
LSP: A Locality-Aware Strip Prefetching Scheme
for Striped Disk Array Systems with Concurrent

Accesses
Xiaodong Shi

Computer College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei 430074, PR China

Email: shixd.hust@gmail.com

Dan Feng
Computer College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China

Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei 430074, PR China
Email: dfeng@hust.edu.cn

Abstract—In striped disk array systems, the independency
of disks for prefetching is more important than parallelism
under high concurrency of accesses, based on which strip
prefetching with low read cost has more ability to improve
the performance of RAID. However, it indiscriminately
fetching all the involved strips limits its applicability. To
solve this problem, we propose a Locality-aware Strip
Prefetching Scheme (LSP), where it keeps track of the users’
accesses and identifies the hot data areas. Only those strips
located in the hot data areas will be prefetched and each
prefetching request fetches one strip. LSP has several ad-
vantages. First, LSP adapts to the evolving workloads in an
online and self-tuning fashion and satisfies the striped disk
array systems due to the low read cost in each prefetching
request. Second, LSP fully exploits the spatial locality in
users’ accesses. Here, the spatial locality is more general,
which includes multiple simple patterns, such as loop refer-
ences, sequentiality, reverse references, and other locali-
ty-awarded patterns. Third, LSP discriminates the hot data
areas from the cold data areas when prefetching, which sig-
nificantly alleviates the waste of disk bandwidth, optimizes
the cache utilization and improves the prefetching accuracy.
We have implemented the prototype of LSP algorithm in
Linux kernel 2.6.18. The experimental results show that LSP
outperforms SP and Sequential prefetching (SEQP) by up to
22.4% and 24.1% in terms of the average response time, and
by up to 1.5 times and 2.3 times in terms of throughput, re-
spectively.

Index Terms— Striped disks array systems, Independency of
disks, Strip prefetching, Spatial locality

1. INTRODUCTION

Prefetching technologies are widely used in storage
systems to bridge the performance gap between the pro-
cessor and the storage device. Many prefetching schemes
are dedicated to disk to break the performance bottleneck.
For these schemes, one of the most important goals is to
improve the throughput of disks by aggregating multiple
contiguous blocks as a single request, where sequential
prefetching is the most representative algorithm. For
file-level prefetching schemes, multiple contiguous

blocks fragmented from a file are also fetched in a single
prefetching request. However, these approaches designed
for single storage device cannot work well under the
striped disk array systems [6, 7].

In striped disk array systems, the logically consecutive
user data is split into multiple strips across distinct disks
[1, 7, 8], as shown in figure 1. As a result, multiple re-
quests located in distinct disks can be concurrently per-
formed, which overlaps their service times. However, this
splitting leads prefetching schemes to lose the ability to
improve the disk throughput by aggregating large amount
of contiguous blocks into a single prefetching request to
save most of the disk seek time.

Fig. 1 The data organization in striped disk array

For prefetching under high accesses concurrency, the
independency of disks is more important than the paral-
lelism. The conventional prefetching schemes typically
generate a large prefetch request consisting of multiple
blocks that is not aligned in a strip. Therefore, a prefetch-
ing request may involve several strips. This induces the
independency loss [2, 13] and significantly increases the
prefetching cost in each involved disk, where the
prefetching I/O is totally random with respect to the cur-
rent disk head position. Moreover, the available sequenti-
ality limited in strips cannot be fully exploited because
the prefetching requests may involve only part of a strip.
In contrast, the parallelism of prefetching has very limited
ability to improve the performance of RAID under high
execution concurrency because the striping based data

JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012 1303

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.6.1303-1311

placement has fully exploited the parallelism among
disks.

Most traditional prefetching schemes are designed for
single device. Unlike them, strip prefetching is based on
the striped disk array systems, where it prefetchs all the
blocks in a strip whenever a block belonging to this strip
is missed in the buffer cache.

As the importance of independency increasing, strip
prefetching [2] with low read cost has more ability to im-
prove the performance of striped disk array systems. Strip
prefetching uses strips as the basic unit of prefetching.
And hence, each prefetching request is dedicated to only
one disk. As a result, the independency loss can be
avoided and the sequentiality limited in strips can be fully
exploited. Moreover, the prefetching request following
the user request in the same disk has low read cost. How-
ever, strip prefetching doesn’t consider the prediction
accuracy or any access patterns in users’ workloads,
which are the most important factors in traditional
prefetching schemes. This inaccurate prediction leads to
two drawbacks: the cache utilization degradation and the
disk bandwidth waste, which limit the applicability of
strip prefetching.

