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Abstract—In this paper, we consider multi-agent 𝐻∞
consensus control problems with external disturbance under
directed switching topologies. Both switching networks with
and without time-delay are taken into consideration. By the
model transformation, the multi-agent 𝐻∞ control problem
is converted into the switching linear system 𝐻∞ control
problem with special structure. Based on graph theory and
common Lyapunov function method, we establish LMI suffi-
cient conditions under which all agents can reach consensus
with the desired 𝐻∞ performance in two cases of zero and
nonzero communication delays respectively. Specially, we
obtain an explicit estimation expression of 𝐻∞ performance
index in undirected non-time-delay switching topology case.
Finally, two numerical examples are provided to illustrate
the effectiveness of the obtained results.

Index Terms-Multi-agent systems, 𝐻∞ control, switching
topology, consensus, time-delay

I. INTRODUCTION

Recently, the coordination problem of multiple au-
tonomous agents has attracted a great deal of attention
for its applications in many fields such as aggregation
behavior of animals, collective motion of particles, coop-
erative control of unmanned air vehicles, schooling for
underwater vehicles, distributed sensor networks, attitude
alignment for cluster of satellites, distributed optimiza-
tion of multiple mobile robotic systems, scheduling of
automated highway systems and congestion control of
communication networks in [1]–[5].

In the literature, a critical problem in distributed coop-
erative control of multi-agent systems is to design appro-
priate protocols that enable all agents to asymptotically
reach an agreement on certain quantities of interest. This
is usually called the consensus problem, which is well
accepted as one of the most important and fundamental
issues in the fields of automata theory and coordination
control of multi-agent systems. In the fields of system and
control, the development of consensus theory is primarily
impelled by Vicsek’s particle swarm model mentioned in
[1]. Vicsek et al. proposed a simple discrete-time model
for phase transition of a group of self-driven particles
and simulation showed complex dynamics of the model.
Jadbabaie et al. provided a theoretical explanation for the
observed behavior of the Vicsek model using the graph
theory [3]. Till now, many interesting results for solving
similar or generalized consensus problems have also been
obtained (see [4], [5] and the references therein).

There is no doubt that the stability of multi-agent
systems is of utmost importance. In real applications,
the interacting topology between agents may change
dynamically. For example, in the case of interaction via
communications, the communication links between vehi-
cles may be unreliable due to disturbances and/or subject
to communication time-delay. However, a well-known
fact is that switching of the communication topology
and communication time delays may lower the system
performance and even cause the network system to di-
verge or oscillate [6]. So it is necessary for us to solve
the problem with the impact of external disturbances
and time-delay on the network. In [7], Lin et al. con-
sidered robust 𝐻∞ control in the multi-agent system
which involved disturbances and time-delay in both fixed
topology case and switching topology case respectively.
A linear matrix inequality (LMI) approach was adopted to
study consensus problems in [8] and it was proved that
all the nodes in a network achieved average consensus
asymptotically for appropriate communication delays if
the network topology was connected. From a practical
standpoint, LMI approaches are appealing for applications
because there are effective and powerful algorithms such
as interior-point method for the solution of LMI problems
and there are also a number of software packages such
as Matlab to be available for solving LMI problems
[9]. [10] investigated the 𝐿2-𝐿∞ leader-following coor-
dination problems with undirected switching topologies
and external disturbance. Theoretically, the consensus in
undirected switching topology with time delay is easier
than that of directed switching topology. Recently, some
preliminary results have been reported to deal with the
directed switching topology with time delays (see, for
instance, [7], [8] and [11]]).

Furthermore, with many practical applications, espe-
cially involving mechanical systems such as unmanned
aerial vehicles and mobile robots can be controlled di-
rectly by their accelerations rather than by their veloci-
ties. Hence, it is also necessary to investigate consensus
problems of agents with dynamics which is taken as a
double integrator. Double integrator model is a second-
order model. There are many interesting agent-related
works involved double integrator agent’s dynamics such
as in [5], [12]–[15] and the references therein. [16] estab-
lished second order consensus condition for the directed
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switching topology by using common Lyapunov function
method.

