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Abstract—Multi-scale geometrical and topological analyses 
of point clouds can reveal their rich structures. Because 
conformal alpha shapes of point clouds are hierarchical 
shapes under different mesh resolution or internal alpha 
values, their surface curvature estimations are one of the 
multi-scale geometrical analyses. We present a robust 
method for computing surface curvature of conformal alpha 
shapes on point cloud data, and provide theoretical 
guarantees on the robustness of our method. An approach is 
proposed to estimate the internal alpha scale parameters. 
The methods can be used to extract local curvatures of 
hierarchical shapes and as a multi-scale geometrical analysis 
method of point clouds. It is useful in many applications 
ranging from bio-geometric modeling to surface 
reconstruction. We describe an implementation of the 
algorithm and show example outputs.  
 
Index Terms—conformal alpha shape, curvature estimation, 
surface reconstruction, internal alpha scale, multi-scale 
geometrical analysis 
 

I.  INTRODUCTION 

Curvature of surfaces can be used to identify features 
such as ridges and valleys, and planar, convex, concave, 
or saddle shapes. Principal curvatures are rotation-
invariant local descriptors, which have proven useful in 
detecting structural regularity [19], global matching [2], 
modeling and rendering of point-based surfaces [14], and 
anisotropic smoothing [17]. Multi-scale surface 
descriptors capture statistically shapes of the 
neighborhood of a central point [6]. 

Curvature calculation methods applicable to triangular 
meshes fall into three categories [12]. Surface fitting 
involves finding an analytic function that fits the mesh 
locally. The curvature of the analytic function is well-
defined. Discrete methods develop either a direct 
approximation for the curvature, or an approximation of 
the curvature tensor, from which curvature and curvature 
directions can be calculated. Discrete curvature equations 
are made from the continuous equations by 
approximating integrals as a summation of contributions 
attributed to each face or edge adjacent to a vertex.  

There has been substantial work in estimating discrete 
surface curvature. A flexible disk around a given triangle 
is used as a geodesic neighborhood of the face for 
approximating principal curvatures [21]. Statistical 
estimation allows generation of lines of curvature on 
noisy point clouds with outliers [16]. Voronoï covariance 
of a point cloud is used for curvature estimation [18]. 
Local discrete surface is modeled by a set of discrete 
curves, and principal curvatures and principal directions 
from discrete surfaces are estimated using the curves [3]. 
Curvature estimation on deformable meshes is explored 
with methods limited to CPU algorithms [15]. 

While various curvature estimations based on local 
shapes exist, their inability to summarize the shape of 
larger regions limits their utility. It is important to 
development a method of curvature estimation that is 
applicable at different scales to summarize the shapes of 
differently sized neighborhoods. This allows it to be 
applied to smaller regions to capture small-scale detail, or 
to larger neighborhoods to summarize their overall shape. 
Regions of the surface may have one shape at a small 
scale, but a different shape at a larger scale (e.g. a small 
bump within a large bowl).  

This paper introduces an approach of curvature 
estimations based on conformal alpha shape that meets 
this goal, because conformal alpha shapes of point clouds 
are hierarchical shapes under different mesh resolution or 
internal alpha values. 

With conformal alpha shape filtration, curvature 
provides detailed local features of point cloud under high 
mesh resolution or small internal alpha values, and 
summary local features under low mesh resolution or 
large internal alpha values. A key insight of this method 
is that it is a coarse-grained view of point cloud, capable 
to capture details of local shapes as well as the most 
significant aspects of finite regions.  

Alpha shape, hierarchical shapes of point cloud, 
defines a family of simplicial complexes parameterized 
by Rα ∈  [9].  Alpha shapes have been used for shape 
modeling, detecting pockets in proteins, and reverse 
engineering [22], [10]. 
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However alpha shape has its limits. First, alpha shapes 
define a family of complexes, but it is not clear which 
α -complex is suitable for reconstruction. Second, the 
chosen α  fixes a global scale, so the method can be 
successful only for uniform sampling. The algorithms 
that have been successful in practice all use local filters to 
cope with nonuniform sampling. 

