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Abstract—In striped disk array systems, the independency 
of disks for prefetching is more important than parallelism 
under high concurrency of accesses, based on which strip 
prefetching with low read cost has more ability to improve 
the performance of RAID. However, it indiscriminately 
fetching all the involved strips limits its applicability. To 
solve this problem, we propose a Locality-aware Strip 
Prefetching Scheme (LSP), where it keeps track of the users’ 
accesses and identifies the hot data areas. Only those strips 
located in the hot data areas will be prefetched and each 
prefetching request fetches one strip. LSP has several ad-
vantages. First, LSP adapts to the evolving workloads in an 
online and self-tuning fashion and satisfies the striped disk 
array systems due to the low read cost in each prefetching 
request. Second, LSP fully exploits the spatial locality in 
users’ accesses. Here, the spatial locality is more general, 
which includes multiple simple patterns, such as loop refer-
ences, sequentiality, reverse references, and other locali-
ty-awarded patterns. Third, LSP discriminates the hot data 
areas from the cold data areas when prefetching, which sig-
nificantly alleviates the waste of disk bandwidth, optimizes 
the cache utilization and improves the prefetching accuracy. 
We have implemented the prototype of LSP algorithm in 
Linux kernel 2.6.18. The experimental results show that LSP 
outperforms SP and Sequential prefetching (SEQP) by up to 
22.4% and 24.1% in terms of the average response time, and 
by up to 1.5 times and 2.3 times in terms of throughput, re-
spectively.  

 
Index Terms— Striped disks array systems, Independency of 
disks, Strip prefetching, Spatial locality 
 

1. INTRODUCTION 

Prefetching technologies are widely used in storage 
systems to bridge the performance gap between the pro-
cessor and the storage device. Many prefetching schemes 
are dedicated to disk to break the performance bottleneck. 
For these schemes, one of the most important goals is to 
improve the throughput of disks by aggregating multiple 
contiguous blocks as a single request, where sequential 
prefetching is the most representative algorithm. For 
file-level prefetching schemes, multiple contiguous 

blocks fragmented from a file are also fetched in a single 
prefetching request. However, these approaches designed 
for single storage device cannot work well under the 
striped disk array systems [6, 7]. 

In striped disk array systems, the logically consecutive 
user data is split into multiple strips across distinct disks 
[1, 7, 8], as shown in figure 1. As a result, multiple re-
quests located in distinct disks can be concurrently per-
formed, which overlaps their service times. However, this 
splitting leads prefetching schemes to lose the ability to 
improve the disk throughput by aggregating large amount 
of contiguous blocks into a single prefetching request to 
save most of the disk seek time. 

 
Fig. 1 The data organization in striped disk array 

For prefetching under high accesses concurrency, the 
independency of disks is more important than the paral-
lelism. The conventional prefetching schemes typically 
generate a large prefetch request consisting of multiple 
blocks that is not aligned in a strip. Therefore, a prefetch-
ing request may involve several strips. This induces the 
independency loss [2, 13] and significantly increases the 
prefetching cost in each involved disk, where the 
prefetching I/O is totally random with respect to the cur-
rent disk head position. Moreover, the available sequenti-
ality limited in strips cannot be fully exploited because 
the prefetching requests may involve only part of a strip. 
In contrast, the parallelism of prefetching has very limited 
ability to improve the performance of RAID under high 
execution concurrency because the striping based data 
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placement has fully exploited the parallelism among 
disks. 

Most traditional prefetching schemes are designed for 
single device. Unlike them, strip prefetching is based on 
the striped disk array systems, where it prefetchs all the 
blocks in a strip whenever a block belonging to this strip 
is missed in the buffer cache. 

As the importance of independency increasing, strip 
prefetching [2] with low read cost has more ability to im-
prove the performance of striped disk array systems. Strip 
prefetching uses strips as the basic unit of prefetching. 
And hence, each prefetching request is dedicated to only 
one disk. As a result, the independency loss can be 
avoided and the sequentiality limited in strips can be fully 
exploited. Moreover, the prefetching request following 
the user request in the same disk has low read cost. How-
ever, strip prefetching doesn’t consider the prediction 
accuracy or any access patterns in users’ workloads, 
which are the most important factors in traditional 
prefetching schemes. This inaccurate prediction leads to 
two drawbacks: the cache utilization degradation and the 
disk bandwidth waste, which limit the applicability of 
strip prefetching. 