Motivated by the above works, we study a group of
agents with the double integrator dynamics. The main
purpose of this paper is to develop a decentralized control
strategy to reach the global consensus of the multi-agent
systems and discuss 𝐻∞ performance index of the closed
systems under the directed switching topology. By using
the model transformation, the multi-agent 𝐻∞ control
problem is converted into the switching linear system
𝐻∞ control problem with special structure. In our leader-
following construction, the interconnection topological
structure among the agents keeps changing, a sufficient
condition given by constructing a parameter-dependent
common Lyapunov function can still guarantee global
consensus stability and achieve the desired 𝐻∞ per-
formance. Especially, we obtain an explicit estimation
expression in non-time-delay case to estimate 𝐻∞ per-
formance index, which may make our result be applied
easily.

The rest paper is organized as follows. In Section II,
we give a formulation of the coordination problem with
the help of graph theory and 𝐻∞ control theory. Then
in Section III, the main results on the consensus stability
and 𝐻∞ performance index are obtained for the multi-
agent system under varying interconnection topologies.
Following that, Section IV provides simulation examples,
and finally, the concluding remarks are given in Section
V.

The notation of this paper is standard. Throughout this
paper, the following notations are used: 𝑅 is the real num-
ber set. 𝐼 is an identity matrix with compatible dimension.
𝐴𝑇 is denoted as transpose of a matrix 𝐴; 1=[1 . . . 1]𝑇

with proper dimension; For symmetric matrices 𝐴 and 𝐵,
𝐴 > (≥)𝐵 means 𝐴−𝐵 is positive (semi-) definite. 𝜆(𝐴)
represents an eigenvalue of 𝐴. For symmetric matrices
𝐴, 𝜆min(𝐴) and 𝜆max(𝐴) represent the minimum and
maximum eigenvalue of 𝐴 respectively. ∥∙∥ denotes Eu-
clidean norm. “∗” denotes the entries of matrices implied
by symmetry. ⊗ is the denotes the Kronecker product,
which satisfies (1) (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷);
(2) If 𝐴 ≥ 0 and 𝐵 ≥ 0, then 𝐴⊗𝐵 ≥ 0.

II. GRAPH THEORY, 𝐻∞ CONTROL THEORY AND
PROBLEM FORMULATION

A. Graph Theory

First of all, we introduce some preliminary knowl-
edge of graph theory that will be used throughout this
paper. More details are available referring to [17]. Let
𝒢 = {𝒱, 𝜀, 𝐴) be a weighted directed graph of order 𝑛,
where 𝒱 = {𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝑛} is the set of nodes, 𝜀 is the
set of edges and a weighted adjacency matrix 𝐴 = [𝑎𝑖𝑗 ]
is of nonnegative elements. The node indexes belong to
a finite index set ℐ = {1, 2, ⋅ ⋅ ⋅ , 𝑛} . The element 𝑎𝑖𝑗
associated with the edge of the directed graph is positive
. i.e., 𝑎𝑖𝑗 > 0 ⇐⇒ (𝑣𝑖, 𝑣𝑗) ∈ 𝜀. Moreover, for all
𝑖 ∈ ℐ we assume 𝑎𝑖𝑗 = 0. Throughout the paper, we
assume that all the graphs have no edges from a node

to itself. A weighted graph is said to be undirected if
∀(𝑣𝑖, 𝑣𝑗) ∈ 𝜀 =⇒ (𝑣𝑗 , 𝑣𝑖) ∈ 𝜀 and 𝑎𝑖𝑗 = 𝑎𝑗𝑖. Otherwise,
the graph is called a directed graph. If (𝑣𝑖, 𝑣𝑗) ∈ 𝜀, then
𝑣𝑗 is said to be a neighbor of 𝑣𝑖 and we denote the set of
all neighbor nodes of node 𝑣𝑖 by 𝒩𝑖 = {𝑗∣(𝑣𝑖, 𝑣𝑗) ∈ 𝜀}.
A path is a sequence of ordered edges of the form
(𝑣𝑖1 , 𝑣𝑖2), (𝑣𝑖2 , 𝑣𝑖3), ⋅ ⋅ ⋅ , (𝑣𝑖𝑗−1 , 𝑣𝑖𝑗 ) where 𝑖𝑗 ∈ ℐ and
𝑣𝑖𝑗 ∈ 𝒱 , which starts from 𝑣𝑖 and ends with 𝑣𝑗 such that
consecutive pair of vertices make an edge of digraph. 𝑣𝑗
is said to be reachable from 𝑣𝑖 if there is a path from
node 𝑣𝑖 to another node 𝑣𝑗 . If a node 𝑣𝑖 is reachable
from every other node of the directed graph, then it is
said to be globally reachable.