Most I/O intensive applications exhibit spatial locality
of accesses, which can be exploited to power the
prefetching algorithms. Spatial locality means that if a
block is accessed, the other blocks located in the same
area are likely to be accessed in the near future. Many
simple and regular access patterns are based on spatial
locality, such as sequential reference, loop reference, re-
verse reference and stride reference et al.. Identifying the
hot data areas can effectively exploit the spatial locality
based access patterns and further benefit the correspond-
ing applications. For example, the query service in data-
base applications [19] is dominated by sequential requests,
where blocks are placed continually and requested se-
quentially. Therefore, the hot data areas with spatial lo-
cality can be used to identify the query domains and ben-
efit the database applications. There are some other types
of applications exhibiting regular access patterns based on
spatial locality, such as the loop references for science
computation and reverse reference et al.. However, spatial
locality isn’t limited within regular access patterns, some
seemingly random requests may also exhibit spatial local-
ity. For example, a backend storage system for Web serv-
ers needs to supports amount of online clients. Although
these clients have different access path, most of them may
be interested in one or several domains, which leads to the
spatial locality of referenced data. Therefore, an adaptive
prefetching scheme that can identify the hot data area to
exploit the spatial locality will benefit most applications
that may exhibit different regular access patterns.

In this paper, we propose a Locality-aware Strip
Prefetching Scheme (LSP), where only those strips locat-
ed in the hot data areas will be prefetched to exploit the
spatial locality. In other words, LSP performs the
prefetching only on those data areas with strong spatial
locality. Due to spatial locality, these data areas are fre-
quently accessed and become hot. By this way, LSP op-
timizes the strip prefetching with users’ workloads char-

acteristics. The spatial locality here is more general,
which includes a set of regular access patterns, such as:
sequential references, loop references, reverse references
and stride references et al.. Unlike other prefetching
schemes based on one regular access pattern (such as the
sequential prefetching), LSP can work for as many work-
loads as possible. To the best of our knowledge, few ap-
proaches perform the block-level strip prefetching based
on the hot data areas.

 There are only a few studies considering the inde-
pendency loss in striped disk array systems. Paek and
Park [2] propose a dedicated cache replacement algorithm
to alleviate the negative impact of strip prefetching, which
works on the data prefetched by strip prefetching and im-
proves the cache utilization. Moreover, SASEQP [13]
tries to limit the depth of sequential prefetching into a
strip to avoid the independency loss without considering
the optimum depth of sequential prefetching itself. Dif-
ferent from these approaches, LSP exclusively focuses on
strip prefetching and integrates the general spatial locality
to improve its prediction accuracy. By this way, LSP can
improve the cache utilization under cache replacement
schemes as many as possible, and can significantly reduce
the disk bandwidth waste.

The rest of this paper is organized as follows. Section
II describes the prior work and the observations that mo-
tivate our work. LSP scheme is presented in section III in
details. We analyze the performance of LSP through ex-
tensively trace-driven experiments in section IV. The
conclusion is shown in section V.

II. PRIOR WORK AND MOTIVATION

A. Prefetching Schemes for Storage Systems
a. File-Level Prefetching

The file-level prefetching schemes try to predict the
next files in access stream through different approaches.
Some approaches obtain the future information by ex-
ploiting the reference history [20], some are based on the
hint of applications [21], and some are based on the hint
from compiler [26]. However, all these schemes need the
information about files, which is difficult to be imple-
mented in low-level storage systems due to the narrow
interface between them and file systems. Although these
schemes can exploit the parallelism when they are used
for striped disk array systems, the independency loss is
obvious.
b. Block-Level Prefetching

There are many studies focusing on the block-level
prefetching due to its transparency to file systems and
storage applications. Some prefetching schemes predict
the next blocks by exploiting the correlations between
distinct blocks [14] based on the history references; some
perform their prefetching requests based on one or multi-
ple simple reference patterns. The sequential prefetching
scheme is a representative algorithm that generates the
prefetching requests based on the sequential reference
pattern. Once a sequential stream is detected, they [3, 4, 5]
aggregate large number of blocks into a prefetching re-
quest.

These prefetching schemes are popular and practical in

1304 JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

low-level storage systems. However, they are still de-
signed for single storage devices without considering the
characteristics in striped disk array systems, which results
that traditional block-level prefetching schemes suffer
from the independency loss.
c. Off-Line Prefetching

Some off-line studies focus on exploiting the parallel-
ism of parallel disks systems under a single execution
stream. PC-OPT [22] is an optimal algorithm in terms of
cache utilization and disk parallelism. Reverse aggressive
prefetching [9] designs an off-line algorithm that is used
to serve the read-many reference strings. And, they prove
that the algorithm of reverse aggressive is near optimal
for typical parallel disks systems. Peter J. Varman etc.
proposed other parallel prefetching algorithms [23, 24]
for parallel disks systems, where they are based on the
large scale blocks lookahead or off-line knowledge and
try to fetch a block from each disk on every I/O period
time. However, the complete future reference string used
in these approaches is non-trivial to be achieved in prac-
tice.
d. Strip Prefetching

Strip prefetching is a simple prefetching scheme dedi-
cated to striped disk array systems. There is a lack of
studies for applicable strip prefetching. ASP [2] proposes
a dedicated cache management (called adaptive cache
culling) for strip prefetching, where it evicts (culls)
prefetched and unused data at the earlier time in an adap-
tive manner to maximize the overall cache hit rate. The
adaptive cache culling algorithm works on the data
prefetched by strip prefetching. The buffer cache has to
maintain and process those prefetched data before culling
them. Moreover, a cache replacement scheme cannot in-
fluence the disk bandwidth waste of strip prefetching.

