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Abstract—To solve the sensitivity to the noises and outliers 
in support vector machine (SVM), the characterizations of 
fuzzy support vector machine (FSVM) are analyzed. But the 
determination of fuzzy membership is a difficulty. By the 
inspiration of bayesian decision theory and combining with 
sample density to give weight for each sample, new fuzzy 
membership function is proposed. Each sample points is 
given the tightness arranged forecasts by this method and 
the generalization ability of FSVM is improved. Numerical 
experiments show that, compared with the traditional SVM 
and FSVM, the improved algorithm performs, more 
effectively and accurately, has better classification result. 
 
Index Terms—Fuzzy Support Vector Machine, posterior 
probability, sample density, weighted membership 
 

I.  INTRODUCTION 

Support vector machine (SVM) is a powerful machine 
learning method calling for training data sample 
independent and identically distributed. It does not need 
any distribution information and all samples are treated 
fairly. But in practical applications, due to the existence 
of abnormal data and noise data for each sample of 
pollution, the influence of division to each sample should 
be different [1]. Fuzzy support vector machine (FSVM) is 
to solve this kind of problem with uncertainty. 

Fuzzy support vector machine theory needs to choose 
the appropriate membership according to actual situation. 
Taiwan scholars Liu Fu Chun etc. [2] proposed the 
typical FSVM method based on class center distance and 
class attribute sample membership tectonic methods; 
Han-Pang Huang etc. [3] defined a linear function 
membership function where samples based on distance 
between the clustering center; Tang Hao etc. [4] 
combined with k  neighboring method considering the 
ideas are presented to the categories of sample points for 
each center distance and sample points close degree 
arranged the estimates of subordinate function structure 
method; Zhang Ying etc. [5] proposed based on support 
vector data fields describe fuzzy membership function 
model, with the sample points to minimum contain super 
ball feature space centre distance to determine its 
membership. These membership function structural 
methods are all based on the distance and the uncertainty 
of sample do not consider actual fully [6-8]. By the 

bayesian decision theory of inspiration, in [9], by using a 
posterior probability to express the uncertainty of 
samples, Gaowei Wu etc. established a posterior 
probability support vector machine system framework 
and get a new optimization problems.  

Actually, in FSVM, the membership of samples is 
required not only objectively and accurately to reflect the 
system of the uncertainty of samples, but also to describe 
the sample points in sample concentrated position 
distribution relationship. Therefore, combining bayesian 
theory [10-12] and sample distribution density, fuzzy 
support vector machine samples membership functions 
may further improve the structure to improve the 
promotion of FSVM ability. 

II. BAYESIAN THEORY 

Statistical decision theory is one of the basic theory 
processing pattern classification problems. It has a 
practical significance to the mode analysis and the design 
of classification. Bayesian Decision Theory (Bayesian 
Decision method is to keep) is a basic method of 
statistical pattern recognition and it plays an important 
role in the traditional mode identification field. 

Bayesian decision is to generate decision-making rules 
(or called classifier) based on the analysis of probability 
to data, and then apply the generation decision rules to 
classify new data according to the probability. It must 
meet the following conditions when using the Bayesian 
decision-making theory [10]: 

1) All the relevant probability values are known; 
2) The category number of the classification by 

decision is must certain. 
Bayesian decision-making has generated a lot of 

decision rules methods, such as based on the minimum 
error rate of Bayesian decision, based on the minimum 
risk decision, in Bayesian limited the condition of the 
error rate that another kind of minimum error rate of two 
categories, the smallest and the biggest decision, and 
sequential classification method, etc. This paper will 
introduce simply based on the minimum error rate of 
Bayesian decision-making rules. 

In the pattern classification problems, people often try 
to reduce the error of the classification, based on this 
requirement, the probability of the Bayesian formula, it 
can generate the smallest error rate classification rules, 
we call it based on the minimum error rate of Bayesian 
decision-making. 
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Suppose that the sample point 1 2( , , )nx x x x"= is a 
point in space of nR , and the classification problem has 
m classes which are labeled by jω ( 1, 2, ,j m"= ), 

1 2, , , m"ω ω ω  is dividing the space of nR . In the 
Bayesian decision-making theory, the label jω is a 
random variable. The probability of it appears ( )jP ω  can 
be estimated from the prior knowledge, called prior 
probability. Because the classification of the prior 
probability provided information is so limited that we 
need to use the information of data sample x , 
immediately class conditional probability density 
function ( | )jp x ω to make decision. 

By the Bayesian decision-making hypothesis, it is 
known of prior probability ( )jP ω and class conditional 
probability density function ( | )jp x ω , using Bayesian 
formula:       

1

( | ) ( )
( | )

( | ) ( )

j j
j m

i i
i

p x P
P x

p x P

ω ω
ω

ω ω
=

=
∑

                  (1) 

We call conditional probability ( | )jP xω  the state of 
the category posterior probability. Obviously, Bayesian 
formula is in essence through the observation x to 
translate the state of the category prior probability ( )jP ω  
into categories of state posterior probability ( | )jP xω . 

Posterior probability A reflects the prior probability of 
category B and the product of the probability density in 
all possible prior probability of category and the product 
of the probability density in the sum of the proportion of 
the posterior probability, and it is not directly 
proportional to the prior probability, but depend on two 
parameters its prior probability and probability density. 

So, Bayesian decision-making rules based on the 
minimum error rate is: 

If ( | ) max ( | )j ii
P x P xω ω= Then jx ω∈ , 1, 2, ,j m"=

. Its physical meaning is that the observation under the 
condition of vector x  occurred in n dimensional space, 
the max one of all conditional probability of the category 

jω  should be the classes which is belonging to, this can 
make minimum the identification decision for error rate. 

Using decision rules of classification (classifier) 
designed by Bayesian decision theory, it has optimal 
performance, means the classification error of which 
realize in all possible classifier is the smallest, so it is 
often used as a standard to measure quality of other 
classifier design method [10]. However, Bayesian decision 
theory required not only the number of categories should 
be known , but also has a fundamental premise, was that  
prior probability of each category and class conditional 
probability density should be known as well. In fact, prior 
probability and class conditional probability density are 
hard to know in general situation. 

Analysis Bayesian decision theory made by the 
posterior probability decision, we can find easily[11]: 

1) If we have known the form of the classified 
category probability distribution and training data set 
which has been made categories, it needs to estimate the 
parameters of the probability distribution from the 
training sample set. 

2) If we don't know anything about an classification 
category probability distribution, it has known raining 
data set labeled categories and the form of function, the 
paper will need to from the training sample set to 
estimately the parameters of the discrimination function. 

3) If neither know anything about an classification 
category probability distribution, also don't know 
discriminent forms, only have function marking 
categories of training data set. It needs from the training 
sample set to estimate the probability distribution 
function parameters. 

