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Abstract—Based on the inertia weight and acceleration 
coefficients of trigonometric function and variable 
neighborhood search, a modified particle swarm 
optimization is discussed. The modified PSO with the 
parameters of the trigonometric function has powerful 
global exploration at the beginning and ending of the 
evolution, and strongly local exploitation in the interim of 
run. Through analyzing the behavior of the PSO, three 
novel heuristic neighborhood search rules are suggested to 
enhance the robustness and convergence. The proposed 
approach demonstrates its superiority in convergence, 
robustness and solution quality with the experiment tested 
on the benchmark multimodal function. 
 
Index Terms—particle swarm optimization, trigonometric 
function, variable neighborhood search, inertia weight, 
acceleration coefficients 
 

I. INTRODUCTION 

The particle swarm optimization (PSO), inspired by 
social behavior of bird flocking and fish schooling, is a 
stochastic population-based powerful optimization 
technique for solving global optimization problems, 
firstly proposed by Kennedy and Eberhart [1,2]. PSO has 
many similarities with evolutionary computation 
techniques such as genetic algorithm (GA). However, 
unlike GA, PSO has no evolution operators such as 
crossover and mutation. The advantages of PSO are fewer 
memory requirement, shorter computational time and 
easy to implement. So it has gained popularity lately and 
has already been applied to different fields widely, such 
as function optimization, artificial neural network 
training, data mining, scheduling problem, pattern 
classification and fuzzy system control [3-5]. However, 
as many evolutionary algorithms, PSO does exhibit some 
disadvantages: it faces the problem of the appropriate 
parameters adjustment [6,7]; sometimes it is easy to trap 
in local optima and severely limited by the high 
computational cost of the slow convergence rate, 
especially in complex multimodal optimal problems [8-
10]. 

Fortunately, many researchers are devoted to improve 
the performance of standard PSO and rich harvests have 
been obtained in three aspects.  

Firstly, a few theoretical studies of particle trajectories 
can be found, which facilitated the derivation of 

heuristics to select parameter values for guaranteed 
convergence to a stable point [11-12].  

Secondly, many approaches and strategies are 
proposed to enhance the performance of PSO without 
sacrificing the speed of solution significantly by adjusting 
inertia weight and acceleration coefficients. Namely, 
there are linearly decreasing inertia weight, increasing 
inertia weight, randomized inertia weight, exponential 
decreasing inertia weight, fuzzy adaptive inertia weight, 
and linearly decreasing acceleration coefficients [7,8,13]. 

Finally, in order to improve the performance of PSO, 
various neighborhood search techniques are proposed to 
increase information sharing among the neighbor 
particles. Mohais [14] proposed a dynamically adjusted 
neighborhood. Janson [15] used dynamic hierarchy to 
define the neighborhood structure. Fan [9] addressed the 
method of combing PSO with a local simplex search 
technique. Liu [16] presented a center particle swarm 
optimization. Unlike other ordinary particles, the center 
particle has no explicit velocity, and is set to the center of 
the swarm at every iteration. Furthermore, hybridization 
of PSO with others evolutionary algorithms has been 
investigated in many studies [17,18]. 

In this paper, an improved particle swarm optimization 
is considered based on the inertia weight and acceleration 
coefficients of trigonometric function and variable 
neighborhood search, called TFVNS-PSO. This work 
differs from the existing ones at least in two aspects: 
firstly, it proposes the dynamic inertia weight and the 
dynamic acceleration coefficients that are the 
trigonometric functions of iterations, which change 
dynamically in accordance with sigmoid. Therefore, it 
has powerful global exploration at the beginning and 
ending of the evolution, and strongly local exploitation in 
the interim of run. Secondly, it presents several novel 
heuristic neighborhood search strategies to balance the 
convergence and diversity of particle swarm. Thus it 
overcomes premature convergence and improves the rate 
of convergence simultaneously. 