SASEQP [13] is a sequential prefetching algorithm,
which limits the sequential prefetching depth into a strip.
Similar as the strip prefetching, it can avoid the inde-
pendency loss. However, this algorithm exclusively fo-
cuses on a simple reference pattern: sequential reference,
while other patterns that can be exploited in strip
prefetching are ignored. Moreover, the sequential
prefetching schemes typically have their own models to
determine the prefetching depth [3, 4] not limited within a
strip.

The original strip prefetching has the advantage of
avoiding the independency loss. However, it may not be
an applicable prefetching scheme due to its inaccurate
prediction, especially when there isn’t any support from
dedicated cache replacement. To address this problem,
LSP not only retains the mentioned advantage, but also
significantly improves the prediction accuracy by inte-
grating the general spatial locality into prefetching algo-
rithm.

B. Spatial Locality
The spatial locality is a common and inherent access

pattern that significantly affects the throughput of storage
systems. In web applications, 10% of files on web server
workload contribute 90% of accesses and 90% of trans-
ferred data [17, 18]. More generally, the well-known
principle called “The 80/20 Rule” [19] shows that 80% of

accesses are always directed to 20% of files. Lots of
studies focus on improving the spatial locality of accesses,
which further enhances this trend. The studies [14, 15]
realize the importance of spatial locality, thus they opti-
mize the data layout by placing files or blocks with access
correlations together. Arnan et al. [16] have demonstrated
that reorganizing the data on disks to improve spatial lo-
cality can significantly improve the response time of I/O
operation about 20-30% even using coarse grain volumes
as atomic units. Most of popular file systems dynamically
or statically place blocks on disks based on their correla-
tions in access stream to reduce the I/O operation latency.
However, these data may be placed in disk
non-sequentially.

All these above mentioned studies illustrate that it is
common for storage systems placing the hot data, fre-
quently accessed within a comparable temporal locality,
into a small area of a disk. Exploiting the hot data area
can satisfy multiple simple reference patterns such as se-
quential reference, reverse reference, loop reference and
stride reference. Therefore, introducing the hot data areas
into strip prefetching can significantly improve the per-
formance of RAID.

III. THE LSP SCHEME

Due to the shortcoming of conventional strip prefetch-
ing, we believe that the key to solve its problem is to effi-
ciently identify the hot data areas. By this way, only those
frequently accessed data with spatial locality will be
prefetched.

The main idea behind LSP is to maintain and monitor
the recently entered requests to evaluate whether there are
data areas including those requests with spatial locality.
Then, LSP performs the strip based prefetching in these
data areas. More specifically, LSP maintains a preset size
window for the recently entered requests. If there are
multiple requests locating on the same data area, a new
hot data area is identified and the size of this area is de-
termined. When cache misses locate on any hot data area,
the whole strip of blocks is prefetched.

It’s important to note that the write requests can also
achieve benefit from LSP. The hot data areas dependent
on the accesses not only from read requests, but also from
write requests. Therefore, the performance of write re-
quests can also be improved due to the higher hit ratio
without extra-overhead. Specifically, a write request typ-
ically includes three steps: read operation, modification
operation and write operation. LSP can improve the write
request performance through increasing the hit ratio of
read operation. Combining our results with adaptive
cache management and efficient write back policies for
other operations may further improve the overall write
requests performance, but it is beyond the scope of this
work.

A. Identify the Hot Data Area
In LSP, the hot data area is fully and dynamically cre-

ated and updated. At the beginning of LSP, there is no hot
data area.

JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012 1305

© 2012 ACADEMY PUBLISHER

Fig. 2 Identifying the hot data area description

LSP maintains a window for the recently entered re-
quests, whose size is set to 50 in this paper. Our experi-
mental results show that too small size cannot fully ex-
ploit the available hot data areas, while too large size
leads to the loss of potential prefetching requests (we de-
scribe this determination in section C). When the window
is full, LSP traverses the window to search the blocks in
distinct requests that have spatial locality. The spatial
locality here isn’t limited in the consecutive blocks. If the
address gap between two data units from distinct requests
isn’t larger than 128KB (we describe this determination in
section C) that is deemed to be optimum for workloads,
we consider these two requests have spatial locality and
locates at the same hot data area. If the requests with spa-
tial locality are found, a corresponding hot data area is
identified, just like the description in Figure 2.

We assume that a set of data units from requests with
spatial locality, numbered {N1, N2,… NL}, are found, and
hence its corresponding hot data area is identified with
default length 2*(NL-N1), which ranges from N1-(NL-N1)/2
to NL+(NL-N1)/2. This default length includes three
sub-areas: the head sub-area ranging N1-(NL-N1)/2 to N1,
the middle sub-area ranging N1 to NL and the end sub-area
ranging NL to NL+(NL-N1)/2. The head sub-area and the
end sub-area may be accessed in the future, while the
middle sub-area ranging N1 to NL has been accessed dur-
ing identification. We set a larger size to a hot data area
than middle sub-area, which can satisfy the future access-
es. If we limit the default length into the middle sub-area,
LSP will lag behind the accesses to this area and lose
many potential prefetching requests. The default size of a
hot data area is relative to the middle sub-area that will be
dynamically adjusted according to the subsequent access-
es, which can effectively avoid an excessive hot data area.