4) Only having training data set which is not labeled 
categories, it is often happening. This need to set the 
training sample clustering, and to estimate the probability 
distribution parameters. 

5) If we are known that classified the probability 
distribution of the category, hence, we do not need the 
training sample set, using bayesian decision theory can 
design the optimal classifier. 

III. SAMPLE DENSITY OF  SAMPLE CONCENTRATION 

A.  The Concept of  Sample Density 
Generally, for a given data sample set, to give its 

accurate data distribution model, it is impossible. But, 
according to the general sense, the more sample points 
distribute around one sample point the bigger of sample 
distribution density in this place, vice instead. 

To consider the distance between the sample points 
because it can reflect the role of classification by this 
point in a certain extent. For designing membership 
function just consider the distance of sample points to the 
kind of center is easy to appear some mistakes. As shown 
in figure 1. 

 

1 8~d d : The distance between the adjacent points 
L : The distance between x  and category center 

 
Fig. 1 Different close degree of sample points 

 
The distances between center and x  are same, but the 

left x  may very well be support vector, and the right side 
x  may be noise points. 

x x 

L 

q 

q 

d1 d2 

d3 

d4 

d5 d6 

d7 

d8 

1386 JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER



To sample set 1 1 2 2{( , ), ( , ), , ( , )}l lT x y x y x y"= , 
n

ix R∈ , { 1, 1}iy ∈ − + , 1, 2, ,i l"= , calculate the 
distance between the opposite of l sample points 

ij i jd x x= −  and form the distance matrix R  of T : 

11 12 1

21 22 2

1 2

l

l

l l ll

d d d
d d d

R

d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # # #
"

                        (2) 

Then the average distance of all the sample points is: 
1 1

2
1 1 1 1

1 2
( 1)

l l l l

ij ij
i j i i j il

D d d
l lC

− −

= = + = = +

= =
−∑ ∑ ∑∑            (3) 

The maximum distance of sample points is: 

, 1,2, ,
max iji j l

d d
"=

=                                    (4) 

We define the average density and samples density 
with average distance and maximum distance. 

Definition 1[13]: Suppose n  is the dimension, l  is the 
number of the data sample set T . d  is the maximum 
distance of all the samples in the data set, Then the 
average density of data sample set T  is: 

3
2

n

l

t d

ρ =
⎛ ⎞

×⎜ ⎟⎜ ⎟
⎝ ⎠

                              (5) 

t is constant coefficient and 1t = in this paper. At this 
time, The denominator in right of (4) means the space of 
multidimensional hypersphere’s super “volume” of all 
samples in data sample set T . 

If making hypersphere’s diameter just with the 
maximum distance d  of all the samples in the data set 
T may be due to missing some sample points, it makes 
that the average density can not reflect the objective 
situation. But after appropriate to expand scope, the 
closed interval would contain all the sample points and 
the diameter of the expanded is 3  times the original. To 
ensure just painted on closed interval contains all sample 
points in the data set from geometry[13]. 

In order to further distinct the position of samples in 
the data set, we define the density concept of the sample 
points. In order to bring into correspondence with the 
definition of the average density, in the calculation of the 
density of each sample point ix ( 1,2, ,i l"= ), we still 

extended the effective diameter to the original 3  times. 
Meanwhile, considering the samples density reflecting 
the sample distribution of a closed small field of sample 
points. Thus set λ ( 0 1λ< < ), namely the diameter of 
unit closed interval, is 3 Dλ . Scan data matrix R and 
calculate sample number of unit closed interval to each 
sample points il . 

Definition 2  The average distance of sample points in 
the sample set T is D , set λ ( 0 1λ< < ), the sample 
number of distance sample point ix  less than 3 / 2Dλ  
is il . Then the density definition of sample point ix is: 

3
2

i
i n

l

D

ρ

λ

=
⎛ ⎞

×⎜ ⎟⎜ ⎟
⎝ ⎠

,  1,2, ,i l"=                 (6) 

The average density and sample density of the Sample 
set  are similar to the definition of physics, as shown in 
figure 2 below. 

 
Fig. 2 Schematic of average density and sample 

density in sample set 
 
The density of each sample in sample set T is defined 

by (5). The dense position of the sample points space 
relationship is reflected by the samples of different 
density. The dense of the sample density iρ ,means the 
more sample points adjacent sample ix ,the role to support 
vector machine (SVM) of this sample is greater; The 
sparse of the sample density iρ ,means the less sample 
points adjacent sample ix ,the role to support vector 
machine (SVM) of this sample is smaller. Usually the 
average density and sample density are used to outlier 
detection. 

B.  The Feature of Space Sample Density 
The support vector machine in training will map the 

sample points of original space to feature space. When 
the samples of original space mapping to feature space   
through ( )xΦ , the samples of original space will resume 
distribution in the feature space. Because of the specific 
form of ( )xΦ  is unknown and the samples of original 
space about how to distribute in feature space is not know 
also. So it is uncertain of the noise of abnormal data 
(valid data) in the original space are the noise of 
abnormal data (valid data) in the feature space the same. 

The definition of sample density mainly uses the 
distance between the sample points of the original space. 
Because the specific form of ( )xΦ is unknown, the 
distance between the sample points in feature space can 
be obtained by kernel  function ( , )K x x′ : 

( ( ), ( )) ( ) ( ) ( ) ( ), ( ) ( )

                     ( ), ( ) 2 ( ), ( ) ( ), ( )

                      ( , ) 2 ( , ) ( , )

d x x x x x x x x

x x x x x x

K x x K x x K x x

Φ Φ Φ Φ Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ

′ ′ ′ ′= − = − −

′ ′ ′= − +

′ ′ ′= − +

   (7) 

The distance between any two sample points after 
mapping to the feature space can be find out through (7). 
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Convert ijd  which in R  from  (2) to distances of sample 
points in the feature space and make use of  (5) and (6) to 
calculate, then average density and sample density of 
sample points will be obtained in feature space. 

IV. BASED ON THE POSTERIOR PROBABILITY WEIGHTED 
OF MEMBERSHIP FUNCTIONS 

The membership function is the key to the fuzzy 
algorithm when to deal with the problems with fuzzy 
techniques. So a membership function must be able to 
objectively and accurately uncertainty that presents in the 
system. Though there are many ways to construct 
membership functions, currently, there is no general 
guidelines to follow. And in practice, we usually 
determine the membership function based on experience 
of concrete problem. 