Most I/O intensive applications exhibit spatial locality 
of accesses, which can be exploited to power the 
prefetching algorithms. Spatial locality means that if a 
block is accessed, the other blocks located in the same 
area are likely to be accessed in the near future. Many 
simple and regular access patterns are based on spatial 
locality, such as sequential reference, loop reference, re-
verse reference and stride reference et al.. Identifying the 
hot data areas can effectively exploit the spatial locality 
based access patterns and further benefit the correspond-
ing applications. For example, the query service in data-
base applications [19] is dominated by sequential requests, 
where blocks are placed continually and requested se-
quentially. Therefore, the hot data areas with spatial lo-
cality can be used to identify the query domains and ben-
efit the database applications. There are some other types 
of applications exhibiting regular access patterns based on 
spatial locality, such as the loop references for science 
computation and reverse reference et al.. However, spatial 
locality isn’t limited within regular access patterns, some 
seemingly random requests may also exhibit spatial local-
ity. For example, a backend storage system for Web serv-
ers needs to supports amount of online clients. Although 
these clients have different access path, most of them may 
be interested in one or several domains, which leads to the 
spatial locality of referenced data. Therefore, an adaptive 
prefetching scheme that can identify the hot data area to 
exploit the spatial locality will benefit most applications 
that may exhibit different regular access patterns. 

In this paper, we propose a Locality-aware Strip 
Prefetching Scheme (LSP), where only those strips locat-
ed in the hot data areas will be prefetched to exploit the 
spatial locality. In other words, LSP performs the 
prefetching only on those data areas with strong spatial 
locality. Due to spatial locality, these data areas are fre-
quently accessed and become hot. By this way, LSP op-
timizes the strip prefetching with users’ workloads char-

acteristics. The spatial locality here is more general, 
which includes a set of regular access patterns, such as: 
sequential references, loop references, reverse references 
and stride references et al.. Unlike other prefetching 
schemes based on one regular access pattern (such as the 
sequential prefetching), LSP can work for as many work-
loads as possible. To the best of our knowledge, few ap-
proaches perform the block-level strip prefetching based 
on the hot data areas. 

 There are only a few studies considering the inde-
pendency loss in striped disk array systems. Paek and 
Park [2] propose a dedicated cache replacement algorithm 
to alleviate the negative impact of strip prefetching, which 
works on the data prefetched by strip prefetching and im-
proves the cache utilization. Moreover, SASEQP [13] 
tries to limit the depth of sequential prefetching into a 
strip to avoid the independency loss without considering 
the optimum depth of sequential prefetching itself. Dif-
ferent from these approaches, LSP exclusively focuses on 
strip prefetching and integrates the general spatial locality 
to improve its prediction accuracy. By this way, LSP can 
improve the cache utilization under cache replacement 
schemes as many as possible, and can significantly reduce 
the disk bandwidth waste. 

The rest of this paper is organized as follows. Section 
II describes the prior work and the observations that mo-
tivate our work. LSP scheme is presented in section III in 
details. We analyze the performance of LSP through ex-
tensively trace-driven experiments in section IV. The 
conclusion is shown in section V. 

II.  PRIOR WORK AND MOTIVATION 

A. Prefetching Schemes for Storage Systems 
a. File-Level Prefetching 

The file-level prefetching schemes try to predict the 
next files in access stream through different approaches. 
Some approaches obtain the future information by ex-
ploiting the reference history [20], some are based on the 
hint of applications [21], and some are based on the hint 
from compiler [26]. However, all these schemes need the 
information about files, which is difficult to be imple-
mented in low-level storage systems due to the narrow 
interface between them and file systems. Although these 
schemes can exploit the parallelism when they are used 
for striped disk array systems, the independency loss is 
obvious. 
b. Block-Level Prefetching 

There are many studies focusing on the block-level 
prefetching due to its transparency to file systems and 
storage applications. Some prefetching schemes predict 
the next blocks by exploiting the correlations between 
distinct blocks [14] based on the history references; some 
perform their prefetching requests based on one or multi-
ple simple reference patterns. The sequential prefetching 
scheme is a representative algorithm that generates the 
prefetching requests based on the sequential reference 
pattern. Once a sequential stream is detected, they [3, 4, 5] 
aggregate large number of blocks into a prefetching re-
quest. 