If a new request, whose involved blocks haven’t been
accessed before, is coming, the length of its correspond-
ing hot data area is increased. If the prefetched data lo-
cated in a hot data area is evicted from cache without any
access, its length is reduced. If there are two adjacent hot
data areas that have less address gap than 128KB, we
merge them into one single hot data area. More specific
description is shown in section B.

All the identified hot data areas will be stored in buffer
cache. Due to the spatial locality of workloads, the num-
ber of hot data areas is far less than the disk space.
Therefore, the space overhead in LSP is low.

B. LSP Algorithm
In this section, we describe the LSP algorithm as fol-

lows:

First, for each newly entering request, we check
whether this request locates in an existing hot data area in
the identified hot data areas queue (IQ). If a hot data area
is found, all blocks in the strip involved by this request
are prefetched. If this strip is accessed for the first time,
we identify this strip as Accessed, and the length of this
area is increased by two strips in the direction of the mid-
dle sub-area extension. If no hot data area is found from
IQ, the request is inserted into the LSP window for the
future hot data area detection. In this step, the hot data
areas in IQ are sorted by their start address, and hence
traversing the IQ to search the hot data area can be CPU
efficient.

/* Procedure to be invoked upon a new request */
Input: a new request i;
 IQ;
Output: an updated IQ;
a new request i is coming;
if (i IQ)
{

compute the strip (S) that includes the request i;
 Prefetch(S);

if (S.accessed==false)
{
 S.accessed=true;
 compute the hot-data-area (A) that includes S;
 A.length++;

 }
} else{
 insert request i into the window (W);
 W.length++;
 if (W.length>=threshold)
 {
 while (W.length>0)
 {
 remove a request j from the head of W;
 W.length--;
 if (there are another requests closing to j)
 {
 a new hot-data-area (Aj) is identified;
 insert Aj into IQ and sort Aj by its start address;
 if (there are Aj-1 or Aj+1 adjacent to Aj

(distance<128KB))
 merge them;
 }
 }
 }
}

/*Procedure to be invoked upon an evicted block b*/
Input: an evicted block b;
 IQ;
Output: an updated IQ;
if (b is a prefetched not yet accessed block)
{

 compute the strip S that includes b;
 compute the hot-data-area A that includes S;
 remove S from A;
 A.length--;
 if (max(A.holes)>=256KB)
 {
 divide A into two hot-data-area;
 }
}

Fi
g. 3 The LSP algorithm description

Second, when the window is full, LSP checks the
blocks in this window. If there are blocks accessed by
distinct requests and spatially closing to each other, a new
hot data area (Ai) is detected. This area is initiated by the
default length and then inserted into the sorted IQ based
on its start address. LSP checks the predecessor area (Ai-1)

1306 JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

and successor area (Ai+1). If the areas are adjacent, LSP
merges these two areas into one larger area. After all the
available hot data areas in window are identified, the
window is set to be empty.

Third, LSP keeps track of the evicted blocks from
buffer cache. If any prefetched blocks in a strip are evict-
ed without any access, we believe the hot data area in-
cluding this strip has too large size and this strip has poor
spatial locality. Therefore, LSP reduces the size of this
hot data area and remove the strip from the current area.
As a result, some ‘holes’ may exist in a hot data area. If
the ‘hole’ is large enough, we divide an area into two hot
data areas. In this paper, we set this threshold as 256KB
that is described in section C.

In LSP, the size of hot data area is dynamically ad-
justed according to the user accesses. Therefore, it can
efficiently reflect the characteristics of a specific work-
load. The LSP algorithm is described in Figure 3.

C. Implemention issues
In this section, we describe the implementation issues

in details, which include the data structure in LSP and
how to preset the parameters (thresholds).

LSP uses an access window to keep track of the re-
cently referenced requests, based on which the evolving
hot data areas can be obtains. Once a new request is com-
ing, it is inserted into the window. If the window is full, a
procedure for identifying hot data areas begins. Each time
the identifying finishes, the whole window is emptied to
be ready for a new round of identifying. This implies that
the short-term history is more valuable than the long-term
in our algorithm. Therefore, if the size of window is too
large, the hot data areas can’t be timely updated.
Prefetching becomes ineffective because the detection is
too late- the blocks in hot data areas have induced many
misses. Moreover, large window also need more compu-
ting and cache resource that significantly increases the
overhead of prefetching schemes. On the other hand, too
small window size may lose some opportunities to detect
the potential hot data areas. In our paper, we adopt the
value 50 as the optimum window size because our ex-
perimental results in figure 11 demonstrate that LSP with
this value achieves its best performance under most trac-
es.