Normally, one determines the membership of samples 
where the basic principle is based on the relative 
importance in class or where the size of contribution of 
class in FSVM. While membership was deeply studied by 
many researchers, but main way is based on the distance 
of a sample to the centers of class, for example in [3], the 
membership of samples is regarded as a linear function of 
the distance of a sample to the centers of class. To use 
membership function of S  function which defined by 
Zadeh in [10], we consider the membership and the 
distance are non-linear, and no longer seen as a simple 
linear relationship, see Ref.6. The above methods are 
considered by the criteria of the distance of a sample to 
the centers of class. When to sure membership of samples 
with the above methods, nevertheless, according to the 
methods of reducing the role of outliers of previous 
papers, to reduce the influence of outliers and greatly 
decrease performance of separating hyper-plane with 
SVR too, because support vectors are located at relative 
out-edge of two samples and the distance of samples to 
the centers of two samples is larger. Hence, one obtains 
the separating hyper-plane which is deviate from the 
optimal separating hyper-plane. Meanwhile, the 
relationship of the optimal separating hyper-plane in SVR 
and the center of two samples are  relate with the 
distribution of two samples, and the distribution is 
unknown in advances. So, in the general case, the 
deviation exists. The existing membership function 
cannot determine membership of samples according as 
these methods only consider the samples in their classes, 
but not consider the relationship of samples and different 
classes. 

This paper proposes a determining method of fuzzy 
membership based on posterior probability-weighted of 
two fuzzy support vector classification. On the one hand, 
it can reduce outliers and noise which influences the 
separating hyper-plane. On the other hand, it does not 
affect the support vector decision separating hyper-plane. 

A. Confirm a Posterior Probability of Empirical Methods 
With the Bayesian decision theory, we can easily 

determine the posterior probability of samples if we know 
the class prior probability and conditional probability of 
each sample point. In practice, however, one usually don't 

know the class prior probability and conditional 
probability of samples. With regard to the two categories 
FSVM, normal by using an empirical method of posterior 
probability[9], that is to estimate the class prior probability 
and conditional probability of samples based on data 
sample set.  

Definition 3 The number of samples of class jω  
( 1, 2j = ) with jl , and 1 2l l l= +  is the number of samples 
in FSVM training sample set T . Then we can define the 
estimation of the class prior probability based on data 
sample set as follows: 

               ˆ ( ) j
j

l
P

l
ω = ,  1, 2j =                             (8) 

In fact, if the class prior probability of class jω  
( 1, 2j = ) is jP ( 1, 2j = ), the sample with independent 
under the condition of distribution,the probability of jl  
samples belong to class jω  in l  samples is 

( ) ( ) (1 )j jl l l
j j j jP l l l P P −= − , 1, 2j =  

The Mathematical expectation of jl  is ( )j jE l P l= , and 
Binomial distribution in place of the mean with steep 
spikes , so ratio jl l  is a very well estimates to the class 
prior probability. 

Regard to class of conditional probability density of 
sample ix , with class of conditional probability density 
of a small neighborhood of the input x  fall into ix  
sample to avoid estimate sample space distribution to 
replace there class of conditional probability density,in 
order to avoid estimating sample space distribution. 

With (2) and (3), the average distance of samples in the 
sample set is D , D  is Exist and bounded because of the 
number of samples l  is limited. Select 0 1λ< < , use 
hypersphere 

( , 3 / 2) { | 3 / 2}i iS x D x x x Dλ λ= − <  
To be neighborhood of ix , as shown in figure 1 shows. 

Suppose the number of samples which fall into 
( , 3 / 2)iS x Dλ  and belongs to class jω ( 1, 2j = ) in the 

sample set is j
ik . 

Definition 4 To estimate of the class conditional 
probability of ix  in sample set T as 

ˆ ( | )
j

i
i j

j

k
p x

l
ω = , 1, 2j =                         (9) 

Then, according to Bayesian formula and the empirical 
estimation of the class prior probability and conditional 
probability density, one can obtain the posterior 
probability as follow: 

1 1 2 2

ˆˆ ( | ) ( )
( | ) ˆ ˆˆ ˆ( | ) ( ) ( | ) ( )

i j j
j i

i i

p x P
P x

p x P p x P

ω ω
ω

ω ω ω ω
=

+
,  1, 2j =   (10) 

B. To Construct Membership Function based on 
Posterior Probability Weighted 

The membership in fuzzy support vector machine 
mainly descript the effect level of sample point impacts 
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the separating hyper-plane and minimizes reduce the 
influence of outliers and noise to the separating hyper-
plane when training support vector. Therefore, the 
difference of samples in different nature is based on only 
to present the importance of sample points in their classes 
with membership function but also to reflect the 
probability of sample points belong to which classes. 
With the Bayesian decision theory, the probability is 
decrypted by its posterior probability. We construct the 
membership function based on posterior probability 
weighted according as considering weight the posterior 
probability with density ratio iρ ρ . 

Reference [9] uses the posterior probability of samples 
to express the possibility of belongs to location class, 
combined bayesian decision-making rules and SVM, 
established based on the posterior probability of support 
vector machine. But this approach also does not consider 
the specific attribute at boundaryof the sample. 

For a given sample data set, obviously, the more 
samples around a sample, the bigger sample density of 
this sample points, and the influence of classification is 
greater. On the contrary, the less samples around a 
sample, the smaller sample density of this sample points, 
and the influence of classification is smaller. 

Based on the above analysis, we consider the posterior 
probability with density ratio iρ ρ  to be the weighted of 
reflecting the possibility of the sample belong to the class 
that constitutes with the based on the posterior probability 
weighting membership of function. 

Definition 5 We define the membership function based 
on posterior probability weighted of ix  in sample set 
T as 

( ) ( | ) i
i j ix P x i ρμ ω

ρ
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

, 1, 2, ,i l"=            (11) 

In which ( )ixμ  presents membership of ix  belongs to 
class jω , the posterior probability of ix  belongs to class 

jω  is ( | )j iP xω , and ρ  or iρ  are just mean density of 
sample set T  or sample rate of sample point ix , where 

1, 2j = , 1, 2, ,i l"= . 
In the definition 5,  the possibility of posterior 

probability ( | )j iP xω  describes the sample point ix  
belonging to the class jω , ρ  and iρ  is the average 
density and sample  density which is not  distinguish the 
sample class of the whole sample set T  , using iρ ρ  to 
weighted ( | )j iP xω  to get the sample points of 
membership is based on this ideas: 

1) Considering the support vector is distributed near 
the hyperplane, thus the sample near the hyperplane often 
has greater effect on classification, and we need to  focus 
on the sample distribution position. Through iρ ρ  it can 
adjust samples in the role of classification which are near 
the hyperplane. 

2) By the bayesian formula and the experience of 
posterior probability determined, ( | )j iP xω  describes a 
small field  of  the  local sample situation about sample 

point ix  in class jω , and the value of the size, reflecting 
the possibility of ix  belonging to the class jω . The iρ ρ  
value reflect the sample point ix  distributs in the whole 
samples set T , especially samples nearby classification 
hyperplane , when iρ ρ  weighted by ( | )j iP xω , give 
full consideration to the role of the classification. 