These prefetching schemes are popular and practical in 
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low-level storage systems. However, they are still de-
signed for single storage devices without considering the 
characteristics in striped disk array systems, which results 
that traditional block-level prefetching schemes suffer 
from the independency loss. 
c. Off-Line Prefetching 

Some off-line studies focus on exploiting the parallel-
ism of parallel disks systems under a single execution 
stream. PC-OPT [22] is an optimal algorithm in terms of 
cache utilization and disk parallelism. Reverse aggressive 
prefetching [9] designs an off-line algorithm that is used 
to serve the read-many reference strings. And, they prove 
that the algorithm of reverse aggressive is near optimal 
for typical parallel disks systems. Peter J. Varman etc. 
proposed other parallel prefetching algorithms [23, 24] 
for parallel disks systems, where they are based on the 
large scale blocks lookahead or off-line knowledge and 
try to fetch a block from each disk on every I/O period 
time. However, the complete future reference string used 
in these approaches is non-trivial to be achieved in prac-
tice. 
d. Strip Prefetching 

Strip prefetching is a simple prefetching scheme dedi-
cated to striped disk array systems. There is a lack of 
studies for applicable strip prefetching. ASP [2] proposes 
a dedicated cache management (called adaptive cache 
culling) for strip prefetching, where it evicts (culls) 
prefetched and unused data at the earlier time in an adap-
tive manner to maximize the overall cache hit rate. The 
adaptive cache culling algorithm works on the data 
prefetched by strip prefetching. The buffer cache has to 
maintain and process those prefetched data before culling 
them. Moreover, a cache replacement scheme cannot in-
fluence the disk bandwidth waste of strip prefetching. 

SASEQP [13] is a sequential prefetching algorithm, 
which limits the sequential prefetching depth into a strip. 
Similar as the strip prefetching, it can avoid the inde-
pendency loss. However, this algorithm exclusively fo-
cuses on a simple reference pattern: sequential reference, 
while other patterns that can be exploited in strip 
prefetching are ignored. Moreover, the sequential 
prefetching schemes typically have their own models to 
determine the prefetching depth [3, 4] not limited within a 
strip. 

The original strip prefetching has the advantage of 
avoiding the independency loss. However, it may not be 
an applicable prefetching scheme due to its inaccurate 
prediction, especially when there isn’t any support from 
dedicated cache replacement. To address this problem, 
LSP not only retains the mentioned advantage, but also 
significantly improves the prediction accuracy by inte-
grating the general spatial locality into prefetching algo-
rithm. 

B. Spatial Locality 
The spatial locality is a common and inherent access 

pattern that significantly affects the throughput of storage 
systems. In web applications, 10% of files on web server 
workload contribute 90% of accesses and 90% of trans-
ferred data [17, 18]. More generally, the well-known 
principle called “The 80/20 Rule” [19] shows that 80% of 

accesses are always directed to 20% of files. Lots of 
studies focus on improving the spatial locality of accesses, 
which further enhances this trend. The studies [14, 15] 
realize the importance of spatial locality, thus they opti-
mize the data layout by placing files or blocks with access 
correlations together. Arnan et al. [16] have demonstrated 
that reorganizing the data on disks to improve spatial lo-
cality can significantly improve the response time of I/O 
operation about 20-30% even using coarse grain volumes 
as atomic units. Most of popular file systems dynamically 
or statically place blocks on disks based on their correla-
tions in access stream to reduce the I/O operation latency. 
However, these data may be placed in disk 
non-sequentially.  

All these above mentioned studies illustrate that it is 
common for storage systems placing the hot data, fre-
quently accessed within a comparable temporal locality, 
into a small area of a disk. Exploiting the hot data area 
can satisfy multiple simple reference patterns such as se-
quential reference, reverse reference, loop reference and 
stride reference. Therefore, introducing the hot data areas 
into strip prefetching can significantly improve the per-
formance of RAID. 