LSP uses a preset threshold to determine the upper
bound size of holes in a hot data area. If a hole is larger
than the threshold, its corresponding area is divided into
two new areas. Therefore, the threshold size affects the
total number of areas and holes in each area. Our experi-
mental results show that if the size is small, the number of
areas is dramatically increased, which will consume more
computation and cache resources for prefetching. For
each request, LSP has to traverse most of the areas to lo-
cate it. With the threshold size increasing, although the
total number of areas may be reduced, more holes may be
included in each area. For an entering request located in
an identified area, LSP has to traverse all the holes in the
area to determine whether the request falls into holes. If
there are too many holes in an area, LSP becomes ineffi-
cient. To balance between the total number of areas and
the number of holes per area, we adopt a threshold value

256KB that is optimum and adaptive to the workloads in
our experiments (figure 12).

Another parameter in LSP is used to detect the hot data
areas, which determines the maximum address gap be-
tween two requests that are considered to have spatial
locality. In this paper, we set the value of this parameter
as 128KB because we have very limited choices. First,
this parameter should adopt a less value than the upper
bound size of holes (256KB). Second, LSP is based on
the strip prefetching, which means the strip size (64KB) is
a basic unit in both prefetching and hot data areas detect-
ing. Therefore, the address gap should be aligned in one
or multiple strip. To satisfy both of the conditions, LSP
adopts 128KB, which efficiency is also demonstrated in
section IV (figure 13).

A key implemental detail for the LSP algorithm to
work is to design an efficient data structure to locate ex-
isting hot data areas and holes. Without proper manage-
ment, all the areas in IQ need to be traversed to locate a
request, which increases the over head of LSP. To over-
come the problem, we index the areas and holes using
balance trees. Since the number of hot data areas for a
specific workload is limited, only a reasonably large
cache space is needed to maintain the indexing tree. Fig-
ure 4 shows the data structure for locating areas and holes.
Each area is linked to a balance tree for indexing its po-
tential holes. Meanwhile, all the areas are also indexed by
a balance tree for efficient lookup. By this way, the over-
head of LSP can be effectively reduced. And, the compu-
tation complexity for each lookup is limited into O(logM
+LogN), where M means the total number of hot data are-
as and N represents the number of holes in each area.

Fig. 4 The hot data areas and holes management data structure

IV. PERFORMANCE EVALUATION

We implement the LSP based on the Linux software
RAID (MD), which is modified and embedded into the
Linux kernel (Fedora Core 4 Linux, kernel version 2.6.11).
The implementation has its own cache memory, whose
space can be adjusted according to different needs of ex-
periments (default 500MB). We name it as Linux soft-
ware RAID with cache memory (LSR-CM), whose inter-
face is the same as traditional MD.

To implement LSP, we track the I/O requests in the
make-request function and issue its corresponding infor-
mation to the recent access window. LSP can be activated
when a request located in a hot data area is coming.

A. Experimental Setup and Methodology
The experiments used to evaluate the performance, are

conducted on a server-class hardware platform with an
Intel Xeon 3.0 GHz processor and 1 GB memory. We use
5 Seagate ST3250310AS SATA disks to construct the

JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012 1307

© 2012 ACADEMY PUBLISHER

RAID-5.
In our experiments, we compare the proposed LSP al-

gorithm with the existing schemes Strip Prefetching (SP)
and Sequential Prefetching (SEQP) [25], where the
SEQP-N represents the maximum prefetching depth is N.
We evaluate the performance of LSP through the exten-
sive trace-driven experiments. To replay the traces on our
storage system, we use the replaying tool based on
RAIDmeter [10]. We use the traces from the Storage
Performance Council [11], where the two types of work-
loads include OLTP and Web searching. For each type of
workload, we randomly select three trace files, which are
labeled as Fin[1-3] and Web[1-3]. The OLTP traces are
characterized by the sequential access pattern, while the
Web traces are more random.

To evaluate the impact of our work on throughput, we
use synthetic workloads which can generate sufficient I/O
requests per second. Specifically, we divide each trace
into multiple equal fragments (sub-traces). The time
stamps of all events in each fragment are equally shifted
so that all the fragments start at the same time, like as
show in [12]. RAIDmeter simultaneously replays multiple
time-shifted fragments, which increases the I/O arrival
rate while the practical scenarios based on the traces are
kept. For example, the trace Fin1, collected from 10:00am
to 11:00am, is divided into 10 fragments, where each
fragment includes 6 minutes. The start time of each frag-
ment is set to 10:00am and the time stamps of all events
in this fragment are equally shifted. We denote the
scale-up traces as Finx-n or Webx-n, where –n represent
the number of fragments replayed simultaneously.

B. The Experimental Results
LSP can efficiently reduce the disk bandwidth waste

and improves the prediction accuracy of strip prefetching.
This advantage can be reflected in the average response
time of RAID. Figure 5 shows the results about the re-
sponse time of different prefetching schemes under Web
traces. LSP obtains better performance than SP and SEQP
512 by up to 22.4% and 24.1%. We believe the perfor-
mance improvement mostly derived from the higher
cache utilization, because SP achieves a little performance
benefit compared with SEQP512 that achieves the worst
performance due to the random access characteristic in
Web searching.