3) In the bayesian decision-making method, if it has 
not good estimation about density function, the decision 
rules designed at last maybe not reliable. However FSVM 
is different from bayesian decision-making, even if we 
expected to receive the probability estimate accurately as 
possible, with the method of front experience estimates  
even if  deviation, but Lagrange multiplier iα  in FSVM 
decision classification hyperplanes design can adjust the 
sample point ix for classification of hyperplanes 
influence. At the same time, when in the estimation of 
conditional probability ˆ ( | )i jp x ω , the field of different 
sample points may have cross,  so total probability 
samples will more than 1, just ˆ ( | ) 1i j

i

p x ω >∑ , 

however, such conditions probability estimate is just 
intermediate steps, the purpose of which is to estimate the 
sample points posterior probability, it does not affect the 
sample posterior probability estimate. 

4) Because ρ  is the average density of samples setT , 
make the value of iρ ρ  more than 1may also may be less 
than 1, when 1iρ ρ< , that the sample point ix  is outlier 
or noise point has a high probability[13], at this time 
weighted ( | )j iP xω  by iρ ρ  will be reduced membership 
value of ix , and the role of classification is weakened, 
avoiding to the abnormal data monitoring and abnormal 
data definition membership alone . But for sample points 
nearby the classification hyperplane, because ρ  and iρ  is 
defined on the whole sample set, ( | )j iP xω is the sample 
estimate in the same class, so iρ ρ  weighted and will 
increase membership of these samples, which increases 
the role of the classification. 

To set the training sample set 
1 1 2 2{( , ), ( , ), , ( , )}l lT x y x y x y"=  

n
ix R∈ , { 1, 1}iy ∈ − + , 1, 2, ,i l"= , with considering 

the uncertain factors about outliers and noise in sample 
set, then re-construct sample set with FSVM as follow: 

1 1 1( , , )x y μ , 2 2 2( , , )x y μ ," , ( , , )l l lx y μ           (12) 
In which iy  stands for classification status flag, 

1iy =+  is positive class and mark 1ω ( 1ω  is + ); 
1iy =−  is negative class and mark 2ω ( 2ω  is− ); So the 

membership can be calculated with  (11) as follow. 

( | ) ,        1
( )

( | ) ,        1

i
i i

i i
i

i i

P x y
x

P x y

i

i

ρ
ρ

μ μ
ρ
ρ

⎧ ⎛ ⎞⎪ ⎟⎪ ⎜ ⎟+ =+⎪ ⎜ ⎟⎜⎪ ⎟⎜⎝ ⎠⎪⎪= = ⎨⎪ ⎛ ⎞⎪ ⎟⎜⎪ ⎟− =−⎜ ⎟⎪ ⎜ ⎟⎜⎪ ⎝ ⎠⎪⎩

         (13) 
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C. The Membership Algorithm based on Posterior 
Probability Weighted 

The samples in feature space will be re-distribute when 
samples in sample space is mapped to feature space by 
mapping of ( )xΦ , then spatial relationship between 
samples changes, so one calculates membership in feature 
space with  (13). 

Algorithm 1 The membership algorithm based on 
posterior probability weighted 

Input: To set the training set 
1 1 2 2{( , ), ( , ), , ( , )}l lT x y x y x y"=  

n
ix R∈ , { 1, 1}iy ∈ − + , 1, 2, ,i l"= , where 0 1λ< < . 
Output: To set the membership of sample ix , where 
1,2, ,i l"= . 

Step 1: To create the distance matrix R of sample set 
T  with  (7), to calculate the average distance D and the 
largest distance d of sample set with (3) and (4). 

Step 2: To calculate the average density ρ  of sample 
set. 

Step 3: To calculate priori class probability ˆ ( )P + and 
ˆ( )P −  with  (8) according as iy  in T . 

Step 4: To research ix  in sample set T , where 
1,2, ,i l"=  

{  
1) To scan distance matrix R , to calculate the number 

of samples il  which the distance of R  to ix  is less than 

3 / 2Dλ  and the number of samples j
ik  which similar 

with iy . 
2) To calculate the density iρ  of sample point ix  with 

(6). 
3) When 1iy =+ ,To compute conditional class 

probability ˆ ( | )ip x −  or posterior probability ( | )iP x−  of 

ix , and with  (9) or (10). 
4) To calculate iμ with (13) and ρ , iρ , ( | )iP x+  

(or ( | )iP x− ). 
} 
The membership algorithm 1 based on posterior 

probability weighted is end when one compute 
membership of all samples in T , the time complexity is 

2( )O l where the member of samples is l  in T and the 
time consuming mainly in calculating the distance 
between sample points and researching distance matrix. 

V.  WEIGHTED FSVM BASED ON THE POSTERIOR 
PROBABILITY 

The core idea of fuzzy support vector machine 
(FSVM) is the introduction fuzzy membership, according 
to different input data to the classification with the 
different contribution, given the corresponding 
membership, which is weighted the sample by the 
membership functions, extends traditional SVM soft 
interval algorithm to solve uncertainty classification 

problem [2,14,15]. This can reduce the effect of outlier and 
noise, improving the SVM classification performance. 

Given the training sample set T : 
 1 1 1 2 2 2{( , , ), ( , , ), , ( , , )}l l lT x y x y x y"μ μ μ=       (14) 

Where n
ix R∈  is sample characteristic, { 1, 1}iy ∈ − +  

is category label, iμ indicate the degree of ix  belonged to 

iy , we call it the membership of sample ( , , )i i ix y μ for 
1,2, ,i l"= . 

For obtaining the good promotion ability of the fuzzy 
support vector machine (SVM) ,we also needs to 
maximize classification interval and minimizing errors, 
and it is different from the penalty factor of traditional 
support vector machine (SVM), being considered that 
reduce the influence of sample points which is not 
important, fuzzy support vector machine with the training 
sample of membership fuzzy the penalty factor. We can 
ensure the membership of training sample by the 
weighted the samples posterior probability  of the sample 
characteristics to determine by the type (13) , then fuzzy 
support vector machine solution the optimal hyperplanes 
for the optimization problem is[2]: 

2

,
1

1min    
2

s.t.     ( ( ) ) 1     1,2, ,
          0    1, 2, ,  

l

i iw
i

i i i

i

w C

y w x b i l
i l

ξ
μ ξ

ξ
ξ

=

+

⋅ + ≥ − =
≥ =

∑
"

"
,

,
Φ    (15) 

Using the sample A membership weighted posterior 
probability, it can certain reduce the influence of 
relaxation variables B in FSVM in extent. At the same 
time affected the corresponding input data ix  the role of 
FSVM: iμ  smaller, the corresponding input data ix   role 
in the classification of hyper planes will be lower, and it 
also reaches according to certain rules on the importance 
of input data classification purpose, reduces the influence 
of outlier and noise, and improves the ability of SVM 
classification. 