III.  THE LSP SCHEME 

Due to the shortcoming of conventional strip prefetch-
ing, we believe that the key to solve its problem is to effi-
ciently identify the hot data areas. By this way, only those 
frequently accessed data with spatial locality will be 
prefetched. 

The main idea behind LSP is to maintain and monitor 
the recently entered requests to evaluate whether there are 
data areas including those requests with spatial locality. 
Then, LSP performs the strip based prefetching in these 
data areas. More specifically, LSP maintains a preset size 
window for the recently entered requests. If there are 
multiple requests locating on the same data area, a new 
hot data area is identified and the size of this area is de-
termined. When cache misses locate on any hot data area, 
the whole strip of blocks is prefetched. 

It’s important to note that the write requests can also 
achieve benefit from LSP. The hot data areas dependent 
on the accesses not only from read requests, but also from 
write requests. Therefore, the performance of write re-
quests can also be improved due to the higher hit ratio 
without extra-overhead. Specifically, a write request typ-
ically includes three steps: read operation, modification 
operation and write operation. LSP can improve the write 
request performance through increasing the hit ratio of 
read operation. Combining our results with adaptive 
cache management and efficient write back policies for 
other operations may further improve the overall write 
requests performance, but it is beyond the scope of this 
work. 

A. Identify the Hot Data Area 
In LSP, the hot data area is fully and dynamically cre-

ated and updated. At the beginning of LSP, there is no hot 
data area. 
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Fig. 2 Identifying the hot data area description 

LSP maintains a window for the recently entered re-
quests, whose size is set to 50 in this paper. Our experi-
mental results show that too small size cannot fully ex-
ploit the available hot data areas, while too large size 
leads to the loss of potential prefetching requests (we de-
scribe this determination in section C). When the window 
is full, LSP traverses the window to search the blocks in 
distinct requests that have spatial locality. The spatial 
locality here isn’t limited in the consecutive blocks. If the 
address gap between two data units from distinct requests 
isn’t larger than 128KB (we describe this determination in 
section C) that is deemed to be optimum for workloads, 
we consider these two requests have spatial locality and 
locates at the same hot data area. If the requests with spa-
tial locality are found, a corresponding hot data area is 
identified, just like the description in Figure 2. 

We assume that a set of data units from requests with 
spatial locality, numbered {N1, N2,… NL}, are found, and 
hence its corresponding hot data area is identified with 
default length 2*(NL-N1), which ranges from N1-(NL-N1)/2 
to NL+(NL-N1)/2. This default length includes three 
sub-areas: the head sub-area ranging N1-(NL-N1)/2 to N1, 
the middle sub-area ranging N1 to NL and the end sub-area 
ranging NL to NL+(NL-N1)/2. The head sub-area and the 
end sub-area may be accessed in the future, while the 
middle sub-area ranging N1 to NL has been accessed dur-
ing identification. We set a larger size to a hot data area 
than middle sub-area, which can satisfy the future access-
es. If we limit the default length into the middle sub-area, 
LSP will lag behind the accesses to this area and lose 
many potential prefetching requests. The default size of a 
hot data area is relative to the middle sub-area that will be 
dynamically adjusted according to the subsequent access-
es, which can effectively avoid an excessive hot data area. 

If a new request, whose involved blocks haven’t been 
accessed before, is coming, the length of its correspond-
ing hot data area is increased. If the prefetched data lo-
cated in a hot data area is evicted from cache without any 
access, its length is reduced. If there are two adjacent hot 
data areas that have less address gap than 128KB, we 
merge them into one single hot data area. More specific 
description is shown in section B. 

All the identified hot data areas will be stored in buffer 
cache. Due to the spatial locality of workloads, the num-
ber of hot data areas is far less than the disk space. 
Therefore, the space overhead in LSP is low.  

B. LSP Algorithm 
In this section, we describe the LSP algorithm as fol-

lows: 

First, for each newly entering request, we check 
whether this request locates in an existing hot data area in 
the identified hot data areas queue (IQ). If a hot data area 
is found, all blocks in the strip involved by this request 
are prefetched. If this strip is accessed for the first time, 
we identify this strip as Accessed, and the length of this 
area is increased by two strips in the direction of the mid-
dle sub-area extension. If no hot data area is found from 
IQ, the request is inserted into the LSP window for the 
future hot data area detection. In this step, the hot data 
areas in IQ are sorted by their start address, and hence 
traversing the IQ to search the hot data area can be CPU 
efficient.  