Web1-8 Web2-8 Web3-8

160

180

200

220

240

Th
e

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

The varied traces under Web

 LSP
 SP
 SEQP512

Fig. 5 The average response time of prefetching schemes under Web

searching traces

Web1-8 Web2-8 Web3-8
10

20

30

40

50

Th
e

th
ro

ug
hp

ut
 (M

B
/S

)

The varied traces under Web

 LSP
 SP
 SEQP512

Fi
g. 6 The throughput of different prefetching schemes under Web

searching
In figure 6, we show the throughput of different

prefetching schemes. Under Web searching workloads,
SEQP has very limited ability to improve the throughput
of disks due to the random accesses. SP can improve the
throughput of RAID because it avoids the independency
loss and fully exploits the sequentiality in strips. However,
the inaccurate prediction in SP limits the throughput im-
provement. As a result, LSP outperforms SP and SEQP
by up to 49.2% and 2.3 times. This performance im-
provement demonstrates that LSP not only improves the
cache utilization, but also optimizes the utilization of disk
bandwidth.

Web1 Web2 Web3
30

35

40

45

50

55

Th
e

av
er

ag
e

hi
t r

at
io

 (%
)

The varied workloads

 LSP
 SP
 SEQP64

Fig. 7 The hit ratio of different prefetching schemes with different

workloads
LSP can improve the prediction accuracy, which is

more obviously reflected by the higher hit ratio rather
than other performance factors, such as the average re-
sponse time and throughput. Therefore, we evaluate the
hit ratio of different prefetching schemes in figure 7. In
this experiment, the SEQP64 compared with other se-
quential prefetching algorithms achieves the best hit ratio
with the Web based traces. So, we adopt SEQP64 as a
comparison algorithm. The experimental results show that
LSP outperforms other prefetching schemes. Specifically,
it improves the hit ratio by up to 10.4% and 9.9% com-
pared with SP and SEQP64. For web traces with little
sequentiality, sequential prefetching cannot efficiently
exploit the spatial locality or improve the hit ratio of sys-
tem.

C. Sensitivity Studies
Cache space is important for the efficiency of

prefetching schemes. In this section, we evaluate the im-
pact of cache space on prefetching schemes.

1308 JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

500 450 400 350 300 250 200
0

50

100

150

200

250

300

Th
e

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

The vared cache space

 LSP
 SP
 SEQP32
 SEQP512

Fig. 8 The average response time of prefetching schemes with Web1-4

trace under varied cache space
Figure 8 shows the average response time of different

prefetching schemes with Web1-4 workloads under var-
ied cache space. With the cache space decreasing, the
response time of all the prefetching schemes increase.
However, this trend in LSP is slighter than that in others.
When the cache space is reduced to 250MB, LSP outper-
forms SEQP32 and SEQP512 by up to 37.1% and 48.7%,
which demonstrates that LSP can more efficiently utilize
the buffer cache. The low performance of SP under small
buffer cache further demonstrates the efficiency of LSP.
When the buffer cache is sufficient, SP achieves better
performance than both SEQP32 and SEQP512 because
the buffer cache is large enough to store all the prefetched
pages even under inaccurate prediction. With the buffer
cache decreased, the inaccurate prediction in SP domi-
nates the performance degradation, where SEQP32 out-
performs SP by 29.1% under 300MB buffer cache. LSP
significantly outperforms SP by 58.2% when the cache
space is less than 300MB.

Figure 9 illustrates the throughput of different
prefetching schemes with Web3-4 trace under varied
cache space. LSP consistently outperforms other
prefetching schemes. And, this advantage in LSP is more
obvious when the cache space is small. For example,
when the ache space arrives to 350MB, the throughput of
LSP is higher than SP by a factor of 2.8 times. In contrast,
this factor is only 1.4 times when the cache space is
500MB. Moreover, with the cache space decreasing, the
performance of SP is degraded more seriously than SEQP,
where SP outperforms SEQP32 and SEQP 512 by 38%
and 38.6% when the buffer cache is 500MB. However,
when the buffer cache is 200MB, SP only obtains 8.5%
throughput improvement compared with SEQP32.

500 450 400 350 300 250 200
0

10

20

30

40

50

Th
e

th
ro

ug
hp

ut
 (M

B
/S

)

The varied cache space (MB)

 LSP
 SP
 SEQP32
 SEQP512

Fig. 9 The throughput of different prefetching schemes with Web3-4

under varied cache space

Fin1-10 Fin2-10 Fin3-10
70

80

90

100

110

120

130

Th
e

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

The varied traces

 LSP
 SP
 SEQP512

Fig. 10 The average response time under Fin2-10 (400MB default cache

space)
LSP improves the prediction accuracy based on the

spatial locality that includes multiple simple reference
patterns, such as the sequential reference. To evaluate the
efficiency of LSP in exploiting the reference patterns, we
use the OLTP traces to perform the experiment, which
generates many sequential accesses. In figure 10, LSP
consistently outperforms both SP and SEQP512 by up to
35.8% and 27.5% under high concurrent execution. This
demonstrates that LSP not only avoids the independency
loss, but also efficiently exploits the sequential reference
pattern in OTLP. In contrast, SP performs worse than
SEQP512, where the average response time of SP is larg-
er than that of SEQP by up to 11.4%. This illustrates that
strip based prefetching without considering the access
patterns of workloads cannot adapt to large scale storage
systems although it can also avoid the independency loss.

