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Abstract— This paper presents a novel discrete particle 
swarm optimization (PSO) for frequency response masking 
(FRM) finite impulse response (FIR) digital filters over the 
canonical signed-digit (CSD) multiplier coefficient space. A 
look-up table (LUT) scheme is employed to ensure that 
the PSO automatically searches through permissible CSD 
multiplier coefficient values in the course of optimization 
without any recourse to backtracking. This is achieved 
by searching through the indices of the CSD multiplier 
coefficient values in the LUT instead of the coefficient values 
themselves. In this way, the resulting multiplier coefficient 
values are ensured to conform to a prespecified wordlength 
as well as to a prespecified maximum number of non-zero 
digits. The salient feature of this LUT scheme is that by 
introducing barren layers in the LUT, there is no need 
to limit the search space manually in the course of PSO 
to prevent from going over the boundaries of the search 
space. Examples are given to illustrate the application of the 
proposed PSO to the design and optimization of a lowpass 
and a bandpass FRM FIR digital filters. 

Index Terms— Particle Swarm Optimization, Frequency Re-
sponse Masking Approach, Digital Filters 

I. INTRODUCTION 

D IGITAL filters find wide variety of applications 

in modern digital signal processing systems [1], 

[2]. The practical design of digital filters usually makes 

recourse to an optimization step en route to satisfying a 

given set of stringent design specifications. This optimiza-

tion is usually carried out in terms of fixed configurations 

but variable multiplier coefficient values. In principle, 

there exist two different techniques available for the 

optimization of digital filters, namely, gradient-based and 

discrete optimization approaches. The desired coefficient 

values can readily be determined in infinite-precision 

by using hitherto optimization techniques. However, in 

an actual hardware implementation of the digital filters, 

the infinite-precision multipliers should be quantized to 

their finite-precision counterparts, but the resulting finite-

precision multiplier coefficients may result in a digital fil-

ter that no longer satisfies the given design specifications. 

Consequently, from a hardware implementation point of 

view, there is every need for finite-precision optimization 

techniques. 

There is a vast body of literature available for gradient-

based optimization techniques, e.g. [3]–[7]. However, the 

large number of practical constraints usually involved in 

these techniques may adversely affect the computational 

efficiency of the optimization algorithm. 

Simulated annealing (SA) [8] and genetic algorithms 

(GAs) [9], [10] have emerged as promising candidates 

for the design and discrete optimization of digital fil-

ters, particularly due to the fact that they are capable 

of automatically finding near-optimum solutions while 

keeping the computational complexity of the algorithm at 

moderate levels. They allow a robust search of the solution 

space through a parallel search in all directions without 

any recourse to gradient information. 

particle swarm optimization (PSO) is an emerging at-

tractive optimization technique. It was originally proposed 

by Kennedy and Eberhart in 1995 as a new intelligent 

optimization algorithm which simulates the migration and 

aggregation of a flock of birds seeking food [11]. It adopts 

a strategy based on particle swarm and parallel global 

random search, which may outperform other intelligent 

algorithms in computational speed and memory. In PSO, 

a potential candidate solution is represented as a particle 

in a multidimensional search space, where each dimension 

represents a distinct optimization variable. The particles 

in the multidimensional search space are characterized by 

corresponding fitness values. They make movements in 

the search space towards regions characterized by high 

fitness values. 

This paper is concerned with the discrete PSO of a class 

of finite impulse response (FIR) digital filters. FIR digital 

filters are very attractive from a practical point of view 

because of their inherent stability features and simplicity 

of hardware implementation. However, the complexity 

of FIR digital filters is inversely proportional to their 

transition bandwidths, rendering them less economical 

if designed by using the classical techniques. Frequency 

response masking (FRM) technique is widely used for the 

design of computationally efficient sharp transition-band 

FIR digital filters [12]. Such narrow transition-bandwidth 

digital filters have many practical applications, e.g. in 

audio signal processing and data compression [13]. 

