 

Next, we introduce two new conditions. Let C  be a 
nonempty closed convex subset of a real Banach E . Let 

nT  and T  be families of mappings of C  into itself such 

that 1( ) ( )n nF F Tφ ∞
=≠ ⊂ ∩T , where )( nTF  is the set 

of all fixed points of nT  and )F T(  is the set of all 

common fixed points of T . Then, nT  is said to satisfy: 

(a) condition (I) with T  if for ( )y F∈ T , there exists 

two sequences ∞
=1}{ nnδ  and ∞

=1}{ nnγ  in ),0[ ∞  with 

+∞<Σ∞
= nn δ1 , +∞<Σ∞

= nn γ1  such that 

nnn yxyxT γδ +−+≤− )1( , NnCx ∈∈∀ , ; 

 (b) condition (II) with T  if condition (I) is satisfied and 

1( ) ( )n nF F T∞
== ∩T . 

Lemma 2.2 Let C  be a nonempty closed convex subset 
of a real Banach E , nT  and T  two families of 

mappings of C  into itself such that ( )Fφ ≠ ⊂T  

1 ( )n nF T∞
=∩ . Suppose that nT  satisfies condition (I) with 

T . Let { }nλ  be a sequence of real numbers with 

0 1nλ≤ ≤  for all n N∈ , 1n nλ∞
=Σ < ∞ . Let :f  

C C→  be a contraction with 0 1α< < . The sequence 
{ }nx  defined by (1.7), then 

(1) there exists a sequence { }nξ  in ),0[ ∞  with 

+∞<Σ∞
= nn ξ1  such that 

nnnn pxpx ξδ +−+≤−+ )1(1 , 

( ),p F n N∀ ∈ ∀ ∈T  ; 

(2) there exists a constant 1 0M > , such that 

∑
∞

=
+ +−≤−

nj
jnmn MpxMpx ξ11 ,  

( ), ,p F n m N∀ ∈ ∀ ∈T  . 

Proof. (1) Let ( )p F∈ T , by (1.7), we have 
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nnn px ξδ +−+≤ )1( ,  (2.1) 

where ppfnnn −+= )(λγξ , +∞<Σ∞
= nn ξ1 . This 

completes the proof of (1). 
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(2) If 0≥t , then tet ≤+1 . And for all integer 1m ≥ , 
by (2.1), we obtain 
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nj

jn MpxM ξ11 , 

where )exp( 11 jjM δ∞
=Σ= . This completes the proof. 

Lemma 2.3 Let C  be a nonempty closed convex subset 
of a real Banach E . Let iS ),,2,1( ki …=  be k  
generalized asymptotically quasi-nonexpansive self-
mappings of C  with ),0[, ∞⊂inin hu  such that 

1n inu∞
=Σ < +∞ and  1n inh∞

=Σ < +∞ for all Ni ∈ , 

ki ≤≤1 . Suppose 1 ( )k
i iF S φ= ≠∩  and ⊂}{ inα  

]1,0[ ),,2,1( ki …=  for all Nn∈ . Let nW  be the 

modified W-mapping generated by kSSS ,,, 21 …  and 

knnn ααα ,,, 21 …  for all Nn∈ . Then nW  satisfies 

condition (I) with k
iiS 1}{ = . 

Proof. From (1.2) we obtain that 1 ( ) ( )k
i i nF S F W= ⊂∩ . 

Let 1maxn i k inuν ≤ ≤= , for all Nn∈ . Since 

+∞<Σ∞
= inn u1  for each i , therefore nn ν∞

=Σ 1 +∞< . For 

all 1 ( )k
i ip F S=∈∩  and x C∈ , it follows from (1.2) 

that 
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where, ∑ = −
= j

r
r
njn rjr

j
1 )!(!

! νδ , ∑ =
= j

i injjn hM
1

γ , 

)1(sup −= j

n
j

neM ν . Since +∞<Σ∞
= nn ν1  and 

+∞<Σ∞
= inn h1  for all ki ≤≤1 , therefore jnn δ∞

=Σ 1  

+∞< and +∞<Σ∞
= jnn γ1  )1( kj ≤≤ . Hence,  

pxUpxW knn −=−  knkn px γδ +−+≤ )1( . 

 Thus, nW  satisfies condition (I) with k
iiS 1}{ = . 

Lemma 2.1 in [2] can be easily elicited from lemma 
2.2 and lemma 2.3. 