The remaining of this paper is organized as follows: 
The next section reviews the standard PSO. Section � 
presents the structure and algorithm of TFVNS-PSO. The 
robustness and efficiency of TFVNS-PSO is illustrated in 
solving benchmark function in Section IV. Finally, 
section V summarizes and draws conclusions. 
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II. STANDARD PARTICLE SWARM OPTIMIZATION  

The standard PSO is proposed by Shi and Eberhart in 
1998 [19]. Theoretically, given a d -dimension minimum 
optimization problem ( )f X , for the i th particle in the 
t th generation, let min max( ) [ , ]idv t V V∈ , where minV and 

maxV are constants depended on given problem; let 

min max( ) [ , ]idx t X X∈  be the location of the particle, where 

minX and maxX  are the boundaries of the search space. The 
location of the best fitness achieved so far by the i th 
particle is denoted as ( )idp t (memorized by every 
particle) and the index of the global best fitness by the 
whole population, as ( )gdp t (memorized in a common 
repository). The velocity and position update equations 
are given as: 

1( 1) ( ) ( ( ) ( ))id id id idv t v t c p t x tω ξ+ = + −  

2 ( ( ) ( ))gd idc p t x tη+ −    (1) 
( 1) ( 1) ( ), 1,2,...,id id idx t v t x t i m+ = + + =   (2) 

where m is the population size; 1c and 2c , known as the 
cognitive and social parameters respectively, are named 
acceleration coefficients; ξ andη  are elements from two 
uniform random sequences in the range [0,1] , namely, 

, (0,1)Uξ η ∈ .  
The best positions are updated at every iteration step as 

follows:  
( 1), ( ( 1)) ( ( ))

( 1)
( ),
i i i

i
i

X t if f X t f P t
P t

P t otherwise
+ + <⎧

+ = ⎨
⎩

 (3) 

In recent versions, the parameters are selected such 
that the relation [12-14], 

1
1 22 ( ) 1c cω > + −     (4) 

where, 1 1ω− ≤ ≤     (5) 
and 1 20 4c c≤ + ≤     (6) 
 
The procedure of PSO is given as follows: 
Step1: Initialization 
Step1.1 0t = , (0)iv  and (0)ix ; 
Step1.2 Calculate (0)ip  and (0)gp ; 
Step2: While termination criteria is satisfied do 
Step2.1 ( 1; ; ){for i i m i= <= + +   

Update ( )iv t  using (1);  
Update ( )ix t  using (2); 
Update ( )ip t  using (3);   
if ( ( ( )) ( ( ))i gf p t f p t< ) then ( ) ( )g ip t p t= ; 
} //end for 

Step2.2 1t t= + ; 
Step3: Output.  

III. TFVNS-PSO 

This section proposes the dynamic inertia weight and 
the dynamic acceleration coefficients that are the 
trigonometric functions of iterations, such that TFVNS-
PSO has powerful global exploration at the beginning and 

ending of the evolution, and strong local exploitation in 
the interim of run. In order to balance the convergence 
and diversity of particle swarm, several novel heuristic 
neighborhood search strategies are presented in 
following. 

A. The inertia weight of trigonometric function (TFIW) 
A vital issue of the intelligent optimization methods is 

to balance global exploration and local exploitation. 
Generally, in order to avoid trapping in local optimum at 
the very start, the coarse exploration is necessary in the 
initial iterations; in order to turn away sightless searching 
whole space, the stronger exploitation is required in the 
medium-term iterations; in order to jump out local 
optimum, the powerful exploration is the only way in 
later iterations. 

As far as PSO goes, the balance between global 
exploration and local exploitation is achieved chiefly by 
adjusting inertia weight. A higher value of the inertia 
weight offers sharp changes in velocity, which means 
better exploration. However, smaller inertia weight 
implies less variation in velocity to provide better 
exploitation. 

But the change trend of inertia weight is only in one 
direction and the decreasing direction is popular in the 
existing studies [7,8,13]. A novel inertia weight of 
trigonometric function (TFIW), therefore, is proposed to 
address this problem as follows: 

' cos( )t
Tω π= ,    (7) 

' '

' '

ω ω α
ω

ω α ω α
⎧ ≥⎪= ⎨

+ <⎪⎩
   (8) 

where, T  is a maximum number of iterations; t  is a 
iterative counter, {0,1,..., }t T∈ ; α is a constant, 

[0.1,0.4]α ∈ , 0.25α =  is proposed. The corresponding 
TFIW curve is depicted in Figure 1 for 0.25α =  
and 2000T = . 