Conformal alpha shapes, similar to alpha shapes, use a 
local scale parameter α̂ instead of the global scale 
parameter α [5]. Conformal alpha shapes can be used for 
surface reconstruction of non-uniformly sampled 
surfaces, which is not possible with alpha shapes. 

In the rest of the paper, we estimate curvatures of 
surface reconstructed with conformal alpha shape. In 
Section 2, we describe conformal alpha shapes largely 
following Edelsbrunner [9] and Cazals [5]. In Section 3, 
we describe the curvatures estimation on conformal alpha 
shapes with works of Dong [8] and Seibert [20]. In 
Section 4, we present an algorithm to compute internal 
alpha scale parameters and to estimate surface curvature 
of conformal alpha shapes. In Section 5, we discuss 
results on the sample of Stanford Bunny. In this work, we 
are primarily interested in estimating face-based 
curvatures on 3D conformal alpha shapes. One of our key 
motivating applications is the matching of molecular 
surface regions to identify potentially similar chemical 
functionality.  

II.  CONFORMAL ALPHA SHAPES 

In this section, we begin by briefly describing the 
background necessary for our work, including the 
definition of alpha complexes as well as conformal alpha 
complexes as families of subcomplexes of the Delaunay 
triangulation. 

Conformal alpha shapes use a local scale parameter α̂  
instead of the global α [5].  

A.  Preliminaries 
Voronoï diagram ( )V P  of point set P is a cell 

decomposition of dR into convex polyhedra. Every 
Voronoï cell pV  corresponds to exactly one sample point 

p P∈  and contains all points of dR closest to p [11]. 
That is,  

{ },d
pV x R x p x q q P= ∈ − ≤ − ∀ ∈  

Delaunay triangulation ( )D P of P is the dual of the 
Voronoï diagram [11]. Whenever a collection 

1
, ,

kp pV V" of Voronoï cells have a non-empty 
intersection, the simplex defined on the corresponding 
points 1, , kp p" is in ( )D P . ( )D P is a simplicial 
complex that decomposes the convex hull of the points in 
P.  

Alpha shape is a filtration of the Delaunay 
triangulation of P restricted to alpha balls, which are 
balls of radius [ )0,α ∈ ∞ around points in P. A simplex 
belongs to the alpha complex if the Voronoï cells of its 
vertices have a common non-empty intersection with the 

set of alpha balls. At α = 0, the alpha complex consists 
just of the set P, and for sufficiently large α, the alpha 
complex is the Delaunay triangulation ( )D P of P. For 

any simplex ( )D Pσ ∈ , let ( )α σ  be α value at which σ 
appears for the first time in the alpha complex. The alpha 
shape filtration is the sequence of alpha complexes 
obtained from growing σ from zero to infinity. The 
filtration may be used for multi-scale topological analysis 
of the point cloud. It is this rich structure that makes 
alpha shapes popular in many applications ranging from 
bio-geometric modeling to surface reconstruction. 

B.  Conformal Alpha Shape filtration 
Conformal alpha shape is a filtration of the Delaunay 

triangulation of P similar to the alpha shape filtration. In 
contrast to alpha shapes the former filtration is 
parameterized by a local scale parameter instead of the 
global scale parameter in alpha shapes. 

For p P∈ , let ( )pD D P⊆ denote the simplices 
incident on p. Alpha values α determine a partial ordering 
on pD , one which is made into a total ordering by sorting 
according to dimension and breaking the remaining ties 
arbitrarily. pD may be viewed as a sequence of simplices 

with non-decreasing alpha values 1 n
p pα α≤ ≤" . 1

pα = 0 
since the first simplex in pD  is the point p which appears 

at α = 0. Let p pα α− +≤ , internal alpha scale parameters, be 

two values in { }i
p i

α . We re-scale i
pα using these local 

values:  
( )

ˆ
i
p pi

p
p

α α
α

α

−

+

−
= ,    (2.1) 

where ˆ i
pα is called the internal alpha scale. This scale 

is invariant to Euclidean transformations and scaling, so it 
is conformal [5]. 