Construct the Lagrange function[2] 

[ ]

2

1

1 1

1( , , , , )
2

                         (( ( )) ) 1

l

i i
i

l l

i i i i i i
i i

L w b w C

y w x bΦ

ξ α β μ ξ

α ξ β ξ

=

= =

= + −

⋅ + − + −

∑

∑ ∑
(16) 

Whereα and β are non-negative Lagrange multipliers, 
according to the Wolfe dual definition, 

We get Lagrange function  tiny about w , b and iξ , by 
the KKT condition: 

1

( , , , , ) ( ) 0
l

i i i
i

L w b w y x
w

Φξ α β α
=

∂ = − =
∂ ∑  

1

( , , , , ) 0
l

i i
i

L w b y
b

ξ α β α
=

∂ =− =
∂ ∑  

( , , , , ) 0i i i
i

L w b Cξ α β μ α β
ξ
∂ = − − =
∂

 

Generation into Lagrange function type (16), 
eliminating Lagrange multiplier β , we can get the dual 
problem of optimization problem (15): 
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1 1 1

1

1min     ( , )
2

 s.t.     0  

          0 ,     1, 2, ,

l l l

i j i j i j i
i j i

l

i i
i

i i

y y K x x

y

C i l"

α α α

α

α μ

= = =

=

−

=

≤ ≤ =

∑∑ ∑

∑       (17) 

Where 0C >  is penalty parameter, indicate the 
punishment degree of right sample points which is wrong 
classification, ( , ) ( ( ) ( ))i j i jK x x x xΦ Φ= i is the kernel 
function which is meet Mercer theorem. 

Solving quadratic optimization problem (17), and get 
the optimal FSVM classification hyperplanes decision 
function: 

* *

1

( ) sgn ( , )
l

i i i
i

f x y K x x bα
=

⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠∑             (18) 

Where * *

1

( , )
l

j i i i j
i

b y y K x xα
=

= −∑ , subscript 

*{ | 0 }j jj j Cα μ∈ < < . 

Obviously, the only difference between the fuzzy 
support vector machine and the traditional support vector 
machine (SVM) is the upper bound of Lagrange 
multipliers iα in the dual problem. In traditional support 
vector machine, the upper bound of iα  is constant C , 
and the upper bound iα  of fuzzy support vector machine 
(SVM) is the dynamic bound contain membership 
functions, sample points belong to the class membership 
is lower, the feasible region of iα  is smaller. 

VI.  EXPERIMENTAL RESULTS 

A.  Data Sample Obtain 
This section will be done the simulation experiment 

that FSVM weighted fuzzy membership based on the 
posterior probability application, and a example to verify 
the effectiveness of the improvement performance. 

In order to validate the performance of based on the 
posterior probability weighted membership function 
FSVM, we use double helix line samples and the SPECT 
Heart Data Set from UCI machine learning database to 
conduct an experiment. 

1) Double helix line samples 
The way to produce samples of the double helix line: 
angle=(i*π )/(16*density); 
radius=maxRadius*((104*density-i)/(104*density)); 
x=radius*cos(angle); y=radius*sin(angle);   //first 

spiral line 
x=(-radius*cos(angle)-0.5);y=(-radius*sin(angle)-0.5);     

//second spiral line 
As shown in figure 3 shows only 50 sample points. 
The sample set is: 
Data1: set maxRadius=3, density=1,i=1 to 100. Two 

spirals produced 200 sample points, each spiral get 66 

samples as the training sample set, the rest samples are 
used to be test sample set.  

 

 
 

Fig. 3 Double helix line samples 
 
2) SPECT Heart Data Set 
The SPECT heart data set is a single proton computer 

tomography heart data set through the launch in the UCI 
machine learning database, to determine the heart is 
normal or not. SPECT Heart data set contain 267 
samples, 80 among them used for the training samples, 
the last 187 used for test samples. In fact SPECT Heart 
data set is divided into two subsets: SPECT Heart data 
subset and SPECTF Heart data subset. Thus sample sets 
are as follows: 

Data2: SPECT Heart Data subset. 
Each sample points have 23 attributes, among them the 

second to 23rd attributes value is 0 or 1 of sample points 
of features, are with heart related properties. Attribute 1 
for each sample point is the class attribute, decides the 
category of sample point belongs to. Where the value is 1 
says the sample points for normal, value is 0 says the 
sample points for not normal. 

Data3: SPECTF Heart Data subset. 
Each sample points have 45 attributes, among them the 

second to 45th attributes value is 50-90 of sample points 
of features, are with heart related properties. Attribute 1 
for each sample point is the class attribute, decides the 
category of sample point belongs to. Where the value is 1 
says the sample points for normal, value is 0 says the 
sample points for not normal. 

B.  Simulation Experiment 
Respectively, with C -SVM, based on distance defined 

by membership function FSVM[3] and based on the 
posterior probability weighting membership of fuzzy 
support vector machine in this paper to Data1, Data2 and 
Data3 training learning, gets the corresponding 
classification decision-making function. Punish 
coefficient 50C = ,adopt Gauss RBF kernel function as 
kernel function. Use the corresponding decision 
classification function test samples for testing, gets 
different classification accuracy of test samples is such as 
table 1. 
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TABLE 1. Accuracy compare of three support vector classification 

SVM algorithm Data Set 
Training set 

positive class 
samples 

Training set 
negative class 

samples 

Test set 
positive class 

samples 

Test set 
negative class 

samples 

Positive class 
Testing 

precision/% 

Negative class 
Testing 

precision/% 

Testing 
precision 

/% 
C -SVM Data1 66 66 34 34 100 50 75 

Linear function FSVM[3] Data1 66 66 34 34 100 50 75 
This paper FSVM Data1 66 66 34 34 55.88 100 77.94 

C -SVM Data2 40 40 172 15 57.56 33.33 55.61 
Linear function FSVM[3] Data2 40 40 172 15 48.26 66.67 49.73 

This paper FSVM Data2 40 40 172 15 79.07 60 77.54 
C -SVM Data3 40 40 172 15 49.42 53.33 49.73 

Linear function FSVM[3] Data3 40 40 172 15 63.37 46.67 62.03 
This paper FSVM Data3 40 40 172 15 69.19 53.33 67.91 

 