The starting point in the actual design of FRM FIR 

digital filters is to find the multiplier coefficient values 

constituent in the FIR digital filter in infinite-precision 

by using the hitherto gradient-based optimization tech-

niques (e.g. Parks-McClellan approach [14]) followed by 

a quantization of the resulting coefficient values. The 

quantization can be performed by constraining the mul-

tiplier coefficients values to conform to certain number 

systems such as the signed power-of-two (SPT) system 

[15]. SPT is a computationally efficient number system 
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which can further reduce the hardware complexity of 

the FRM FIR digital filters. In this number system, 

each multiplier coefficient is represented to have only 

a few non-zero digits within its wordlength, permitting 

the decomposition of the multiplication operation into a 

finite series of shift and add operations. Digital filters 

incorporating SPT multiplier coefficient representation 

are commonly referred to as multiplierless digital filters 

[15]. However, the SPT representation of a given number 

is not unique, resulting in redundancy in the multiplier 

coefficient representation. This redundancy can adversely 

affect the corresponding computational complexity due to 

recourse to compare operations repetitively. 

The canonical signed-digit (CSD) number system is 

a special case of the SPT number system which cir-

cumvents the above redundancy problem by limiting the 

number of non-zero digits in the representation of the 

multiplier coefficients. It is usually used in combination 

with subexpression sharing and elimination, which in 

turn results in substantial reduction in the cost of the 

hardware implementation of the digital filters [16]. In 

CSD number system, no two (or more) non-zero digits 

can appear consecutively in the representation of the 

multiplier coefficients, reducing the maximum number of 

non-zero digits by a factor of two in terms of shift and 

add operations [17]. 

After multiplier coefficient quantization, the resulting 

FRM FIR digital filter may no longer satisfy the given 

target design specifications. Therefore, the next step in the 

design of FRM FIR digital filters is to perform a further 

optimization to make the finite-precision FIR digital filter 

to conform to the design specifications. This can be 

achieved by resorting to a finite-precision optimization 

technique such as PSO. The proposed PSO involves a 

structural-level discrete optimization of FRM FIR digital 

filters in terms of actual CSD multiplier coefficient values, 

suitable for a direct hardware implementation. 

A direct application of the conventional PSO algorithm 

to the optimization of the above FRM FIR digital filters 

gives rise to two separate problems. The first problem 

stems from the fact that in the course of optimization, PSO 

algorithm may lead to candidate FRM FIR digital filter 

particles whose multiplier coefficients values no longer 

conform to the CSD number format (due to random nature 

of velocity and position of particles). This problem is 

resolved by generating an indexed look-up table (LUT) of 

permissible CSD multiplier coefficient values, and by em-

ploying the indices of LUT to represent FRM FIR digital 

filter multiplier coefficient values. The indices of the LUT 

conform to the integer number format. Since the integer 

numbers are closed under the operations of addition and 

subtraction, PSO is made to search over the permissible 

CSD values in the LUT during the optimization process. 

The second problem, on the other hand, stems from the 

fact that even in case of having an indexed LUT, the par-

ticles may go over the boundaries of the LUT in course of 

PSO due to the limited search space. This paper presents a 

new method to keep the particles inside the LUT in course 

of PSO without any recourse to backtracking, achieved 

by augmenting the LUT with barren layers. A barren 

layer is a region, with a certain width and certain entries, 

which is added to the problem space such that the particles 

tend to shy away from such a region. The width of the 

barren layers is calculated based on a worst case scenario 

that may happen in the particles movements in the search 

space. However, the entries of barren layers are different 

for different problems and depend on the topology of the 

search space and the fitness function used in the problem. 

The remainder of this paper is organized as follows: 

Section II is concerned with a brief introduction to the 

conventional PSO algorithm. In Section III, the design of 

the FRM digital filter is reviewed. Section IV is concerned 

with the design of the bandpass FRM digital filters. 

Section V introduces the proposed novel discrete PSO 

for FRM FIR digital filters. In section VI, two examples 

are given to illustrate the application of the proposed PSO 

to the design and optimization of FRM FIR digital filters. 

Finally, section VII presents the main conclusions of the 

paper. 