/* Procedure to be invoked upon a new request */
Input: a new request i;
           IQ;
Output: an updated IQ;
a new request i is coming;
if (i IQ)
{

compute the strip (S) that includes the request i;
       Prefetch(S); 

if (S.accessed==false)
{
    S.accessed=true;
    compute the hot-data-area (A) that includes S;
    A.length++;

       }     
} else{
      insert request i into the window (W);
      W.length++;
      if (W.length>=threshold)
      {
         while (W.length>0)
         {
            remove a request j from the head of W;
            W.length--;
            if (there are another requests closing to j)
            {
               a new hot-data-area (Aj) is identified;
               insert Aj into IQ and sort Aj by its start address;
               if (there are Aj-1 or Aj+1 adjacent to Aj 

(distance<128KB))
                   merge them;      
            }
         } 
     }    
}

/*Procedure to be invoked upon an evicted block b*/
Input: an evicted block b;
           IQ;
Output: an updated IQ;
if (b is a prefetched not yet accessed block)
{

   compute the strip S that includes b;
      compute the hot-data-area A that includes S;
      remove S from A;
      A.length--;
      if (max(A.holes)>=256KB)
      {
         divide A into two hot-data-area;
      }
}

Fi
g. 3 The LSP algorithm description 

Second, when the window is full, LSP checks the 
blocks in this window. If there are blocks accessed by 
distinct requests and spatially closing to each other, a new 
hot data area (Ai) is detected. This area is initiated by the 
default length and then inserted into the sorted IQ based 
on its start address. LSP checks the predecessor area (Ai-1) 
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and successor area (Ai+1). If the areas are adjacent, LSP 
merges these two areas into one larger area. After all the 
available hot data areas in window are identified, the 
window is set to be empty. 

Third, LSP keeps track of the evicted blocks from 
buffer cache. If any prefetched blocks in a strip are evict-
ed without any access, we believe the hot data area in-
cluding this strip has too large size and this strip has poor 
spatial locality. Therefore, LSP reduces the size of this 
hot data area and remove the strip from the current area. 
As a result, some ‘holes’ may exist in a hot data area. If 
the ‘hole’ is large enough, we divide an area into two hot 
data areas. In this paper, we set this threshold as 256KB 
that is described in section C.  

In LSP, the size of hot data area is dynamically ad-
justed according to the user accesses. Therefore, it can 
efficiently reflect the characteristics of a specific work-
load. The LSP algorithm is described in Figure 3. 

C. Implemention issues 
In this section, we describe the implementation issues 

in details, which include the data structure in LSP and 
how to preset the parameters (thresholds). 

LSP uses an access window to keep track of the re-
cently referenced requests, based on which the evolving 
hot data areas can be obtains. Once a new request is com-
ing, it is inserted into the window. If the window is full, a 
procedure for identifying hot data areas begins. Each time 
the identifying finishes, the whole window is emptied to 
be ready for a new round of identifying. This implies that 
the short-term history is more valuable than the long-term 
in our algorithm. Therefore, if the size of window is too 
large, the hot data areas can’t be timely updated. 
Prefetching becomes ineffective because the detection is 
too late- the blocks in hot data areas have induced many 
misses. Moreover, large window also need more compu-
ting and cache resource that significantly increases the 
overhead of prefetching schemes. On the other hand, too 
small window size may lose some opportunities to detect 
the potential hot data areas. In our paper, we adopt the 
value 50 as the optimum window size because our ex-
perimental results in figure 11 demonstrate that LSP with 
this value achieves its best performance under most trac-
es. 

LSP uses a preset threshold to determine the upper 
bound size of holes in a hot data area. If a hole is larger 
than the threshold, its corresponding area is divided into 
two new areas. Therefore, the threshold size affects the 
total number of areas and holes in each area. Our experi-
mental results show that if the size is small, the number of 
areas is dramatically increased, which will consume more 
computation and cache resources for prefetching. For 
each request, LSP has to traverse most of the areas to lo-
cate it. With the threshold size increasing, although the 
total number of areas may be reduced, more holes may be 
included in each area. For an entering request located in 
an identified area, LSP has to traverse all the holes in the 
area to determine whether the request falls into holes. If 
there are too many holes in an area, LSP becomes ineffi-
cient. To balance between the total number of areas and 
the number of holes per area, we adopt a threshold value 

256KB that is optimum and adaptive to the workloads in 
our experiments (figure 12). 