We put a ball of radius pα at each point p P∈ , where 

( )ˆ ˆp p pα α α α α+ −= + , and a ball of negative radius is 

defined to be empty. Let ˆ
pCα  be the intersection of the 

Voronoï cell pV and the ball at p and let ˆCα  be the 

interior of ˆ
p P pCα
∈∪ . The conformal alpha shape 

(complex) is the Delaunay triangulation of P restricted 
to ˆCα . The theoretical guarantees and topological 
property was discussed by Cazals and Giesen [5].  

For any simplex ( )D Pσ ∈ , let ( )α̂ σ  be the α̂ value 
at which σ appears for the first time in the conformal 
alpha shape. We may compute the ( )α̂ σ from the value 

of ( )α σ . Let 1, , kp p P∈" be the vertices of σ. Then,  

( ) ( ) ( ){ }
1

ˆ ˆ ˆmax inf |
ipi k

α σ α α α α σ
≤ ≤

= ≥ .  (2.2) 
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C.  Internal alpha scale parameters 
Let pV be the Voronoï cell of a sample point p P∈ . If 

pV  is bounded, we let uG  be the vector from p to the 
Voronoï vertex in pV  that has the largest distance to p. 
Otherwise, pV  is unbounded and we let uG  be a vector in 
the average direction of all unbounded Voronoï edges 
incident to pV . The pole of pV  is the Voronoï vertex 

p∗ in pV  with the largest distance to p such that the 

vector uG  and the vector from p to p∗ make an angle larger 
than 2π [1]. 

For the internal alpha scale parameters pα − and pα +  for 

a sample point p P∈ , let pα −  = 1
pα = 0, and let pα + be the 

α value at which the simplex dual to the pole *p appears 

in the ordinary alpha shape, that is *
p p pα + = − . 

D.  Theoretical Guarantees 
On a smooth surface S embedded in 3R , an open ball is 

empty if it does not contain any point from S. An empty 
ball is maximal if it is not contained in a larger empty 
ball. The medial axis M(S) of S is the union of the centers 
of all maximal open balls. The distance of a point 
x S∈ to the medial axis is M(S) its local feature size, 
which is defined as 

( )
( )

inf
y M S

f x x y
∈

= − .  (2.3) 

An ε-sample of S is a subset P S⊆ such that every 
point x S∈ has a point p P∈ at distance at most ( )f xε .  

The restricted Voronoï diagram ( )SV P  is the Voronoï 

diagram ( )V P intersected with the surface S. The 

restricted Delaunay triangulation ( )SD P  is its dual and is 
necessarily a subset of the Delaunay triangulation. 

Lemma 1 Let P be an ε-sample of a smooth surface S. 
Then, all conformal alpha shapes for α̂ η≥ contain 

( )SD P , where ( )= 1-η ε ε  [5].  
It asserts that the conformal alpha shape for a large 

enough α̂ contains certain simplices of the Delaunay 
triangulation of a surface sampling. 

Lemma 2 Let P be an ε-sample of a smooth surface S. 
The neighbors of p P∈ in a conformal alpha shape for 
small values of α̂ are at distance at most [5] 

( )ˆ1 2
ˆ1 sin 3arcsin

2

f pα η
πα η

+⎛ ⎞
⎜ ⎟− ⎛ ⎞⎝ ⎠ −⎜ ⎟

⎝ ⎠

 (2.4) 

It states that the conformal alpha shape does not 
contain simplices that are too large. Thus the Voronoï 
cells of the sample points are long and thin and directed 
almost along the normal at the sample points.  

III.  CURVATURES ESTIMATION 

We use a discrete method for curvature estimation to 
avoid the computational costs associated with fitting 

algorithms. These methods do not involve solving a least 
square problem and are very fast. 

For the Delaunay triangulation ( )D P  of a point set P, 
its surface S is assumed to be oriented and consistent. 
Because each face f of ( )D P  is planar, face f has a well 
defined unit length normal vector fN . From face normal, 
we can estimate the principal curvatures and principal 
directions of the surface.  