II. CONVENTIONAL PSO ALGORITHM 

Let us consider an optimization problem consisting of 

N design variables, and let us refer to each solution as a 

particle. Let us further consider a swarm of K particles 

in the N -dimensional search space. The position of the 

k-th particle in the search space can be assigned a N -

dimensional position vector Xk = {xk1, xk2, . . . , xkN }.

In this way, the element xkj (for j = 1, 2, . . . , N )

represents the j-th coordinate of the particle Xk.

The PSO optimization fitness function maps each par-

ticle Xk in the search space to a fitness value. In addition, 

the particle Xk is assigned a N -dimensional velocity 

vector Vk = {vk1, vk2, . . . , vkN}. The PSO optimization 

search is directed towards promising regions by taking 

into account the velocity vector Vk together with the 

best previous position of the k-th particle Xbestk 
= 

{xbestk1
, xbestk2

, . . . , xbestkN 
}, and the best global po-

sition of the swarm Gbest = {gbest1 , gbest2 , . . . , gbestN } 
(i.e. the location of the particle with the best fitness value). 

The conventional PSO is initialized by spreading the 

particles Xk through the search space in a random fash-

ion. Then, the particles make movements through the 

search space towards regions characterized by high fitness 

values with corresponding velocities Vk. The movement 

of each particle is governed by the best previous location 

of the same particle Xbestk 
, and by the global best 

location Gbest. The velocity of particle movement is 

determined from the previous best location of the particle, 

the global best location, and the previous velocity. 

The velocity and position of each particle in the i-th 

iteration throughout the course of PSO are updated in 

accordance with Eqns. (1) and (2). In these equations, 

the parameter w represents an inertia weight; c1 and 

c2 are the correction (learning) factors, and r1 and r2
are random numbers in the interval [0, 1]. The velocity 

is limited between vmin and vmax to avoid very large 
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particle movements in the search space, where vmin < 0 
and vmax > 0.

i i−1 i−1 i−1 i−1
vkj = wv + c1r1(xbestkj 

− x
i−1) + c2r2(gbestj − x )kj kj kj 

(1) 
i iif vkj < vmin ; vkj = vmin 

i iif vkj > vmax ; vkj = vmax 

i i−1 i xkj = xkj + vkj (2) 

The first term in the right hand side of movement 

update Eqn. (1), weighted by w, signifies the dependence 

of the current particle velocity on its value in the previous 

iteration. The second term, weighted by c1, signifies an 

attractor to pull the particle towards its previous best 

position. The third term, weighted by c2 controls the 

movement of the particle towards the global best position. 

In addition to the update Eqns. (1) and (2), one can limit 

the coordinates in a particle between two user defined 

values xjmin and xjmax in order to limit the search space. 

However, This operation increases the complexity and 

consumes time. 

III. OVERVIEW OF FRM DIGITAL FILTER 

The block diagram in Fig. 1 shows a conventional FRM 

digital filter, where Ha(z) represents a FIR interpolation 

lowpass digital subfilter, and where Hb(z) represents a 

power complementary counterpart of Ha(z) in accor-

dance with 

jω)|2|Ha(e + |Hb(e
jω)|2 = 1 (3) 

Here, z represents the discrete-time complex frequency, 

and ω represents the corresponding (normalized) real 

frequency variable. Moreover, F0(z) and F1(z) repre-

sent FIR masking digital subfilters, while Ha(z
M ) and 

Hb(z
M ) represent M -fold interpolated versions of Ha(z) 

and Hb(z), respectively. The FRM digital filter in Fig. 1 

has an overall transfer function 

MH(z) = Ha(z 
M )F0(z) +Hb(z )F1(z) (4) 

Ha(z
M ) 

Hb(z
M ) 

F0(z) 

F1(z) 