Another parameter in LSP is used to detect the hot data 
areas, which determines the maximum address gap be-
tween two requests that are considered to have spatial 
locality. In this paper, we set the value of this parameter 
as 128KB because we have very limited choices. First, 
this parameter should adopt a less value than the upper 
bound size of holes (256KB). Second, LSP is based on 
the strip prefetching, which means the strip size (64KB) is 
a basic unit in both prefetching and hot data areas detect-
ing. Therefore, the address gap should be aligned in one 
or multiple strip. To satisfy both of the conditions, LSP 
adopts 128KB, which efficiency is also demonstrated in 
section IV (figure 13). 

A key implemental detail for the LSP algorithm to 
work is to design an efficient data structure to locate ex-
isting hot data areas and holes. Without proper manage-
ment, all the areas in IQ need to be traversed to locate a 
request, which increases the over head of LSP. To over-
come the problem, we index the areas and holes using 
balance trees. Since the number of hot data areas for a 
specific workload is limited, only a reasonably large 
cache space is needed to maintain the indexing tree. Fig-
ure 4 shows the data structure for locating areas and holes. 
Each area is linked to a balance tree for indexing its po-
tential holes. Meanwhile, all the areas are also indexed by 
a balance tree for efficient lookup. By this way, the over-
head of LSP can be effectively reduced. And, the compu-
tation complexity for each lookup is limited into O(logM 
+LogN), where M means the total number of hot data are-
as and N represents the number of holes in each area. 

 
Fig. 4 The hot data areas and holes management data structure 

IV.  PERFORMANCE EVALUATION 

We implement the LSP based on the Linux software 
RAID (MD), which is modified and embedded into the 
Linux kernel (Fedora Core 4 Linux, kernel version 2.6.11). 
The implementation has its own cache memory, whose 
space can be adjusted according to different needs of ex-
periments (default 500MB). We name it as Linux soft-
ware RAID with cache memory (LSR-CM), whose inter-
face is the same as traditional MD. 

To implement LSP, we track the I/O requests in the 
make-request function and issue its corresponding infor-
mation to the recent access window. LSP can be activated 
when a request located in a hot data area is coming. 

A. Experimental Setup and Methodology 
The experiments used to evaluate the performance, are 

conducted on a server-class hardware platform with an 
Intel Xeon 3.0 GHz processor and 1 GB memory. We use 
5 Seagate ST3250310AS SATA disks to construct the 
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RAID-5.  
In our experiments, we compare the proposed LSP al-

gorithm with the existing schemes Strip Prefetching (SP) 
and Sequential Prefetching (SEQP) [25], where the 
SEQP-N represents the maximum prefetching depth is N. 
We evaluate the performance of LSP through the exten-
sive trace-driven experiments. To replay the traces on our 
storage system, we use the replaying tool based on 
RAIDmeter [10]. We use the traces from the Storage 
Performance Council [11], where the two types of work-
loads include OLTP and Web searching. For each type of 
workload, we randomly select three trace files, which are 
labeled as Fin[1-3] and Web[1-3]. The OLTP traces are 
characterized by the sequential access pattern, while the 
Web traces are more random.  

To evaluate the impact of our work on throughput, we 
use synthetic workloads which can generate sufficient I/O 
requests per second. Specifically, we divide each trace 
into multiple equal fragments (sub-traces). The time 
stamps of all events in each fragment are equally shifted 
so that all the fragments start at the same time, like as 
show in [12]. RAIDmeter simultaneously replays multiple 
time-shifted fragments, which increases the I/O arrival 
rate while the practical scenarios based on the traces are 
kept. For example, the trace Fin1, collected from 10:00am 
to 11:00am, is divided into 10 fragments, where each 
fragment includes 6 minutes. The start time of each frag-
ment is set to 10:00am and the time stamps of all events 
in this fragment are equally shifted. We denote the 
scale-up traces as Finx-n or Webx-n, where –n represent 
the number of fragments replayed simultaneously. 