VII. CONCLUSIONS 

Inspired by the bayesian formula, we transform the 
membership of FSVM through posterior probability and 
weighted. It can be seen through the simulation 
experiment in the same data set based on the posterior 
probability weighting membership of fuzzy support 
vector machine in this paper and it is better than C -SVM 
and Linear function FSVM[3] in classification accuracy. 
Meanwhile, it also shows a good classification ability at 
different Data set.   
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Abstract—The new propulsor, whose inspiration is from 
pectoral fins of fishes, has arisen increasing attention. To 
improve the performance of the existing labriform bionic 
pectoral fin, based on the structure and control mechanism 
of real fish pectoral fin, the under-actuated technology was 
utilized to design a new flexible bionic pectoral fin. Then, 
the kinematic model of pectoral fin during fish forward 
steady swimming and the dynamic model of bionic pectoral 
was built. Finally, Matlab was used to simulate the 
kinematic and dynamic performance of bionic pectoral fin. 
The simulation result shows that the new flexible bionic 
pectoral fin can imitate the propulsion motion morphology 
of pectoral fin during fish forward steady swimming well. 
However, due to the restriction of kinematic model of 
pectoral fin and structure as well as physical properties of 
bionic fin ray, there is still tolerance between the locomotion 
morphology of bionic pectoral fin and that of real fish. 
Therefore, it is necessary to develop further research on 
kinematic modeling of pectoral fin and bionic design of fin 
ray. Additionally, the new bionic pectoral fin reduces the 
number of the driving variables, providing the possibility 
and the basis of further reducing the volume as well as the 
complexity of bionic device of pectoral fin. 
 
Index Terms—Flexible pectoral fin; Under-actuated; 
Labriform mode; Mathematical model 

I.  INTRODUCTION 

Labriform Mode is an important maneuvering 
locomotion mode which is largely applied to teleost fish 
[1]. It takes the pectoral fin as the main maneuvering 
surface, accomplishing a variety of maneuvering 
locomotion such as hovering, forward-swimming, 
backward-swimming, braking and turning. These 
maneuvering performances with high-efficiency and 
flexibility are absent in the conventional underwater 
vehicle [2]. To improve the maneuvering performance of 
underwater vehicle so as to satisfy the demands in the 
exploration of marine resource and protection of marine 
environment, the new propulsor, whose inspiration is 
from pectoral fins of fishes, has arisen increasing 
attention [2,3]. 

For the exploration of new maneuvering surface of 
underwater vehicles, study on bionic pectoral fin is of 
great theoretical and practical significance. However, 
research on anatomical structure, neuromuscular control, 
physical properties of fin surface and otherwise reveals 
that the structure and control of fish pectoral fin is 
extremely precise and complex, and the pectoral fin also 

has numerous freedoms [4-9]. Therefore, building a set of 
system, which can imitate the locomotion morphology of 
fish pectoral fin precisely, is difficult and challenging. 
Fig.1 is the skeleton structure of pectoral fin of labriform 
fish. J.Palmisano et al [10,11] built the bionic fin ray 
according to the structural and physical properties of fin 
rays and installed the fin rays on the fin base(viz. scapula, 
coracoid, radial bones, cartilage pad and so on) in line. 
Under the driving of electromotor, active deformation of 
the fin rays arose, with which the fin surface also became 
deformed. Then, the flapping locomotion of the whole fin 
surface was achieved by electromotor driving the fin 
base.  

 
 

 
G.V.Lauder and J.L.Tangorra et al [3,12] built the 

bionic fin ray according to the structural and physical 
properties of fin ray, then the elastic material was utilized 
to build the bionic fin base. Since the fin base is elastic 
and flexible, the bionic pectoral fin can achieve four 
kinds of single locomotion morphology such as 
expansion, curling, sweeping and cupping easily by the 
drive of nylon rope. The complex locomotion pattern 
could be created by superimposing combinations of other 
three single locomotion pattern onto sweep motion. 
J.L.Tangorra and J.R.Gottlieb et al [13, 14] combined the 
flexible fin rays together according to the shape of fin 
base, of which each fin ray can achieve the rotation 
motion of two freedoms. Additionally, the nylon rope 
driven by the electromotor was used to control the 
rotation motion of fin rays with the aim of achieving all 
kinds of propulsion locomotion of pectoral fin. However, 
the freedoms of this bionic pectoral fin are numerous, its 
structure is also very complex and its complexity 

Fig.1 Skeleton structure of pectoral fin 
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increases rapidly with the number of fin rays. In 
conclusion, the research on bionic pectoral fin is still 
insufficient. It is difficult for the present bionic pectoral 
fin to achieve all kinds of complex maneuvering 
locomotion as well as to be applied to underwater 
vehicles. Therefore, the research on the design of new 
flexible bionic pectoral fin based on the structure of fish 
pectoral fin and the neuromuscular control mechanism is 
of extreme significance. 

Based on the skeleton structure and the 
neuromuscular control mechanism of fish pectoral fin, a 
new under-actuated flexible bionic pectoral fin was 
designed by utilizing the leading action of the leading 
edge fin ray and the trailing edge fin ray. Its kinematic 
and dynamic models were built. Then Matlab was used to 
simulate the locomotion morphology and performance of 
flexible bionic pectoral fin. Finally, the comparing 
analysis validated the rationality and effectiveness of the 
bionic pectoral fin. 

II.  STRUCTURE AND MOTION CHARACTERISTIC 
OF PECTORAL FIN 

According to the skeleton structure of pectoral fin 
shown in Fig.1, the pectoral fin mainly consists of fin 
base and fin ray. The fin base plays an important role in 
supporting the fin ray. All fin rays are bilaminar except 
the leading edge fin ray, which are two curved half rays 
termed hemitrichs, and each end of hemitrichs is attached 
with tendon. Under the contraction and stretch of the 
muscle of both sides, the fin rays can not only achieve 
lateral rotation as shown in Fig.2(b) but also produce 
deformation which can change the shape and stiffness of 
the fin surface. Moreover, the fin rays can also achieve 
dorsal-ventral rotation as shown in Fig.2(a) under the 
action of muscle bundles as well as membranes between 
fin rays, but they mainly rotate towards the side of the 
trailing edge fin ray. The rotation motion towards the side 
of the leading edge fin ray is mainly led by the leading 
edge fin ray[15]. Through the rotation motion of fin rays 
on the two freedoms, the fish achieves various 
maneuvering locomotion such as propulsion, turning, 
backward-swimming, hovering, braking and so on[5,8]. 

 

 
 

 

III.  DESIGN OF FLEXIBLE BIONIC PECTORAL 
FIN 

Analysis on the skeleton structure and the 
neuromuscular control mechanism of pectoral fins reveals 
that the pectoral fin rays can achieve dorsal-ventral 
rotation as well as lateral rotation actively or passively 
under the action of muscle bundles and membranes 
between fin rays. Taking the complexity of muscular 
control into account, to reduce the difficulty in the bionic 
design of flexible pectoral fin, the assumption on the 
structure of flexible pectoral fin, motion control 
mechanism and physical property is described as follows: 

1) Both the fin rays and fin base of pectoral fins are 
rigid.  