A.  Surface normal estimation 
Surface normal is estimated based on the local 

neighborhood of Delaunay triangulation [13]. Local 
regions are typically based on a 1-ring neighborhood. A 
1-ring neighborhood around a vertex is the set of faces 
incident at that vertex, and the associated vertices of 
those faces. We denote by ( )Neighbor p the set of one-
ring neighbor vertices of p and m the number of points 
in ( )Neighbor p . The radius of a neighborhood can be 
recursively enlarged by defining a k-neighborhood 

( )kNeighbor p  as 

( ) ( )1Neighbor p Neighbor p=  
 (3.1) 

11 ( )k kkNeighbor  (p) Neighbor  pp Neighbor  (p) ii
−−= ∈∪

    2k  ≥  
 (3.2) 

According to Chen and Wu [7], the normal pN at 
vertex p can be computed as a weighted average normal 
of the faces incident to p: 

1

1

i

i

m

i f
i

p m

i f
i

w

w

=

=

=
∑

∑

N
N

N
,  

 (3.3) 
where m is the number of faces incident to p, 

if
N is the 

unit length normal of face if incident to p, and the weight 

iw is chosen as 
1

i
i

w
g p

=
−

,  

 (3.4) 
where ig  is the center of the triangle face if  determined 
as 

( )3 1, ,
j i

i jp f
g p i m

∈
= =∑ " . 

 (3.5) 

B.  Surface curvature estimation 
Dong and Wang [8] described an algorithm to estimate 

the principal curvatures by Euler formula. 
For each ip connected to p through an incident edge of 

p, ( )ip Neighbor p∈ , it is define as the unit length 
projection of the vector ip - p  onto the tangent plane at p, 
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2ê

1̂e

1e
2e tt

0θ
iθ

 
Figure 1. The coordinate system on the tangent plane at p, the tangent
directions it  and the principal directions 1e and 2e  

( )
( )

( )
,

1, ,
,

i i p p
i

i i p p

p p p p
i n

p p p p

− − −
= =

− − −
"

N N
t

N N
 

 (3.6) 
where n is the number of edge incident to p. 
Supposing ( )n idk t  is the maximum normal curvature 

in ( )( )1, ,n ik i n= "t , we choose a coordinate system 

{ }1 2,e e  on the tangent plane at p: 

1 ide = t , 1
2

1

e
e

e
×

=
×

N
N

  

 (3.7) 
According to Euler formula, the normal curvature nk  

along it is given by is 

( ) ( )2 2
1 2cos sinnk k kθ θ= +  

where θ is the angle between it  and 1e . 
Simple calculations show that 

( )2 1 2
0

1
2 2n

k k
k d H

π
θ θ

π
+

= =∫  

 (3.8) 

( )2 2 2

0

1 3 1
2 2 2nk d H K

π
θ θ

π
= −∫  

 (3.9) 
where H is the mean curvature and 1 2K k k= ×  is the 
Gaussian curvature. These integral formulas allows us to 
estimate the mean and Gaussian curvatures of a 
triangulated surface. 

According to Dong [8] and Seibert [20], we choose a 
special coordinate system { }1 2ˆ ˆ,e e  on the local tangent 
plane. The angle between the vector 1ê and 1e is 0θ . Let 

iθ be the angle between the tangent vector it  and 1ê  
(Fig.1). The Euler formula become 

( ) ( ) ( )2 2
1 0 2 0cos - sin -n i i ik k kθ θ θ θ= +t  (3.10) 

It can be rewritten as 
( ) ( ) ( ) ( ) ( )2 2cos cos sin sin ,
1, ,

n i i i i ik a b c
i n

θ θ θ θ= + +
= "

t
 

     (3.11) 
where 

( ) ( )2 2
1 0 2 0cos sina k kθ θ= +   (3.12) 

( ) ( ) ( )2 1 0 02 cos sinb k k θ θ= −   (3.13) 

( ) ( )2 2
1 0 2 0sin cosc k kθ θ= +   (3.14) 

The normal curvature ( )n ik t  can be estimated by a 
circle fitting algorithm, or is approximated by 

( ) ( )
,

1, ,
,

i i p
n i

i i

p p
k t i n

p p p p

− −
= =

− −
"

N N
 (3.15) 

Constants b and c can be computed with the least 
square method. The principal curvatures and the angle 0θ  
can be solved by their relation with a, b, c. 