+ 

Figure 1. FRM Digital Filter Block Diagram 

The masking digital subfilters F0(z) and F1(z) are 

employed to suppress the unwanted image bands pro-

duced by the interpolated digital subfilters Ha(z
M ) and 

Hb(z 
M ). The corresponding interpolated digital subfilters 

Ha(z
M ) and Hb(z

M ) can realize transition bands which 

are a factor of M sharper than those of Ha(z) and Hb(z),
without increasing the number of required non-zero digital 

multipliers. The magnitude frequency-response of the 

various subfilters incorporated by the FRM digital filter 

design approach are shown in Fig. 2. 
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Figure 2. Magnitude Frequency-Response of FRM Digital Filter. (a) 
Magnitude Frequency-Response of the Bandedge-Shaping Digital Sub-
filters Ha(z) and Hb(z). (b) Magnitude Frequency-Response of the M -
Interpolated Complementary Digital Subfilters Ha(zM ) and Hb(z

M ).
(c) Magnitude Frequency-Response of the Masking Digital Subfilters 
F0(z) and F1(z) for Case I. (d) Magnitude Frequency-Response of the 
Overall FRM Digital Filter H(z) for Case I. (e) Magnitude Frequency-
Response of the Masking Digital Subfilters F0(z) and F1(z) for Case 
II. (f) Magnitude Frequency-Response of the Overall FRM Digital Filter 
H(z) for Case II [12]. 

IV. DESIGN OF BANDPASS FRM DIGITAL FILTERS 

In general, it is possible to extend the conventional 

FRM approach for the design of bandpass or bandstop 

FRM digital filters. However, the resulting FRM digital 

filters are constrained to have identical lower and upper 

transition bandwidths. In [18], this restriction was relaxed 

by realizing the bandstop FRM FIR digital filter as a 

parallel combination of a corresponding pair of lowpass 

and highpass FIR digital filters. The latter lowpass and 

highpass FRM digital filters were obtained using a varia-

tion of the conventional FRM approach. 

Let the desired bandpass FRM digital filter H(z) have 

a lower transition bandwidth which is not identical to its 

upper transition bandwidth. H(z) can be realized as a 

cascade combination of a pair of lowpass and highpass 
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FRM digital filters, so that 

H(z) = Hlp(z)Hhp(z) (5) 

where Hlp(z) represents a lowpass and Hhp(z) represents 

a highpass FRM digital filter. In this way, Hlp(z) and 

Hhp(z) can be obtained with the help of Eqn. (4) as 

MHlp(z) = Halp
(z M )F0lp (z) +Hblp (z )F1lp(z) (6) 

MHhp(z) = Hahp
(z M )F0hp 

(z) +Hbhp 
(z )F1hp 

(z) (7) 

The lower transition bandwidth is governed by the 

constituent transition bandwidth of the highpass FRM 

digital filter, while the upper transition bandwidth is 

governed by the constituent transition bandwidth of the 

lowpass FRM digital filter. The realization for bandpass 

FRM digital filter are as shown in Fig. 3. 

V. PROPOSED DISCRETE PSO FOR FRM FIR DIGITAL 

FILTERS 

The proposed discrete PSO of FRM FIR digital fil-

ters is carried out over the CSD multiplier coefficient 

space CSD(L0, l0), where L0 represents the multiplier 

coefficient wordlength, and where l0 represents the maxi-

mum number of non-zero digits for FIR digital subfilters 

constituent in the FRM FIR digital filter. The multiplier 

coefficient values are taken from a CSD LUT which is 

constructed in a particular fashion. 

A template LUT is constructed for all multiplier coef-

ficient values for the interpolation digital subfilter Ha(z) 
and the masking digital subfilters F0(z) and F1(z). The 

elements of this LUT belong to CSD(L0, l0). The values 

of L0 and l0 are determined empirically based on the am-

plitude frequency-response of the digital subfilters Ha(z),
F0(z) and F1(z).

There are two problems concerning the PSO of FRM 

FIR digital filters over the CSD multiplier coefficient 

space. These two problems and the corresponding solu-

tions are discussed in the following. 

A. PSO indirect search method 

In PSO, the required new particle position is obtained 

from the previous position of the particle through the 

addition of a random (normalized) velocity value. How-

ever, by directly applying the conventional PSO to the 

above optimization over the CSD multiplier coefficients, 

one may obtain new particle positions whose coordinate 

values are no longer in CSD(L0, l0). In order to over-

come this problem, the optimization search is carried out 

indirectly via the indices to the LUT CSD values (as 

opposed to LUT CSD values themselves). In this way, 

the CSD coordinate values for each particle position are 

obtained by integer indices to the CSD LUT. The key 

point in the indirect search rests with ensuring that the 

index set is closed, i.e. by ensuring that each index points 

to a valid CSD value in the LUT, and that the resulting 

particle in the course of PSO adheres to the prespecified 

CSD number format. 