B. The Experimental Results 
LSP can efficiently reduce the disk bandwidth waste 

and improves the prediction accuracy of strip prefetching. 
This advantage can be reflected in the average response 
time of RAID. Figure 5 shows the results about the re-
sponse time of different prefetching schemes under Web 
traces. LSP obtains better performance than SP and SEQP 
512 by up to 22.4% and 24.1%. We believe the perfor-
mance improvement mostly derived from the higher 
cache utilization, because SP achieves a little performance 
benefit compared with SEQP512 that achieves the worst 
performance due to the random access characteristic in 
Web searching. 
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Fig. 5 The average response time of prefetching schemes under Web 

searching traces 
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Fi
g. 6 The throughput of different prefetching schemes under Web 

searching 
In figure 6, we show the throughput of different 

prefetching schemes. Under Web searching workloads, 
SEQP has very limited ability to improve the throughput 
of disks due to the random accesses. SP can improve the 
throughput of RAID because it avoids the independency 
loss and fully exploits the sequentiality in strips. However, 
the inaccurate prediction in SP limits the throughput im-
provement. As a result, LSP outperforms SP and SEQP 
by up to 49.2% and 2.3 times. This performance im-
provement demonstrates that LSP not only improves the 
cache utilization, but also optimizes the utilization of disk 
bandwidth. 
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Fig. 7 The hit ratio of different prefetching schemes with different 

workloads 
LSP can improve the prediction accuracy, which is 

more obviously reflected by the higher hit ratio rather 
than other performance factors, such as the average re-
sponse time and throughput. Therefore, we evaluate the 
hit ratio of different prefetching schemes in figure 7. In 
this experiment, the SEQP64 compared with other se-
quential prefetching algorithms achieves the best hit ratio 
with the Web based traces. So, we adopt SEQP64 as a 
comparison algorithm. The experimental results show that 
LSP outperforms other prefetching schemes. Specifically, 
it improves the hit ratio by up to 10.4% and 9.9% com-
pared with SP and SEQP64. For web traces with little 
sequentiality, sequential prefetching cannot efficiently 
exploit the spatial locality or improve the hit ratio of sys-
tem. 

C. Sensitivity Studies 
Cache space is important for the efficiency of 

prefetching schemes. In this section, we evaluate the im-
pact of cache space on prefetching schemes. 
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Fig. 8 The average response time of prefetching schemes with Web1-4 

trace under varied cache space 
Figure 8 shows the average response time of different 

prefetching schemes with Web1-4 workloads under var-
ied cache space. With the cache space decreasing, the 
response time of all the prefetching schemes increase. 
However, this trend in LSP is slighter than that in others. 
When the cache space is reduced to 250MB, LSP outper-
forms SEQP32 and SEQP512 by up to 37.1% and 48.7%, 
which demonstrates that LSP can more efficiently utilize 
the buffer cache. The low performance of SP under small 
buffer cache further demonstrates the efficiency of LSP. 
When the buffer cache is sufficient, SP achieves better 
performance than both SEQP32 and SEQP512 because 
the buffer cache is large enough to store all the prefetched 
pages even under inaccurate prediction. With the buffer 
cache decreased, the inaccurate prediction in SP domi-
nates the performance degradation, where SEQP32 out-
performs SP by 29.1% under 300MB buffer cache. LSP 
significantly outperforms SP by 58.2% when the cache 
space is less than 300MB. 

Figure 9 illustrates the throughput of different 
prefetching schemes with Web3-4 trace under varied 
cache space. LSP consistently outperforms other 
prefetching schemes. And, this advantage in LSP is more 
obvious when the cache space is small. For example, 
when the ache space arrives to 350MB, the throughput of 
LSP is higher than SP by a factor of 2.8 times. In contrast, 
this factor is only 1.4 times when the cache space is 
500MB. Moreover, with the cache space decreasing, the 
performance of SP is degraded more seriously than SEQP, 
where SP outperforms SEQP32 and SEQP 512 by 38% 
and 38.6% when the buffer cache is 500MB. However, 
when the buffer cache is 200MB, SP only obtains 8.5% 
throughput improvement compared with SEQP32. 
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Fig. 9 The throughput of different prefetching schemes with Web3-4 

under varied cache space 

Fin1-10 Fin2-10 Fin3-10
70

80

90

100

110

120

130

Th
e 

av
er

ag
e 

re
sp

on
se

 ti
m

e 
(m

s)