D. The impact of parameters
In the implement to LSP, there are three important

factors impacting on the performance and overhead of our
algorithm. One of them is how to determine the size of
recent access window, and another is to preset the upper
bound size of holes in hot data areas. The third factor is
the address gap used in hot data areas detecting.

The size of recent access window is a key factor that
impacts the efficiency of hot data area detecting and the
hit ratio of LSP. Therefore, LSP with the optimum win-
dow size should achieves the best performance with the
highest hit ratio. To evaluate the optimum size, we con-
duct the experiments under different configurations
shown in figure 11. The results demonstrate that when the
window size ranges from 40 to 100, the highest hit ratio is
obtained. However, larger window typically means heav-
ier overhead in computation and space. Based on this
consideration, we set the size of recent access window to
50.

8 16 32 64 128 256 512 1024
56.0

56.4

56.8

57.2

57.6

58.0

 fin1

Th
e

hi
t r

at
io

 w
ith

 fi
n1

 (%
)

The size of window

Th
e

hi
t r

at
io

 w
ith

 fi
n2

 (%
)

62.0

62.2

62.4

62.6

62.8

 fin2

Fig. 11 The hit ratio with different window size and workloads

JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012 1309

© 2012 ACADEMY PUBLISHER

32 64 128 256 512 1024 2048
6

8

10

12

Th
e

av
er

ag
e

ov
er

he
ad

 p
er

 lo
ok

up

The upper bound of a hole (KB)

 Fin1
 Fin3

Fig. 12 The average overhead per lookup with different upper bound and

workloads

Fin1 Fin2

56

58

60

62

Th
e

av
er

ag
e

hi
t r

at
io

 (%
)

The workloads

 0
 64
 128
 192

Fig. 13 The hit ratio with different address gap and workloads

The upper bound size of holes is another important
parameter needed by LSP to balance between the total
number of hot data areas and the number of holes per area.
The preset value should minimize the sum of areas and
holes involved in a single lookup, which can effectively
reduce the prefetching overhead. Figure 12 shows the
average computation overhead for each lookup with dif-
ferent upper bound size, through which the optimum size
can be achieved. The results show that when the upper
bound reaches 256KB, the average overhead for each
lookup achieves its minimum value. With higher bound,
the overhead has slight increase. In contrast, the lower
bound leads to heavy overhead. The reason is that after
the areas tree is searched, only parts of requests need to
traverse the holes balance tree.

To evaluate the impact of different address gap on hot
data areas detecting, we exam the hit ratio with all availa-
ble configures. The results in figure 13 show that when
the address gap is equal to 128KB, the hot data areas de-
tecting achieves the highest efficiency. When the gap is
zero, the detecting mechanism is similar to sequential
prefetching, which has stricter limit in prefetching deci-
sion and some requests with spatial locality, but not se-
quentiality, may be ignored.

V. CONCLUSION

In this paper, we propose a locality-aware strip
prefetching algorithm (LSP), which only performs the
strip based prefetching on the hot data areas. LSP scheme
can efficiently exploit the general spatial locality to work
for workloads as many as possible, where multiple simple
reference patterns (for example the sequential reference in
this paper) can be used to improve the cache utilization
and throughput of disks. The experimental results show
that LSP outperforms SP and SEQP by up to 22.4% and
24.1% in terms of the average response time. LSP also
achieves 1.5 times and 2.3 times throughput improvement
over SP and SEQP under concurrent accesses. By inte-

grating the spatial locality exploitation with the strip
prefetching, LSP is adaptive to striped disk array systems
and significantly improves both the cache utilization and
the throughput of disk.

ACKNOWLEDGEMENT

This work is supported by the National Basic Research
973 Program of China under Grant No. 2011CB302301,
863 project 2009AA01A402, NSFC No.61025008,
60933002,60873028, Changjiang innovative group of
Education of China No. IRT0725.

REFERENCE

[1] Santos, J.R., Muntz, R.R., Ribeiro-Neto, B., Comparing
Random Data Allocation and Data Striping in Multimedia
Servers. In Proceedings of the 2000 SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems,
ACM Press, 2000, Santa Clara, CA, 44-55

[2] Baek, S.H., and Park, K.H. Prefetching with Adaptive Cache
Culling for Striped Disk Arrays, In Proc. of USENIX Annu-
al Technical Conference, pp. 363-376, June, 2008

[3] Liang, S., Jiang, S., and Zhang, X. STEP: Sequentiality and
thrashing detection based prefetching to improve perfor-
mance of networked storage servers. In Distributed Compu-
ting Systems, 2007. ICDCS’07. 27th International Confer-
ence on (2007), pp. 64-.

[4] Li, M., Varki, E., Bhatia, S., and Merchant, A. Tap: Ta-
ble-based prefetching for storage caches. In Proc. of the 6th
USENIX Conference on File and Storage Technolo-
gies(Feb,2008), pp. 81-96.