If the velocity values are replaced by their closest 

integer values, the update equations become modified to 

v ˆi−1

kj ˆi x
i−1 ˆi−1

gbestj 
− xkj )]

1
vkj = [wˆi−1 + c1r1(ˆbestkj 

− xkj ) + c2r2(ˆ
i−1

(8) 

ˆi ˆiif vkj < v̂min ; vkj = v̂min 

ˆi ˆiif vkj > v̂max ; vkj = v̂max 

i−1x x + ˆiˆkj
i = ˆkj vkj (9) 

Here, ˆ ˆxkj , v̂kj , xbestkj
, ĝbestj , v̂min and v̂max are all 

integer values where v̂min < 0 and v̂max > 0. In addition, 

w is limited in the interval [0, 0.5) (to be discussed 

shortly). 

In accordance with Eqn. (8), the velocity of a particle 

is an integer number. Since the integer number system is 

closed under the operations of addition and subtraction, 

Eqn. (9) assures PSO to search automatically over the 

CSD multiplier coefficient values in the LUT in an 

indirect fashion. 

B. Barren layers 

Due to its finite length, the template LUT inevitably 

confines the optimization to a bounded search space. In 

order to ensure that the particles do not cross over to the 

outside region of the search space in the course of PSO, 

the search space is constructed as a combination of two 

regions, namely the interior and barren layers. The barren 

layer is constructed to yield relatively low fitness values, 

and is represented as a header and footer in the template 

LUT. There are two problems concerning the construction 

of the barren layers: 

1) barren layer entries: The first problem in the con-

struction of barren layers concerns how to make the 

fitness values in the barren layer relatively low. This 

problem can be resolved by filling the header part by 

unrealistically large, and the footer part by unrealistically 

small CSD multiplier coefficient values. It should be noted 

that the barren layer entries are strongly dependant on the 

optimization problem at hand, i.e. the barren layer entries 

are different for different problems. In the FIR digital 

filter optimization applications, very large or very small 

multiplier coefficient values lead to candidate FRM FIR 

digital filters with relatively small fitness values. In this 

way, the particles are guaranteed to shy away from the 

resulting barren layers. 

2) barren layer width: The second problem, on the 

other hand, concerns how to determine the width of the 

barren layer such that the particles do not cross over to 

the outside of the search space even under the worst case 

scenario. This problem relates to the number of entries in 

header and footer parts of the template LUT. To overcome 

this problem, let us consider the j-th variable in the k-

th particle is in the boundaries of the template LUT in 

iteration i−1. The worst case scenario occurs when x i−1
kj 

moves toward the barren layer with the peak permissible 

1[R] denotes rounding R to its closest integer, where R is assumed 
to be a real value. 
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Figure 3. Bandpass FRM Digital Filter Block Diagram 

velocities (vmax for the header, and vmin for the footer). 
iIf in the i-th iteration x is in the footer: kj 

ˆi xbestkj 

ˆi gbestj 

and if it is in the header: 

ˆi xbestkj 

ˆi gbestj 

> ˆkj
i (10) x 

> ˆkj
i (11) x 

< ˆkj
i (12) x 

< ˆkj
i (13) x 

Eqns. (10)-(13) show that the velocity of the particle 

in iteration i+1 tends to move the particle in a direction 

opposite to the direction of the barren layers. Here, the 

worst case happens when r1 = r2 = 0. In this way, the 

number of entries Lf in the footer part, and the number of 

entries Lh in the header part are determined in accordance 

with 

Lf = |v̂min|+ [w|v̂min|] + [w[w|v̂min|]] + . . . 

≤ |v̂min|+
|v̂min| 

2 
+

|v̂min| 

4 
+ . . . 