( )
13 22 23 12

2
11 22 12

a a a a
b

a a a
−

=
−

,   (3.16) 

( )
11 23 12 13

2
11 22 12

a a a a
c

a a a
−

=
−

  (3.17) 

where 

( ) ( )2 2
11

1

cos sin
m

i i
i

a θ θ
=

=∑ , (3.18a) 

( ) ( )3
12

1
cos sin

m

i i
i

a θ θ
=

=∑ ,  (3.18b) 

21 12a a= ,   (3.18c) 

( )4
22

1

sin
m

i
i

a θ
=

=∑    (3.18d) 

( ) ( )( ) ( ) ( )2
13

1

cos cos sin
m

n i i i i
i

a k a θ θ θ
=

= −∑ t (3.18e) 

( ) ( )( ) ( )2 2
23

1
cos sin

m

n i i i
i

a k a θ θ
=

= −∑ t  (3.18f) 

From the equations above, mean curvature H, 
Gaussian curvature GK , maximum and minimum normal 
curvature 1k and 2k at p are obtained: 

2 4GK ac b= − ,    (3.19) 

( ) 2H a c= + ,    (3.20) 
2

1,2 Gk H H K= ± −   (3.21) 
If 1k and 2k  are different, the angle is 

( )0 2 10.5arcsin b k kθ = −⎡ ⎤⎣ ⎦ , (3.22) 
and then the principal directions can be estimated 

( ) ( )1 0 1 0 2ˆ ˆcos sinθ θ= +e e e  (3.23) 

( ) ( )2 0 2 0 1ˆ ˆcos sinθ θ= −e e e . (3.24) 

IV.  DESCRIPTION OF ALGORITHM 

The following framework computes surface curvatures 
of conformal alpha shapes. It mainly consists of three 
consecutive parts. At first it computes Delaunay 
triangulation of a sample point set, then conformal alpha 
shape filtration, and at last computes surface curvatures. 

The algorithm computing surface curvatures of 
conformal alpha shapes: 
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Figure 2. Sample point cloud of the Stanford Bunny 

1. Compute the Delaunay triangulation ( )D P of the 
sample point set P. 

2. For each point p P∈ , compute its dual Voronoï cell 

pV from ( )D P   

1). Get incident faces of point p of ( )D P ;  
2). Get Voronoï dual edges of the incident facets;  
3). Get vertices of Voronoï cell pV  from the end 
points of the dual edges. If a dual edge is a ray, it is 
unbounded, and then pV is unbounded. 

3. Compute the pole *p of point p P∈ from Voronoï 
cell pV   
If pV  is bounded, let Gu  be the vector from p to the 
Voronoï vertex in pV  that has the largest distance to 
p. Otherwise, let Gu  be a vector in the average 
direction of all unbounded Voronoï edges incident 
to pV . The pole p∗ of pV  is the Voronoï vertex in 

pV  with the largest distance to p such that the vector 
Gu  and the vector from p to p∗ make an angle larger 
than 2π  

4. Compute the pole *p of faces of ( )D P  from the 
poles of vertexes of faces. 

5. Compute the internal alpha scale parameters for 
each p  
The internal alpha scale parameter is *

p p pα + = − . 
6. Compute the conformal alpha shape, which is a 

subcomplex of ( )D P of P restricted to ˆCα . 
1). The radius of a ball at each point p P∈ is 

( )ˆ ˆp p pα α α α α+ −= + .  
2). Conformal alpha shape filtration is the sequence 
of conformal alpha complexes obtained from 
growing the internal alpha scale α̂ from zero to 
infinity. 

7. Compute normal of faces of conformal alpha 
complexes. The faces are simple planar triangular. 

8. Calculate the normal of each vertex p from normal 
of faces incident to p with equation (3.3). 

9. Compute normal curvature ( )n ik t at point p with 
equation (3.15). 

10. Compute angle iθ between it  and 1̂e  at p, where it  is 
the projection of the vector ip - p  onto the tangent 
plane at p obtained by equation (3.6), and 1̂e  is idt at 
which  ( )nk idt  is the maximum normal curvature 

in ( )n ik t . 
11. Compute mean curvature H, Gaussian curvature GK , 

maximum and minimum normal curvature 1k and 

2k  at p with equations (3.19) ~ (3.22). 
Step 1 compute the Delaunay triangulation ( )D P of a 

sample point set 3P R⊂ in general position. 