III. STRONG CONVERGENCE THEOREMS FOR THE FAMILY 
OF MAPPINGS 

Theorem 3.1 If all the condition of lemma 2.2 are 
conformed, and plus one another that )F T(  be a closed 

subset of E . Then the sequence { }nx  defined by (1.7) 

converges strongly to ( )p F∈ ⊂T 1 ( )n nF T∞
=∩  if and 

only if lim inf ( , ( )) 0n nd x F→∞ =T , where 

( , ( ))nd x F T
( )

inf ny F
x y

∈
= −

T
. 

Proof: We will only prove the sufficiency; the necessity 
is obvious. From Lemma2.2 (1), we have 

1( , ( )) (1 ) ( , ( ))n n n nd x F d x Fδ ξ+ ≤ + +T T , 

( ), 1p F n∀ ∈ >T  .  

By Lemma 2.1 and lim inf ( , ( )) 0n nd x F→∞ =T , 

we get that lim ( ,n nd x→∞  ( ) ) 0F =T . Next, we 

prove that { }nx  is a Cauchy sequence. From Lemma 2.2 
(2), we have 

∑
∞

=
+ +−≤−

nj
jnmn MpxMpx ξ11  , 

, , ( )n m N p F∀ ∈ ∈ T  

Hence, for all integer 1m ≥  and all ( )p F∈ T , 
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Taking infimum over ( )p F∈ T  in (3.1) gives   
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Now, since lim ( , ( )) 0n nd x F→∞ =T  and 

1j jξ∞
=Σ < +∞ , given 0ε > , there exists an integer 

1 0N >   such that for all 1n N> , ( , ( ))nd x F <T   

12( 2)M
ε

+
 and 

12( 2)n
j n M

εξ
∞

=

<
+∑  . So for all 

integers 1n N> , 1m ≥ , we obtain from (3.2) that 

,n m nx x ε+ − ≤  1, 1n N m> ≥  . 

Hence, { }nx  is a Cauchy sequence in E . Since E  is 

complete, there exists Eq ∈  such that limn nx→∞  

q= .We now show that ( )q F∈ T . Since 

( , ( )) 0nd x F →T  and nx q→ , as n → ∞ , for each 

є 0> , there exists a natural number N  such that for all 

n N> , ( , ( ))
2nd x F < ЄT  and nx q−  

2
< Є

. In 

particular, we have ( )( , ( )) infN p F Nd x F x p∈= −TT  

2
< Є

, i.e., there exists ( )p F∈ T , such that 

2Nx p− < є
, hence 

N Nq p x q x p− ≤ − + − < є  . 

Since ( )F T  is a closed subset of E , we obtain 
( )q F∈ T . This completes the proof. 

Using Theorem 3.1, we obtain the following theorem: 

Theorem 3.2 Let C  be a nonempty closed convex subset 
of a real Banach E , nT  and T  two families of 

mappings of C  into itself and 1 ( )n nF T∞
=∩  a closed 

subset of E . Suppose that nT  satisfies condition (II) 

with T . Let { }nλ  be a sequence of real numbers with 

0 1nλ≤ ≤  for all n N∈ ,  and :f  C C→  a 

contraction with 0 1α< < . Suppose that Cx ∈1 , 

1n nλ∞
=Σ < ∞ . Then the sequence { }nx  defined by (1.7) 

converges strongly to 1 ( )n np F T∞
=∈∩  if and only if 

1
lim inf ( , ( )) 0n n nn

d x F T∞
→∞ =

=∩ . 

IV.  STRONG CONVERGENCE THEOREMS FOR GENERALIZED 
ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPING 

Theorem 4.1 If all the condition of lemma 2.3 are 
conformed. Let 1 ( )n nF S∞

=∩  be a closed subset of E . 

Let { }nλ  be a sequence of real numbers with 
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0 1nλ≤ ≤  for all n N∈ , 1n nλ∞
=Σ < ∞ . Let :f  

C C→  be a contraction with 0 1α< < . Starting from 
arbitrary 1x C∈ , define the sequence { }nx  defined by 

(1.6), then the sequence { }nx  converges strongly to 

p ∈ 1 ( )k
i iF S=∩  if and only if lim infn→∞  

1
( , ( )) 0k

n ii
d x F S

=
=∩ . 

Proof: By Lemma 2.3, nW  satisfies condition (I) with 
k
iiS 1}{ = , we obtain from Theorem 3.1 that { }nx  

converges strongly to  p ∈ 1 ( )k
i iF S=∩ . This completes 

the proof. 
Using Theorem 4.1, we also obtain the following 

theorem which was proved by Khan, Domlo, and Fukhar-
ud-din [2]. 