= 2|v̂min| (14) 

Lh = v̂max + [wv̂max] + [w[wv̂max]] + . . . 

≤ v̂max + 
v̂max 

2 
+ 

v̂max 

4 
+ . . . 

= 2v̂max (15) 

Let us recall that since 0 ≤ w < 0.5,

if v : positive integer ⇒ [wv] ≤ 
v 

(16) 
2 

i+1 In addition, after some iterations v̂kj = 0. Otherwise, if 
i+1 w ≥ 0.5, v̂kj can never become zero, and the width of 

the barren layer will be infinity. 

The augmented LUT remains fixed in the course of 

PSO, restricting automatic particle movement inside the 

limited search space. Modifying the index values con-

stituent in each particle by adding the current indices to 

the length of the footer barren layer, Lf , discrete PSO 

algorithm is ready to optimize FRM FIR digital filters. 

VI. APPLICATION EXAMPLES 

This section is concerned with the application of the 

proposed PSO to the design and optimization of a pair 

of FRM FIR digital filters. One of these digital filters 

exhibits a lowpass while the other exhibits a bandpass 

magnitude frequency response. The design parameters for 

the discrete PSO of CSD FRM FIR digital filters are 

similar for both the examples and are as shown in Tables 

I and II. 

2f0 represents the number of bits in the fractional part. 

TABLE I.
DISCRETE PSO DESIGN PARAMETERS

K w c1 c2 v̂min v̂max Lf Lh 

700 0.4 2 2 −5 5 10 10 

TABLE II. 

CSD PARAMETERS 

L0 l0 f0
2

12 3 7 

A. Lowpass FRM FIR Digital Filter Design Example 

This section is concerned with the design of a lowpass 

FRM FIR digital filter satisfying the magnitude response 

design specifications given in Table III over the CSD 

multiplier coefficient space. 

TABLE III.
DESIGN SPECIFICATIONS

Maximum Passband Ripple Ap 0.1[dB] 

Minimum Stopband Loss Aa 40[dB] 

Passband-Edge Normalized Frequency ωp 0.60π[Rad] 

Stopband-Edge Normalized Frequency ωa 0.61π[Rad] 

Normalized Sampling Period T 1[s] 

Interpolation Factor M 6 

The first step to design the FRM FIR digital filter is to 

find the length of the digital subfilters Ha(z), F0(z) and 

F1(z). Given the design specification in Table III, The 

lengths of the digital subfilters Ha(z), F0(z) and F1(z) 
are found to be 79, 24, and 42, respectively (based on 

Parks-McClellan approach), resulting in N = 145. The 

passband and stopband edge frequencies of the digital 

subfilters Ha(z), F0(z) and F1(z) are determined by 

using the design equations given in [12]. Moreover, the 

passband ripple and stopband loss of these subfilters are 

set at 85% of the corresponding values given in the design 

specifications in Table III (in order to account for any 

second-order effects when using the design equations in 

[12]). In this way, the derived design specifications for 

the digital subfilters Ha(z), Hb(z), F0(z) and F1(z) are 

obtained as shown in Table IV. 

Finally, by using Parks McClellan approach, the sub-

filters Ha(z), F0(z) and F1(z) can be designed. Conse-

quently, the magnitude frequency response of the overall 

infinite-precision lowpass FRM FIR digital filter H(z) 
is obtained as shown in Fig. 4. Based on the infinite-

precision lowpass FRM FIR digital filter, the correspond-
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TABLE IV. 

BAND-EDGE FREQUENCIES, PASSBAND RIPPLES AND STOPBAND 10

LOSSES FOR DIGITAL SUBFILTERS Ha(z), Hb(z), F0(z) AND F1(z) 0

Passband Edge Stopband Edge Passband Stopband −10
Subfilter 

Frequency Frequency Ripple Loss −20
Ha(z) 0.34π 0.4π 0.085 dB 46 dB 

−30Hb(z) 0.4π 0.34π 0.085 dB 46 dB 

F1(z) 0.61π 0.723π 0.085 dB 46 dB 
−50

−60

20 −70
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ω [Rad]
0
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Figure 4. Magnitude Frequency-Response of the Overall Infinite- −0.05
Precision Lowpass FRM FIR Digital Filter H(ejω) 

ing CSD FRM FIR initial digital filter is obtained through 

rounding the infinite-precision multiplier coefficient val-

ues to their closest CSD values. The resulting CSD FRM 

FIR digital filter has a magnitude frequency response as 

shown in Fig. 5 

20

0

−20
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Figure 7. Magnitude Frequency-Response in the Passband Region of the 
Overall Lowpass CSD FRM FIR Digital Filter H(ejω) After Discrete 
PSO 