Steps 2-6 compute the conformal alpha shape 
filtration. The sampling density may vary non-uniformly 
across surface S of ( )D P , the density is bounded below 
by the smallest local feature size, defined by medial axis 

( )M S of S[1]. The Voronoï cells of the sample points are 
long and thin and directed almost along the normals at the 
sample points. Therefore, edges that are almost tangential 
to the surface will appear early in the conformal alpha 
shape[5].  

Steps 2-5 compute the internal alpha scale parameters 
by the pole *p of each face of surface S of ( )D P . Because 
the Voronoï cells of the sample points are long and thin 
and directed almost along the normals at the sample 
points, from the pole *p to the face is almost along the 
normal of the face. 

Step 6 compute the conformal alpha shape with the 
internal alpha scale parameter. The conformal alpha 
shape filtration is the sequence of conformal alpha 
complexes obtained from growing the internal alpha 
scale α̂ from zero to infinity. 

Steps 7-8 calculate the normal of a vertex p from 
normals of the incident faces. 

Steps 9-11 compute mean curvature H, Gaussian 
curvature GK , maximum and minimum normal curvature 

1k and 2k  at p. 

V.  EXPERIMENTAL RESULTS 

We implemented the algorithm using the C++ library 
CGAL. The sample is a Stanford Bunny. The Fig. 2 
shows the sample points of the Stanford Bunny. The Fig. 
3 to 6 show conformal alpha shapes and illustrates the 
conformal alpha shapes with normal for each face 
triangle with a scale parameter α̂  from 10% to 50% of 
the range of regular face alpha-value sorted in an 
increasing order. It forms a filtration and multi-scale 
analysis. 

VI.  CONCLUSION 

In this paper, we present a robust method for 
computing surface curvature of conformal alpha shapes 
on point cloud data, and provide theoretical guarantees on 

1464 JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER



  
Figure 3. Left is a conformal alpha shape for this sample. Right illustrates the conformal alpha shape filtration with normal for each face 
triangle. The straight lines are the normal of the faces. α̂ = 10% of the range of regular face alpha-value sorted in an increasing order. 

the robustness of our method. An approach is proposed to 
estimate the internal alpha scale parameters. Multi-scale 
geometrical and topological analyses of point clouds can 
reveal their rich structures. The methods can be used to 
extract local curvatures of hierarchical shapes and as a 
multi-scale geometrical analysis method of point clouds. 
It is useful in many applications ranging from bio-
geometric modeling to surface reconstruction. We 
describe an implementation of the algorithm and show 
example outputs. The computation complexity of this 
algorithm is low. The algorithm is robust to data with 
strong noise. 

Further work will investigate if the behavior of 
curvature estimation methods, based on mesh resolution 
and other factors, can be used to place bounds on the 
error in the curvature estimates. We also intend to 
parallelize our algorithm and make the computations 
purely local. In addition, it would be interesting to apply 
our method to more challenging surface reconstruction 
problems. It would be interesting to try other methods 
such as Voronoi covariance and curvature tensor of a 
point cloud. 

There are still some problems that need further 
investigation, such as how to assess the quality of the 
estimation and extend to multivariate adaptive procedure. 
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Figure 4. Left is a conformal alpha shape for this sample. Right illustrates the conformal alpha shape filtration with normal for each face 
triangle. The straight lines are the normal of the faces. α̂ = 25% of the range of regular face alpha-value sorted in an increasing order. 

  
Figure 5. Left is a conformal alpha shape for this sample. Right illustrates the conformal alpha shape filtration with normal for each face 
triangle. The straight lines are the normal of the faces. α̂ = 35% of the range of regular face alpha-value sorted in an increasing order. 

  
Figure 6. Left is a conformal alpha shape for this sample. Right illustrates the conformal alpha shape filtration with normal for each face 
triangle. The straight lines are the normal of the faces. α̂ = 50% of the range of regular face alpha-value sorted in an increasing order. 
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