Theorem 4.2 Let C  be a nonempty closed convex subset 
of a real Banach E . Let iS ),,2,1( ki …=  be k  

asymptotically quasi-nonexpansive self-mappings of C  
with ),0[ ∞⊂inu  such that 1n inu∞

=Σ < +∞  for all 

Ni ∈ , ki ≤≤1 . Suppose 1 ( )k
i iF S φ= ≠∩  and 

⊂}{ inα  ]1,0[ ),,2,1( ki …=  for all Nn∈ . For any 

given Cx ∈1 , define the sequence { }nx  by the 

recursion (1.3). Then { }nx  converges strongly to 

p ∈ 1 ( )k
i iF S=∩  if and only if lim infn→∞  

1
( , ( )) 0k

n ii
d x F S

=
=∩ . 

Proof: Easy to show that 1 ( )k
i iF S=∩  is closed. In (1.6), 

taking , 0=nλ  and 0=inh  ),,2,1( ki …=  for all 

Nn ∈ , (1.6) is reduced to (1.3). Therefore the 
conclusion of Theorem 4.2 can be obtained from 
Theorem 4.1 immediately. 

Theorem 4.3 Let C  be a nonempty closed convex subset 
of a real Banach E . Let S  be a asymptotically 
nonexpansive self-mappings of C  with ),0[ ∞⊂nu , 

i.e., yxuySxS n
nn −+≤− )1(  for all  Cyx ∈, , 

where 1n nu∞
=Σ < +∞  , suppose φ≠)(SF . Let { }nλ  

be a sequence of real numbers with 0 1nλ≤ ≤  such that 

1n nλ∞
=Σ < ∞  for all n N∈ , and :f  C C→  a 

contraction with 0 1α< < . Starting from arbitrary 

1x C∈ , define the sequence { }nx  defined by (1.5).  

Then the sequence { }nx  converges strongly to p ∈ 

( )F S  if and only if lim inf ( , ( )) 0n nd x F S→∞ = . 

Proof: In (1.6), taking ISSS k ==== −221 , " , 

1=knα , nnk βα =− − )1(1 , SSS Kk == −1  , 0=inh  

),,2,1( ki …=  for all n N∈ , (1.6) is reduced to 
(1.5). Therefore the conclusion of Theorem 4.3 can be 
obtained from Theorem 4.1 immediately. 

Let ,0)0(:),0[),0[:{ =∞→∞= ggG g: 
continuous; strictly increasing; convex}. We have the 
following lemma for a uniformly convex Banach space. 

Lemma  4.1  (see [6]) E  is a uniformly convex Banach 
space if and only if for every bounded subset B  of E , 
there exists Gg ∈  such that 
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For all Byx ∈,  and ]1,0[∈λ . 

Lemma 4.2 Let E  be a real uniformly convex Banach 
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quasi-nonexpansive mappings with 
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By (2.2) and (4.2), we have 
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Since each iS  is uniformly L-Lipschitzian, we conclude 
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hence, we get 0lim =−∞→ pSp n
mn  for all 

km ,,2 …= . Repeat the above process, we get 
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So, we obtain 0=− pSp m  for km ,,2,1 …= , i.e., 

pSp m= ,  1 ( )k
i iF S=∩  1 ( )n nF W∞

== ∩ . This 
completes the proof. 

Theorem 4.4 Let E  be a real uniformly convex Banach 
space, C  a nonempty bounded closed convex subset of 
E  and iS : CC → ),,2,1( ki …=  be k  uniformly L-
Lipschitzian, generalized asymptotically quasi-
nonexpansive mappings with ),0[}{},{ ∞⊂inin hu  

such that 1n inu∞
=Σ < +∞ and  1n inh∞

=Σ < +∞ for all 

Ni ∈ , ki ≤≤1 . Suppose 1 ( )k
i iF S φ= ≠∩  is closed. 

Let }{ inα  ( Nni ∈,  , ki ≤≤1 ) be a sequence of real 

numbers with 10 ≤≤< kna α , inb α≤<0  1<≤ c  

( i≤1  1−≤ k ) for all Nn ∈  and  nW  be a modified 

W-mapping generated by k
iiS 1}{ = and k

iin 1}{ =α , }{ nλ  a 

sequence of real numbers with 10 ≤≤ nλ  for all 

Nn ∈ , 1n nλ∞
=Σ < +∞  and :f CC →  a contraction 

with 10 << α . For any given Cx ∈1 , the sequence 

}{ nx  defined by the recursion (1.6). Then }{ nx  
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converges strongly to 1 ( )n np F W∞
=∈∩  if and only if 

lim infn→∞  
1

( , ( )) 0k
n ii

d x F S
=

=∩ . 

Proof: By Lemma 4.2, there exists k
iiS 1}{ =  such that 

1 ( )k
i iF S=∩  1 ( )n nF W∞

== ∩ , using Theorem 4.1, we 
obtain Theorem 4.4. 
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