 
Figure 1.  The TFIW curve. 

Farther, TFIW is a nonlinear function of the present 
iteration number t  and maximum number T of iterations. 
TFIW slowly decreases in the initial search (the trend of 
the function slope), relatively sharper in the mid-iteration 
and relatively slow in the later iterations. Thus, the 
exploration and exploitation are balanced dynamically.  
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B. The acceleration coefficients (c1 and c2) of 
trigonometric function (TFAC) 

The higher value of cognitive parameter 1c  and social 
parameter 2c may provide powerful exploration and 
strong exploitation, respectively [20]. Therefore, the 
higher 1c  and smaller 2c  must be satisfied in the initial 
and later of the iterations, and the smaller 1c  and higher 

2c  must be satisfied in the middle of the iterations, which 
should help the PSO to approach the optimum solution 
quickly. Consequently, this paper proposes the novel 
dynamic acceleration coefficients of trigonometric 
function for improved performance of PSO algorithm as 
follows: 

' ' '
1c b ω ω= × ×     (9) 

' '
1 1

1 ' '
1 1

c c
c

c c

β
β β

⎧ ≥⎪= ⎨
+ <⎪⎩

  (10) 

' '
2 1c b c= −     (11) 

' '
2 2

2 ' '
2 2

c c
c

c c

γ
γ γ

⎧ ≥⎪= ⎨
+ <⎪⎩

  (12) 

where, b  is a constant, (0,4)b∈ , 2b =  is proposed; 
β is a constant, [0.1,0.4]β ∈ , 0.25β =  is proposed; γ is 
a constant, [0.1,0.4]γ ∈ , 0.25γ =  is proposed. The 
corresponding TFAC curves are depicted in Figure 2 for 

2b = , 0.25α = , 0.25β = , 0.25γ = and 2000T = . 

 
Figure 2.  The TFAC curves. 

 
Figure 3.  The R  curve. 

Let, 1
1 22 ( ) 1R c cω= − + +   (13) 

The corresponding R curve is depicted in Figure 3 
for 2b = , 0.25α = , 0.25β = , 0.25γ =  and 2000T = . 

Figure 3 shows the R  curve with 2b = , 0.25α = , 
0.25β = , 0.25γ = , and 2000T = , from which it’s 

clearly demonstrated that inequality (4) can be always 
satisfied with proposed dynamic parameter selection 
mechanism. 

C. Variable neighborhood search 
A neighborhood search algorithm typically starts from 

a solution (that is, an assignment of values to its decision 
variables) and moves from solutions to neighboring 
solutions in hope of improving a function f . The 
function f  measures the quality of solutions to the 
problem at hand. The main operation of a neighborhood 
search algorithm amounts to moving from a solution s  to 
one of its neighbors. The set of neighboring solutions of 
s , denoted by ( )N s , is called the neighborhood of s . At 
a specific computation step, some of these neighbors may 
be legal, in which case they may be selected, or they may 
be forbidden. Once the legal neighbors are identified (by 
operation L ), the local search selects one of them and 
decides whether to move to this neighbor or to stay at 
s (operation S ). These concepts, which define the moves 
in local search, are illustrated as follows [21]. 

 
The basic neighborhood search template 
Function NeighborhoodSearch{ 

s:=GenerateInitalSolution(); 
;s s∗ =  

for  1k =  to MaxTrials do{ 
if ( ) ( ) ( )satisfiable s f s f s∗∧ <  

then { ;s s∗ = } //end if 
 ( ( ( ), ), );s S L N s s s=    

}//end for 
Return ;s s∗ =  
}//end function NeighborhoodSearch 
 

Variable neighborhood search (VNS) is a recent 
metaheuristic for solving combinatorial and global 
optimization problems whose basic idea is systematic 
change of neighborhood both within a descent phase to 
find a local optimum and in a perturbation phase to get 
out of the corresponding valley [22]. Its development has 
been rapid, mainly to allow solution of large problem 
instances, such as highly-constrained nurse rostering 
problems, multi-resource generalized assignment 
problem, jobshop scheduling problems [23-25]. 