2) The dorsal-ventral rotation of median fin rays is 
caused by the pull of leading edge fin ray and trailing 
edge fin ray. 

 

 
The flexible bionic pectoral fin shown in Fig.3 

composes of two parts(part 1 and part 2). Part 1 is 
actually a short link. It can swing dorsal-ventrally. Part 2 
can swing laterally. Since the link is short, the bionic fin 
rays can imitate the swing motion of two freedoms of real 
fin rays well. The fin rays are connected with each other 
by means of caoutchouc membrane. 

In addition, this paper takes the two-freedom swing of 
the leading edge ray and the trailing edge ray as active 
motion. For the median fin rays between the leading edge 
ray and the trailing edge ray, the dorsal-ventral swing is 
taken as active motion, while the lateral swing is taken as 
the passive motion. These motions of fin rays interact 
with each other by means of caoutchouc membrane. In 
order to reduce the oscillation of the median fin rays in 
the plane of fin base under the inertia force, this paper set 
the damping components to them.  

IV.  KINEMATIC MODEL OF PECTORAL FIN 
PROPULSION 

Assume that the bionic pectoral fin area is the 
minimum at the initial time. For the dorsal-ventral 
rotation of fin rays of bionic pectoral fin, when the 
leading edge fin ray rotates dorsally, the fin surface 
expands dorsally as well. At this moment, if the trailing 
edge fin ray also rotates dorsally, pectoral fin with 
different areas and dorsal directions will be achieved. 
Similarly, on the condition that the trailing edge fin ray 
rotates ventrally, if the leading edge fin ray also rotates 
ventrally, thus pectoral fin with different areas and ventral 

Fig.3 Schematic diagram of flexible bionic pectoral fin 

Fig.2 Two components of rotation 
motion of fin ray 
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directions will be achieved as well. When the leading 
edge fin ray rotates dorsally while the trailing edge fin 
ray rotates ventrally, the surface of pectoral fin will 
expand towards both sides and the direction of pectoral 
fin will change with the rotation angle of leading edge fin 
ray as well as trailing edge fin ray. Therefore, the bionic 
pectoral fin can imitate the change of area and direction 
of pectoral fin during a variety of maneuvering 
locomotion of fish. Then, combining the above 
dorsal-ventral rotation motion of fin rays with the lateral 
rotation motion, a variety of maneuvering locomotion of 
pectoral fin such as hovering, forward-swimming, 
backward-swimming, braking and turning will be 
achieved. In the following analysis, the propulsion 
locomotion of pectoral fin during fish forward steady 
swimming is provided as an instance to build the 
kinematic model of bionic pectoral fin. 

During the fish forward steady swimming, the 
propulsion locomotion of pectoral fin can de divided into 
two phases, a recovery stroke(abduction) and a power 
stroke (adduction). At the recovery stroke, the pectoral fin 
rays primarily move anteriorly and ventrally. At the 
power stroke, the pectoral fin rays primarily move 
posteriorly and dorsally, as is shown in figure 3. Since the 

amplitude of the dorsal-ventral rotation of the trailing 
edge fin ray is very small, this paper takes the amplitude 
of the dorsal-ventral rotation of trailing edge fin ray as 
zero. Thus the mathematic models of the dorsal-ventral 
rotation of the leading edge fin ray as well as the lateral 
rotation of all fin rays are built as follows [16]. 
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where 1
1θ  is the dorsal-ventral rotation angle of the 

leading edge fin ray; 2θi  is the lateral rotation angle of 

the i th fin ray; 1
1 ~θ  is the dorsal-ventral rotation 

amplitude of the leading edge fin ray; 2
~θi  is the lateral 

rotation amplitude of the i th fin ray; 2θi  is the phase 
delay of lateral rotation of the i th fin ray, it increases 
evenly from the fin ray 1 with °0 to the fin ray 7; rT , 

PT  and T  indicate the duration time of the recovery 
stroke, the duration time of the power stroke and the 
propulsion locomotion period of pectoral fin respectively. 

V.  MATHEMATICAL MODEL OF FLEXIBLE 
BIONIC PECTORAL FIN 

As shown in Fig.4, the bionic pectoral fin is the 
rigid-flexible coupling system which is composed of fin 

base, two-link bionic fin ray and caoutchouc membrane 
element. Moreover, there is also complex coupling 
between pectoral fin and fluid during the propulsion 
locomotion of pectoral fin. Therefore, it is extremely 
complex and difficult to build a precise dynamic model of 
pectoral fin. For the sake of simplicity, neglect the mass 
of the caoutchouc membrane element as well as its 
deformation under the force of fluid. Besides, we assume 
that the caoutchouc membrane element is pure elastic 
element only affording pull force, and deformation of the 
caoutchouc membrane element along the length of fin ray 
and the thickness of fin surface under the pull of fin ray is 
neglected. In addition, assume that the fluid force to 
which the fin ray is subjected primarily results from the 
fluid force acted on the bilateral caoutchouc membrane 
elements of fin ray. Based on the above assumption, the 
following dynamic model of flexible bionic pectoral fin is 
built. 

A. Dynamic Model of Bionic Pectoral Fin 

Fig.4 3D motion morphology of pectoral fin during fish forward 
steady swimming 

JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012 1395

© 2012 ACADEMY PUBLISHER



For the i th two-link bionic fin ray, the dynamic 
model based on Lagrange method can be defined as. 
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Where, j
iθ and j

iθ are the j th generalized coordinate 
and generalized velocity of the i th two-link bionic fin 
ray respectively; t  is time; Ti  is the kinetic energy of 
the i th bionic fin ray; j

iQ  is the generalized force 
acted on the i th bionic fin ray corresponding to the j th 
generalized coordinate; i  is the serial number of the 
two-link bionic fin ray; j  is the serial number of the 
part of two-link bionic fin ray.  

The kinetic energy Ti of the i th two-link bionic 
fin ray can be defined as: 
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iθ  
indicate mass, length, the distance between centroid and 
joint, the moment of inertia, the centroid velocity, the 
rotation angle, the angular velocity and the initial angle of 
the part j of the i th two-link bionic fin ray 

respectively; cj
i x , cj

i y , cj
i z are the x , y  and z  

component of the centroid velocity of part j of the i th 
two-link bionic fin ray respectively. 