B. Bandpass FRM FIR Digital Filter Design Example 

In this section, the design of a bandpass FRM FIR 

digital filter over the CSD multiplier coefficient space is 

)|
 [d

B
]
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−80
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Figure 5. Magnitude Frequency-Response of the Overall Lowpass CSD 

ωj
|H

(e

considered. The given magnitude response design speci-

fications are as given in Table VI. 

As before, the first step to the design of the bandpass 

FRM FIR digital filter is to find the lengths of the digital 

subfilters Halp
(z), F0lp(z), F1lp (z), Hahp

(z), F0hp 
(z) 

and F1hp 
(z). Using the design specifications given in 

Table VI, The lengths of the digital subfilters Halp
(z),

F0lp(z) and F1lp(z) are found to be 79, 24, and 42,

respectively. Also, the lengths of the digital subfilters 

Hahp
(z), F0hp

(z) and F1hp 
(z) are found to be 49, 23,

and 35, respectively, resulting in N = 252. The passband FRM FIR Digital Filter H(ejω) Before Discrete PSO 

ripple and stopband loss of these subfilters are set at 85% 
of the corresponding values given in Table VI. In this way, 

the derived design specifications for the digital subfilters 

Halp
(z), F0lp(z), F1lp(z), Hahp 

(z), F0hp 
(z) and F1hp 

(z) 
are obtained as shown in Table VII. 

Finally, by using Parks McClellan approach, the sub-

filters Halp
(z), F0lp(z), F1lp (z), Hahp

(z), F0hp 
(z) and 

F1hp 
(z) can be designed. The magnitude frequency re-

sponse of the overall infinite-precision bandpass FRM FIR 

digital filter H(z) is as shown in Fig. 8. 

By applying the proposed discrete PSO to the above 

CSD FRM FIR digital filter and after about 100 iterations, 

the discrete PSO converges to the optimal lowpass FRM 

FIR digital filter having a magnitude frequency response 

as shown in Fig. 6. In addition, Fig. 7 gives us a closer 

look at the magnitude frequency response in the passband 

region of the lowpass FRM FIR digital filter. 

Table V represents the comparison of the CSD lowpass 

FRM FIR digital filters before and after PSO. 
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TABLE V. 

FREQUENCY-RESPONSE ANALYSIS OF THE LOWPASS CSD FRM 20

FIR DIGITAL FILTER BEFORE AND AFTER DISCRETE PSO 
0

−20

)|
 [d

B
]

jω

Ap 0. 0.

Aa . .

Frequency-Response 
Characteristic 

Before 
Discrete PSO 

After 
Discrete PSO 

Maximum Passband Ripple 2788[dB] 0996[dB] 

Minimum Stopband Loss 31 4681[dB] 40 0269[dB] 

−40

−60

−80

|H
(e

TABLE VI. 

DESIGN SPECIFICATIONS 
−100

−120
Ap 0.1

Aa 

ωa1 0. π

ωp1 0. π

ωp2 0. π

ωa2 0. π

T 1

M 6 

M 5 

Maximum Passband Ripple [dB] 

Minimum Stopband Loss 40[dB] 

Lower Stopband-Edge Normalized Frequency 31 [Rad] 

Lower Passband-Edge Normalized Frequency 33 [Rad] 

Upper Passband-Edge Normalized Frequency 60 [Rad] 

Upper Stopband-Edge Normalized Frequency 61 [Rad] 

Normalized Sampling Period [s] 

Lowpass Filter Interpolation Factor lp 

Highpass Filter Interpolation Factor hp 

0 0.5 1 1.5 2 2.5 3 3.5 
ω [Rad] 

Figure 9. Magnitude Frequency-Response of the Overall Bandpass CSD 
FRM FIR Digital Filter H(ejω) Before Discrete PSO 
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Figure 10. Magnitude Frequency-Response of the Overall Bandpass 
CSD FRM FIR Digital Filter H(ejω) After Discrete PSO 
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] −20
TABLE VII. 