A key feature of particle swarm optimization algorithm 
is the fitness information shared with individuals in a 
particle's neighborhood. The kind of neighborhood 
structure that is used affects the rate at which information 
is disseminated throughout the population [20]. This 
paper presents several entirely new heuristic 
neighborhood search strategies to improve the 
performance of convergence and robustness. 

JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012 1379

© 2012 ACADEMY PUBLISHER



Definition 1: The set of neighborhood of the particle 
s , denoted by ( )N s , is defined as  

( ) { | }s s sN s s x v x
∗ ∗∗= = + ,  (14) 

where, 1 2( ) ( )s s s s s s
gdv v c p x c p xω ξ η

∗

= + − + −  and 

min max[ , ]sv V V
∗

∈ . 
Definition 2: The set of legal neighborhood of the 

particle s , denoted by ( ( ), )L N s s , is defined as 

min max( ( ), ) { | ( ) [ , ]}sL N s s s s N s x X X
∗∗ ∗= ∈ ∧ ∈ .(15) 

 

D. Heuristic neighborhood search for the original 
particle (HNSOP) 

As one point of view, in order to improve the rate of 
convergence, when a new particle, denoted s , is created 
randomly, 0( ) ( )f s f s< (minimal optimization 
function f , original particle 0s , 0 0( ( ), )s L N s s∈ ) is 
expected. As another point of view, in order to avoid 
premature convergence, a degrading particle is accepted 
with probability. To this addressed problem, a wholly 
new heuristic neighborhood search for the original 
particle (HNSOP) is proposed.  

Definition 3: The set of neighborhood of the original 
particle, denoted by 0( )OPN s , is defined as  

0 1 1 0( ) { | (( ( ( ), ), ( ) ( ),i i i i i
OPN s s s L N s s f s f s− −= ∈ <  

1 0{1,2,..., 1}) ( ( ) ( ),ji m f s f s−∈ − ∧ ≥  
{1,2,..., }))j i∈  

1 1 0(( ( ( ), ), ( ) ( ), )i i i is L N s s f s f s i m− −∨ ∈ ≥ =          
0( ( ) ( ), {1,2,..., 1})}if s f s i m∧ > ∈ −            (16) 

 
The heuristic neighborhood search for the original 

particle 
Function HNSOP ( 0, , ,f s t T ) { 

Updated 1,  cω and 2c ;   
 Selected 0

OPs N (s ) ∈ ;   
 Return 0 : ;  s s=  

}//end Function HNSOP 
 

E. Heuristic neighborhood search for the taboo particle 
(HNSTP) 

By analyzing the behavior of the PSO, particle s  
should be avoided in population repeatedly to improve 
the efficiency of PSO and to jump out the local optimum. 
But particle s  emerges in the population in the high-
frequency, which may imply particle s with the more 
information of the optimal solution. Thus, if particle s is 
retained in the population and particle s shares 
information with others particles, the efficiency of 
finding the optimal solution will be increased acutely. 
Contrary, particle s  emerges in the population in the 
high-frequency, which may mean be trapped in local 
optimum. So in order to jump out the local optimum and 
augment swarm's diversity, the particle s must be 

mutated. Therefore, an entirely new heuristic 
neighborhood search for the taboo particle s  (HNSTP) is 
put forward. 

Definition 4: A good population goodS  is a set of all 
particles of the best fitness achieved so far by each 
particle. 