The generalized force j
iQ  acted on the i th bionic 

fin ray can be defined as: 
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Where cj
i x , cj

i y , cj
i z  are the x , y and z coordinate of 

the centroid of the part j of the i th two-link bionic fin 

ray respectively; g  is the acceleration of gravity; '
j

i M  
indicates the generalized force of caoutchouc membrane 
element as well as its surrounding fluid to the i th 
two-link bionic fin ray; j

i M  indicates the generalized 
force of motor(including damper) to the i th two-link 
bionic fin ray. '

j
i M  can be defined as:
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i F ),1( iik −= indicate the x , y and 

z component of the elastic force acted on part 2 per unit 
length of the i th two-link bionic fin ray by the k th fin 
surface caoutchouc membrane element(viz. the fin 
surface element between the k th bionic fin ray and the 

1+k th bionic fin ray), and the elastic force is zero for 

0=k and7,.while the elastic force for 6~1=k  can be 
calculated by analysis on the caoutchouc membrane 
element; 2

ˆ
x

k
i F , 2

ˆ
y

k
i F and 2

ˆ
z

k
i F ),1( iik −=  indicate the 

x , y and z component of the fluid force acted on part 2 
per unit length of the i th two-link bionic fin ray, and the 
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fluid force is zero for 0=k and 7, while the fluid force 
for 6~1=k can be got by the calculation of the fluid 
force acted on the caoutchouc membrane element.  

Substitute Eq.(6) and Eq.(7) into Eq.(5), the 
dynamic model of flexible bionic pectoral fin can be 
described as: 
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B. Hydrodynamic Calculation 
The hydrodynamic performance of flexible bionic 

pectoral fin, belonging to unsteady hydrodynamics, is 
extremely complex, and there is complex coupling 
between pectoral fin and its surrounding fluid. For the 
sake of simplicity, neglect the coupling between the 
caoutchouc membrane element and the fluid, and utilize a 
quasi-steady method to evaluate the fluid force acted on 
the pectoral fin[17]. Thus, the hydrodynamic force acted 
on the fin ray 2

ˆ
x

k
i F , 2

ˆ
y

k
i F and 2

ˆ
z

k
i F can be calculated by the 

following formula.
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Where nmxv , nmyv and nmzv indicate the x , y and 
z component of the normal velocity of the midpoint of 
the link line between the two points which are on part 2 
of i  and 1+i th bionic fin ray respectively and both 
have the same distance l  to the joint of part 2; 

mxvτ , myvτ  and mzvτ  indicate the x , y  and 
z component of the tangential velocity of the 
aforementioned midpoint; nC and τC  indicate the 
normal and tangential resistance coefficient of fin surface 
respectively; lid  indicates the present distance between 

the aforementioned two points. 

C. Elastic Force Calculation of Caoutchouc Membrane 
Element 

According to the theory of elasticity, the stress and 
the strain of the caoutchouc membrane element are of 
linear relation[18]. Assume that the surface stress 
coefficient is σ , the elastic force of the caoutchouc 
membrane element acted on the fin ray 2x

k
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k
i F  and 
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i F  is defined as follows:
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Where 0lid  indicates the initial distance between the 
two points which are on part 2 of i  and 1+i th bionic 
fin ray respectively and both have the same distance l  
to the joint of part 2; 2l

i x , 2l
i y  and 2l

i z  are the 
coordinates of the point which is on part 2 of the i th 
bionic fin ray and has the distance l  to the joint of part 
2. 

D. Damper Modeling 
Suppose that the damping force acted on the fin ray 

is only correlated with the dorsal-ventral rotation velocity 
of the fin ray, thus the damping moment acted on the fin 
ray can be defined as[19]: 

)6~2(cos 11
22

1 == iCbM iiiii θθ       (11) 

Where bi  is the perpendicular distance from the action 
point of the damping force to the axis of part 1 of the i th 
bionic fin ray; Ci is the damping coefficient of the 
damper installed on the i th bionic fin ray. 
 

VI.  SIMULATION ANALYSIS 

For analyzing the performance of the flexible bionic 
pectoral fin, MATLAB is utilized to write the 
corresponding simulation program. Meanwhile, assuming 
that the velocity U is sm /1.0 , the surface stress 
coefficient σ  is 0.1 MPa , the propulsion locomotion 
period T  is 1 s , the duration time of the power stroke 

pT  is 0.5 s , the duration time of the recovery stroke rT  
is 0.5 s ,the normal fluid resistance coefficient of fin 
surface nC  is 1.18, the tangential fluid resistance 
coefficient τC  is 0.05.  

The simulation result shown in Fig.5 and Fig.6 
indicates that the transient performance of the median fin 
rays is excellent. Therefore, it is feasible to cause the 
dorsal-ventral swing of the median fin rays by means of 
the leading edge ray and the trailing edge ray. This can 
also reduce the number of the driving joints and the 
complexity of the flexible bionic pectoral fin.  
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Fig.5 Step response to leading edge fin ray Fig.6 Step response to trailing edge fin ray 

Fig.7 Post view of propulsion morphology of bionic pectoral fin and real pectoral fin 
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According to he simulation result and conservation 

result shown in Fig.7, the new bionic system of flexible 
pectoral fin established in this paper can imitate the 
propulsion motion morphology of pectoral fin well. 
However, there are still some errors compared with the 
motion morphology of real fish pectoral fin. There are 
mainly two reasons for such error. On one hand, 
simplification is made to the kinematic model of fish 
pectoral fin. On the other hand, rigid fin rays are used to 
take the place of flexible fin rays which can realize active 
or passive deformation. Therefore, in order to improve 
the performance of the flexible bionic pectoral fin, it is 
necessary to develop the research on the design of the 
bionic pectoral fin and the establishment of the kinematic 
model of real fish pectoral fin. 

VII.  CONCLUSIONS 

Based on the anatomy structure and neuromuscular 
control mechanism of fish pectoral fin, a new 
under-actuated flexible bionic pectoral fin was designed. 
Then, the kinematic and dynamic models of bionic 
pectoral fin were built. Finally, the performance of the 
bionic pectoral fin was analyzed during fish forward 
steady swimming by simulation. According to the 
analysis, the following conclusions can be got. 

(1)Taking advantage of under-actuated technology, 
the new bionic pectoral fin reduces the number of the 
driving variables, providing the basis of reducing the 
volume as well as the complexity of bionic pectoral fin.  

(2) The bionic pectoral fin can imitate the 
propulsion locomotion during fish forward steady 
swimming well. However, due to the restriction of 
kinematic model of pectoral fin and structure as well as 
physical properties of bionic fin ray, there is still 
tolerance between the locomotion morphology of bionic 
pectoral fin and that of real fish. Therefore, it is necessary 
to develop further research on kinematic modeling of 
pectoral fin and bionic design of fin ray. 

(3) Based on the theoretical analysis, the new bionic 
pectoral fin can imitate all kinds of maneuvering motion 
morphology of pectoral fin besides the propulsion 
morphology during fish forward steady swimming, but 
the feasibility still needs to be validated further by 
simulation and experiment.  
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