BAND-EDGE FREQUENCIES, PASSBAND RIPPLES AND STOPBAND 

LOSSES FOR DIGITAL SUBFILTERS Halp(z), Hblp
(z), F0lp

(z),

−30

−40
F1lp

(z), Hahp (z), Hbhp 
(z), F0hp

(z) AND F1hp
(z) 

−50

−60

Ha (z) 0. π 0.4π 0.

Hb (z) 0.4π 0. π 0.

F0 (z) 0.4π 0.6π 0.

F1 (z) 0. π 0. π 0.

Ha (z) 0. π 0. π 0.

Hb (z) 0. π 0. π 0.

F0 (z) 0. π 0. π 0.

F1 (z) 0. π 0. π 0.

Subfilter 
Passband Edge 

Frequency 
Stopband Edge 

Frequency 
Passband 
Ripple 

Stopband 
Loss 

lp 34 085 dB 46 dB 

lp
34 085 dB 46 dB 

lp 085 dB 46 dB 

lp 61 723 085 dB 46 dB 

hp 35 45 085 dB 46 dB 

hp 
45 35 085 dB 46 dB 

hp 31 09 085 dB 46 dB 

hp 47 33 085 dB 46 dB 
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of the Overall Bandpass CSD FRM FIR Digital Filter H(ejω) After 
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8. Magnitude Frequency-Response of the Overall Infinite- By applying the proposed discrete PSO to the above 
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Figure 
Precision Bandpass FRM FIR Digital Filter H(ejω) 

Based on the infinite-precision bandpass FRM FIR 

digital filter, the corresponding CSD FRM FIR digital 

filter is obtained to have a magnitude frequency response 

as shown in Fig. 9 

CSD FRM FIR digital filter and after about 200 iterations, 

the discrete PSO converges to the optimal bandpass FRM 

FIR digital filter having a magnitude frequency response 

as shown in Fig. 10. Fig. 11 gives us a closer look at the 

magnitude frequency response in the passband region of 

the bandpass FRM FIR digital filter. 

Table VIII compares the CSD bandpass FRM FIR 
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TABLE VIII.

FREQUENCY-RESPONSE ANALYSIS OF THE BANDPASS CSD FRM

FIR DIGITAL FILTER BEFORE AND AFTER DISCRETE PSO

Frequency-Response 
Characteristic 

Maximum Passband Ripple Ap 

Minimum Stopband Loss Aa 

Before 
Discrete PSO 

0.6277[dB] 

25.6378[dB] 

After 
Discrete PSO 

0.0991[dB] 

40.0125[dB] 

digital filters before and after discrete PSO. 

VII. CONCLUSION 

This paper has presented a novel CSD LUT-based 

technique for the design and optimization of FRM FIR 

digital filters by employing discrete particle swarm op-

timization (PSO). By augmenting the LUT with barren 

layers, the CSD FRM FIR digital filters generated in the 

course of PSO are guaranteed to remain automatically 

within the CSD LUT boundaries without any recourse 

to backtracking. Moreover, by performing PSO on the 

indices of CSD values in the LUT (as opposed to the 

CSD values themselves), the wordlength and the maxi-

mum number of non-zero digits in the CSD multiplier 

coefficients remain fixed automatically throughout the 

course of PSO. In this way, the candidate FRM FIR 

digital filters generated in the course of PSO conform 

to a prespecified CSD multiplier coefficient wordlength 

and to a prespecified maximum number of non-zero CSD 

digits. The usefulness of the proposed PSO algorithm has 

been illustrated through its application to the design of a 

lowpass and a bandpass FRM FIR digital filter satisfying 

stringent design specifications. 
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