Definition 5: A set 1( , )TP goodN s S  is defined as  
' ' '

1

'

( , ) { | { , } ( ,

( , ), ,

s s s s s
TP good i i i i i

ss
i i good

N s S s x x x i x x

i x x s S
∗

∗

∗

= ∈ ∧ ∀ ¬ =

∧ ∀ ¬ = ∈

 )

 
 

{1,2,..., }}i d∈                (17) 
where, 1 2( , ,..., )s s s s

dx x x x= . 
Definition 6: A set 2 ( )TPN s is defined as  

' '
2 1 2 1

' '
2 1 2

( ) { | { }, { , }, {1,2,..., 1},

{2,..., 1, }, , { }  

s s
TP i i

s s s
k k k

N s s x x i d d d d

d d d d d x x x

= ∈ ∈ ∈ −

∈ − < ∉ ∧  
 

1 2 1is legal, {1,..., 1} { 1,..., }}k d d d∈ − ∪ +   (18) 
Definition 7: The set of neighborhood of the taboo 

particle, denoted by ( , )TP goodN s S , is defined as 

1 2( , ) ( , ) ( )TP good TP good TPN s S N s S N s= ∪      (19) 
 
The heuristic neighborhood search for the taboo 

particle 
Function HNSTP ( ,& , ,& gb

goodf s S s ) {  

// gbs  is the global best particle 
Select best s∗  from TP1N ( , ) ; goods S  

if ( s sx x
∗

== ) then   
Select best s∗  from TP2N ( , ) ;s  //end if 

if ( ( ) ( )f s f s∗ < ) then  
: ;  s s∗= //end if 

if ( ( ) ( )gbf s f s< ) then  
: ;   gbs s= //end if 

}//end Function HNSTP 
 

F. Heuristic neighborhood search for the global best 
particle (HNSGBP) 

On the one hand, the global best particle, denoted gbs , 
has excellent information related to global optimum 
solution. On the other hand, the good population goodS  
also has finer experience. So sharing knowledge among 
them is likely to advance the convergence rate and the 
robustness of PSO. Therefore, an entirely new heuristic 
neighborhood search for the global best particle gbs   
(HNSGBP) is presented. 

 
The heuristic neighborhood search for the global best 

particle 
Function HNSGBP ( , ,& , ,& gb

goodf m S S s ) {  
// S  is current swarm, m is swarm size. 
Select m  better particles from  

TP1N ( , )  ; gb
goods S S∪  
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Assign these m  better particles to S ; 
Update  gbs ; 
}//end Function HNSGBP 
 

G. The structure of TFVNS-PSO 
 
The procedure of TFVNS-PSO is given as follows: 
Step1: Initialization 
Step1.1 Initialize iterative counter be 0t = , the m  

random velocities (0)iv  and the m  random 
positions (0)ix  of the particles, maximum 
number of iterations be T ;  

Step1.2 Initializeω , 1c  and 2c ; 
Step1.3 Calculate (0)ip  and (0)gp ; 
Step1.4 Initialize the TabuList of the ( )ix t  be empty; 
Step2: While termination criteria is satisfied do 
Step2.1 Update ω , 1c  and 2c ; 
Step2.2 ( 1; ; ){for i i m i= <= + +  

Update ( )iv t  using (1);  
Update ( )ix t  using (2); 

//Using heuristic neighborhood search for the 
// original particle;  
//to accept a bad particle by a certain probability; 
Function HNSOP ( 0, , ,f s t T ); 
} //end Step2.2  

Step2.3 ( 1; ; ){for i i m i= <= + +   
if ( )ix t  in TabuList then{ 
//Using heuristic neighborhood search for the  
//taboo particle;  
//to enhance the escaping local optimization  
//ability of the particle by augmenting swarm's 
//diversity; 

Function HNSTP ( ,& , ,& gb
goodf s S s );} 

else { 
Update ( )ip t  using (3);  
if( ( ( )) ( ( ))i gf p t f p t< ) then  

( ) ( )g ip t p t= ;} //end if 
} //end Step2.3 

Step2.4 ( 1; ; ){for i i m i= <= + +  
//Using guided neighborhood search by global 
//best particle 
//to increase the rate of swarm’s convergence  
Function HNSGBP ( , ,& , ,& gb

goodf m S S s ); 
} //end Step2.4 

Step2.5 1t t= + ; 
Step3: Output.  
//end the procedure of TFVNS-PSO 
 

IV. EXPERIMENT AND DISCUSSION  

A. Experiment 
To illustrate the effectiveness and robustness of 

TFVNS-PSO algorithm for optimization problems, a set 
of 5 representative benchmark functions was employed to 
evaluate it in comparison with LPSO, FPSO, and RPSO 
[7]. 