The varied traces

 LSP
 SP
 SEQP512

 
Fig. 10 The average response time under Fin2-10 (400MB default cache 

space) 
LSP improves the prediction accuracy based on the 

spatial locality that includes multiple simple reference 
patterns, such as the sequential reference. To evaluate the 
efficiency of LSP in exploiting the reference patterns, we 
use the OLTP traces to perform the experiment, which 
generates many sequential accesses. In figure 10, LSP 
consistently outperforms both SP and SEQP512 by up to 
35.8% and 27.5% under high concurrent execution. This 
demonstrates that LSP not only avoids the independency 
loss, but also efficiently exploits the sequential reference 
pattern in OTLP. In contrast, SP performs worse than 
SEQP512, where the average response time of SP is larg-
er than that of SEQP by up to 11.4%. This illustrates that 
strip based prefetching without considering the access 
patterns of workloads cannot adapt to large scale storage 
systems although it can also avoid the independency loss. 

D. The impact of parameters 
In the implement to LSP, there are three important 

factors impacting on the performance and overhead of our 
algorithm. One of them is how to determine the size of 
recent access window, and another is to preset the upper 
bound size of holes in hot data areas. The third factor is 
the address gap used in hot data areas detecting. 

The size of recent access window is a key factor that 
impacts the efficiency of hot data area detecting and the 
hit ratio of LSP. Therefore, LSP with the optimum win-
dow size should achieves the best performance with the 
highest hit ratio. To evaluate the optimum size, we con-
duct the experiments under different configurations 
shown in figure 11. The results demonstrate that when the 
window size ranges from 40 to 100, the highest hit ratio is 
obtained. However, larger window typically means heav-
ier overhead in computation and space. Based on this 
consideration, we set the size of recent access window to 
50. 
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Fig. 11 The hit ratio with different window size and workloads 
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Fig. 12 The average overhead per lookup with different upper bound and 

workloads 
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Fig. 13 The hit ratio with different address gap and workloads 

The upper bound size of holes is another important 
parameter needed by LSP to balance between the total 
number of hot data areas and the number of holes per area. 
The preset value should minimize the sum of areas and 
holes involved in a single lookup, which can effectively 
reduce the prefetching overhead. Figure 12 shows the 
average computation overhead for each lookup with dif-
ferent upper bound size, through which the optimum size 
can be achieved. The results show that when the upper 
bound reaches 256KB, the average overhead for each 
lookup achieves its minimum value. With higher bound, 
the overhead has slight increase. In contrast, the lower 
bound leads to heavy overhead. The reason is that after 
the areas tree is searched, only parts of requests need to 
traverse the holes balance tree. 

To evaluate the impact of different address gap on hot 
data areas detecting, we exam the hit ratio with all availa-
ble configures. The results in figure 13 show that when 
the address gap is equal to 128KB, the hot data areas de-
tecting achieves the highest efficiency. When the gap is 
zero, the detecting mechanism is similar to sequential 
prefetching, which has stricter limit in prefetching deci-
sion and some requests with spatial locality, but not se-
quentiality, may be ignored. 

V. CONCLUSION 

In this paper, we propose a locality-aware strip 
prefetching algorithm (LSP), which only performs the 
strip based prefetching on the hot data areas. LSP scheme 
can efficiently exploit the general spatial locality to work 
for workloads as many as possible, where multiple simple 
reference patterns (for example the sequential reference in 
this paper) can be used to improve the cache utilization 
and throughput of disks. The experimental results show 
that LSP outperforms SP and SEQP by up to 22.4% and 
24.1% in terms of the average response time. LSP also 
achieves 1.5 times and 2.3 times throughput improvement 
over SP and SEQP under concurrent accesses. By inte-

grating the spatial locality exploitation with the strip 
prefetching, LSP is adaptive to striped disk array systems 
and significantly improves both the cache utilization and 
the throughput of disk. 
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