[5] Gill, B.S., and Bathen, L.A.D. AMP: Adaptive multistream
prefetching in a shared cache. In Proc. of USENIX 2007
Annual Technical Conference (2007), 5th USENIX Confer-
ence on File and Storage Technologies.

[6] D. Patterson, G.Gibson, and R.Katz. A case for redundant
arrays of inexpensive disk(DISK). In International conferece
on Management of Data, pages 10-116, June 1988

[7] P.Chen, E.Lee, G.Gibson, R.Katz, and D.Patterson. RAID:
high-performance, Reliable secondary storage. ACM Com-
puting Surveys, 26(2):145-188, June 1994

[8] P.Scheuermann, G.Weikum, P.Zabback: Data partitioning
and load balancing in parallel disk systems, VLDB Journal
7(3), 1998

[9] Tracy Kimbrel and Anna R. Karlin. Near-optimal Parallel
Prefetching and Caching. In Proceedings of the 1996 IEEE
Symposium on Foundations of Computer Science, October
1996.

[10] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z.
Wang, and Z. Song. PRO: A Popularity-based Multi-
threaded Reconstruction Optimization for RAID Structured
Storage Systems. In FAST’07, Feb. 2007.

[11] Storage Performance Council. http://www.storageperform
ance.org/home.

[12] Y.Zhu and H. Jiang, “False rate analysis of Bloom filter
replicas in distributed systems,” International Conference on
Parallel Processing(ICPP), pp.255-262, 2006.

[13] Baek, S.H., and Park, K.H., 2009. Striping-Aware Sequen-
tial prefetching for independency and Parallelism in Disk
Arrays with Concurrent Accesses. IEEE ToC. 58(8).
1146-1152.

[14] Z.Li, Z.Chen, S.Srinivasan, and Y.Zhou. C-Miner: Mining
block correlations in storage systems. In Third USENIX
Symposium on File and Storage Technologies(FAST’04),
pages 173-186, April 2004.

1310 JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

[15] P. Xia, D. Feng, H. Jiang, L. Tian, F. Wang. FARMER: A
novel approach to file access correlation mining and evalua-
tion reference model for optimizing peta-scale file system
performance. In the International Symposium on High Per-
formance Distributed Computing(HPDC’08), June, 2008

[16] R.Arnan, E.Bachmat, T.K.Lam, and R.Michel. Dynamic
data reallocation in disk arrays. ACM Transactions on Stor-
age, 3(1), 2007

[17] L.Cherkasova and G.Ciardo. Characterizing temporal local-
ity and its impact on web server performance. Technical
Report HPL-2000-82, Hewlett Packard Laboratories, Jul.
2000

[18] L. Cherkasova and M.Gupta. Analysis of enterprise media
server workloads: access patterns, locality, content evolu-
tion, and rates of change. IEEE/ACM Transactions on net-
working, 12(5):781-794, Oct. 2004.

[19] W.W.Hsu, A.J.Smith, and H.C.Yong, I/O reference behav-
ior of Production Database Wrokloads and the TPC Bench-
marks-an analysis at the logical level, ACM Trans. Database
Syst. 26, No.1, 96-143 (March 2001)

[20] Peng Gu, Yifeng Zhu, Hong Jiang, Jun Wang: Nexus: A
novel weighed-graph-based prefetching algorithm for
Metadata Servers in petabyte-scale storage systems IEEE
International Sympoium on Cluster Computing and the
Grid(CCGRID’06), page:409-416, 2006

[21] R.H.Patterson, G.A.Gibson, E.Ginting, D.Stodolsky, and
J.Zelenka, Informed prefetching and caching. In High Per-
formance Mass Storage and Parallel I/O: Technologies and
Applications. New York, NY:IEEE Computer Society Press
and Wiley, 2001, 16, p. 224-244.

[22] KALLAHALLA, M., AND VARMAN, P. J. PC-OPT:
Optimal offline prefetching and caching for parallel I/O sys-
tems. IEEE Trans. on Computers 51, 11 (Nov. 2002),
1333–1344.

[23] R. Shah, P. J. Varman, and J. S. Vitter. Online algorithms
for prefetching and caching on parallel disks. In Proceedings
of the 16th Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures, pages 255–264, June 2004.

[24] M. Kallahalla and P. J. Varman. Optimal read-once parallel
disk scheduling. In Proceedings of the Sixth ACM Work-
shop on I/O in Parallel and Distributed Systems, pages
68–77, Atlanta, GA, 1999. ACM Press, New York, 1999.

[25] D.P. Bovet and M. Cesati. Understanding the linux kernel.
O’Reilly, 2005

[26] J.Skeppstedt and M.Dubois, Compiler controlled prefetch-
ing for multiprocessors using low-overhead traps and
prefetch engines. J. Parallel Distrib. Comput, vol.60, no.5,
pp. 585-615, 2000.

JOURNAL OF COMPUTERS, VOL. 7, NO. 6, JUNE 2012 1311

© 2012 ACADEMY PUBLISHER