The same initialization range [ 5,5]− and the constants 

min minV  = X  = -10 and max maxV  =X  = 10  were used. At 
each algorithm, the number of particles was 20. The max 
iterations of these algorithms were all 300. A total of 30 
repeated for each experimental setting were conducted 
and the averages as well as the standard deviations of 
these optimization results are computed.  

The table I lists the testing results on the functions of 
1f , 2f , 3f  , 4f  and 5f . 

TABLE I.   
THE AVERAGES OF THE OPTIMIZATION RESULTS FOR THE FIVE 

BENCHMARK FUNCTIONS AND THEIR CORRESPONDING STANDARD 
DEVIATIONS IN THE PARENTHESES. 

f  n  LPSO FPSO RPSO TFVNS-PSO 

1
f  

20 1039 
(719.9) 

690.1 
(647.0) 

20.80 
(9.240) 

2.9094 
(1.4055) 

80 3403 
(20294) 

20011 
(14785) 

484.8 
(1726) 

38.9435 
(5.6327) 

140 62010 
(30544) 

66989 
(44570) 

1719 
(8026) 

123.5730 
(36.6839) 

200 124344 
(94505) 

85569 
(72089) 

10288 
(36593) 

251.6320 
(102.2045) 

2
f  

20 94.34 
(23.28) 

67.30 
(34.96) 

6.749 
(9.819) 

3.1193 
(1.6784) 

80 694.4 
(80.38) 

376.6 
(243.8) 

65.22 
(118.1) 

51.8321 
(10.3386) 

140 1200 
(243.2) 

928.5 
(459.5) 

164.2 
(175.7) 

131.1524 
(24.4465) 

200 1859 
(373.2) 

1005 
(613.5) 

241.4 
(396.5) 

216.5155 
(29.9613) 

3
f  

20 6.874 
(3.491) 

7.910 
(4.948) 

9.037 
(6.255) 

0.0000 
(0.0000) 

80 91.55 
(49.25) 

65.34 
(41.21) 

10.76 
(15.74) 

0.2341 
(0.2927) 

140 195.8 
(73.12) 

95.04 
(75.84) 

18.39 
(45.49) 

1.1845 
(0.6650) 

200 261.9 
(93.90) 

193.6 
(120.0) 

25.86 
(44.27) 

3.9817 
(1.9490) 

4
f  

20 0.45 
(0.19) 

0.27 
(0.14) 

0.02 
(0.09) 

0.0018 
(0.0043) 

80 0.87 
(0.11) 

0.66 
(0.28) 

0.13 
(0.29) 

0.0013 
(0.0025) 

140 0.93 
(0.14) 

0.79 
(0.25) 

0.11 
(0.31) 

0.0040 
(0.0033) 

200 1.00 
(0.06) 

0.90 
(0.21) 

0.05 
(0.13) 

0.0255 
(0.0307) 

5
f  

20 0.06 
(0.02) 

0.05 
(0.02) 

0.03 
(0.01) 

0.0372 
(0.0000) 

80 0.16 
(0.03) 

0.15 
(0.04) 

0.07 
(0.06) 

0.0781 
(0.0223) 

140 0.22 
(0.02) 

0.21 
(0.06) 

0.08 
(0.07) 

0.1526 
(0.0256) 

200 0.27 
(0.04) 

0.25 
(0.04) 

0.08 
(0.07) 

0.1847 
(0.0212) 

 
Benchmark functions 

1 2 2 2
1 11

min ( ) (100( ) ( 1) )n
i i ii

f x x x x−
+=

= − + −∑ , 

10 10, {1,2,..., }ix i n− ≤ ≤ ∈ . 
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2
2 1

min ( ) ( 10cos(2 ) 10)n
i ii

f x x xπ
=

= − +∑ , 

10 10, {1,2,..., }ix i n− ≤ ≤ ∈ . 
2

3 1
min ( ) n

ii
f x x

=
=∑ , 10 10, {1,2,..., }ix i n− ≤ ≤ ∈  . 

21
4 4000 1 1

min ( ) cos( ) 1i
nn x

i ii i
f x x

= =
= + ∏ +∑ , 

10 10, {1,2,..., }ix i n− ≤ ≤ ∈ . 
2 2

1

2 2
1

(sin ) 0.5

5 (1 0.001 )
min ( ) 0.5

n
ii
n

ii

x

x
f x =

=

−

+

∑= +
∑

, 

10 10, {1,2,..., }ix i n− ≤ ≤ ∈ . 
 
From table I, the TFVNS-PSO is obviously excellent 

in both convergence and robustness for 1f , 2f , 3f  and 4f . 
For 5f , the TFVNS-PSO shows little efficiency, but it 
improves the robustness considerably. 

B. Discussion 
The TFIWAC denotes without employing HNSOP, 

HNSTP and HNSGBP, namely, only improved PSO 
based on the TFIW and TFAC. A modified TFIWAC 
using HNSOP is denoted by HNSOP. And a modified 
TFIWAC using HNSTP is denoted by HNSTP. And a 
modified TFIWAC using HNSGBP is denoted by 
HNSGBP. 

Further, to demonstrate the efficiency of TFIWAC, 
HNSOP, HNSTP and HNSGBP, the benchmark function 

6f  was employed. Many authors tested algorithm using it 
widely. 

Benchmark function 
100

4 21
6 100

1

min ( ) ( 16 5 )i i i
i

f x x x x
=

= − +∑ ,  

10 10, {1,2,...,100}ix i− ≤ ≤ ∈ .  
The function 6f  has about 1002  the local optimums in 

the feasible solution space, and the global optimum 
is 78.3323− .  

With respect to the expected number of required 
function evaluations, the terminate criteria is 

min 3
6 6 10f f ∗ −− <  ( 6 78.3323f ∗ = − ). The PSO parameters 

are set to their default values, 0.729ω = , 1 2.0c = , 

2 1.8c = . The TFIWAC, HNSOP, HNSTP and HNSGBP 
parameters are set 2b = , 0.25α = , 0.25β = , 0.25γ =  
and 6000T = . The swarm size is 100 and the maximum 
generation is 6000 in five algorithms. Each group test 
includes 30 independent experiments. The experimental 
results are shown in the figure 4 and figure 5.  

 

 
Figure 4.  The average value. 

 

 
Figure 5.  The standard deviation. 
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Obviously, the several conclusions can be got from the 
figure 4 and figure 5. Firstly, the TFIWAC is superior to 
PSO in the efficiency (the smaller average, the better 
efficiency; and the smaller standard deviation, the better 
robustness.). Secondly, the HNSTP is the most excellent 
in both convergence and robustness. Finally, the HNSOP 
and the HNSGBP improve the efficiency of the TFIWAC 
little, but they enhance the robustness of the TFIWAC 
remarkably.  

V. CONCLUSIONS  

A novel improved PSO algorithm is proposed in this 
paper. Our main contribution is the modification of the 
parameters update rule and the heuristic variable 
neighborhood search strategies of particle swarm 
optimization. On the one hand, dynamic inertia weight 
based on the trigonometric functions of iterations is 
discussed, and then the dynamic acceleration coefficients 
based on the trigonometric functions of iterations is 
considered under the inertia weight of trigonometric 
function. On the other hand, through analyzing the 
behavior of the PSO, three novel heuristic variable 
neighborhood search rules are suggested to enhance the 
robustness and convergence. Compared with PSO and the 
other algorithms, the TFVNS-PSO demonstrates its 
superiority in convergence, robustness and solution 
quality, because the TFVNS-PSO has powerful global 
exploration at the beginning and ending of the evolution, 
and strongly local exploitation in the interim of run. 

In the future, the sensitivity of TFVNS-PSO 
parameters: b ,α , β , γ  and T should be discussed. The 
proposed approach should be used to solve other discrete 
combinatorial optimization problems such as flow shop 
scheduling problem and job shop scheduling problem. 
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