The degree matrix 𝐷 = {𝑑1, 𝑑2, ⋅ ⋅ ⋅ , 𝑑𝑛} ∈ ℛ𝑛×𝑛 of
graph 𝒢 is a diagonal matrix, where diagonal elements
𝑑𝑖 =

∑
𝑗∈𝒩𝑖

𝑎𝑖𝑗 for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. Then the Laplacian

of 𝒢 is defined as 𝐿 = 𝐷 − 𝐴 ∈ 𝑅𝑛×𝑛. Obviously, the
Laplacian matrix of any undirected graph is symmetric.

In what follows, we mainly consider a graph 𝒢 as-
sociated with the system with 𝑛 agents (labeled by
𝑣𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) and one leader (labeled by 𝑣0).
A simple and directed graph 𝒢 describes the topology
relation of these 𝑛 followers, and 𝒢 contains graph 𝒢 and
𝑣0 with the directed edges from some agents to the leader
describes the topology relation among all agents. The
graph 𝒢 is said to be undirected if the induced subgraph
𝒢 associated with 𝑛 followers is undirected. A diagonal
matrix 𝐵 ∈ 𝑅𝑛×𝑛 is defined as a leader adjacency matrix
associated with 𝒢 whose diagonal elements are 𝑏𝑖(𝑖 ∈ ℐ).
Moreover, the information topology 𝒢 is time-varying.
Denote {𝒮 = {𝒢1,𝒢2, ⋅ ⋅ ⋅ ,𝒢𝑁} as a set of the graphs
of all possible topologies and denote 𝒫 = {1, 2, ⋅ ⋅ ⋅ , 𝑁}
as its index set. To describe the variable interconnection
topology, we define a switching signal 𝜎 : [0,∞) → 𝒫 ,
which is piecewise constant. Let 𝑡1 = 0, 𝑡2, 𝑡3, ⋅ ⋅ ⋅ be an
infinite time sequence at which the interconnection graph
of the considered multi-agent system switches. Therefore,
𝒩𝑖 and the connection weight 𝑎𝑖𝑗(𝑖, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛) are
time-varying, and furthermore, Laplacian 𝐿𝜎(𝑡)(𝜎(𝑡) ∈
𝒫) associated with the switching interconnection graph is
also time-varying, though it is a time-invariant matrix in
any interval [𝑡𝑖, 𝑡𝑖+1). Assume there is a constant 𝜏0 > 0,
often called dwell time, with 𝑡𝑖+1 − 𝑡𝑖 ≥ 𝜏0, ∀𝑖.

B. 𝐻∞ control theory

In this subsection, we introduce some basic concepts
on 𝐻∞ control theory. Consider the following switching
system {

�̇�(𝑡) = 𝐴𝜎𝑥(𝑡) +𝐵𝜔(𝑡)
𝑧(𝑡) = 𝐶𝑥(𝑡)

(1)

where 𝑥(𝑡) ∈ ℛ𝑛 is the system state, 𝑧(𝑡) ∈ ℛ𝑚 is the
objective signal to be attenuated, 𝜔(𝑡) ∈ ℒ2[0,∞) is the
external disturbance signal and 𝐿2[0,∞) represents the
space of square integrable vector functions over[0,∞).
𝐴𝜎, 𝐵, 𝐶 are matrices with appropriate dimensions.
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𝐻∞ norm of closed-loop transfer function matrix
𝑇𝑧𝜔(𝑡) from external disturbance 𝜔(𝑡) to the controlled
output 𝑧(𝑡) which is defined by

∥𝑇𝑧𝜔(𝑡)∥∞ = sup
𝜔(𝑡)∕=0

∥𝑧(𝑡)∥2
∥𝜔(𝑡)∥2

Thus, the 𝐻∞ control objective is to design an output
feedback protocol 𝑢𝑖(𝑡)(𝑖 ∈ ℐ) such that ∥𝑇𝑧𝜔(𝑡)∥∞ < 𝜇,
or equivalently, the closed-loop system meets the dissipa-
tion inequality∫ ∞

0

∥𝑇𝑧𝜔(𝑡)∥2𝑑𝑡 < 𝜇2

∫ ∞

0

∥𝜔(𝑡)∥2𝑑𝑡, ∀𝜔 ∈ ℒ2[0,∞)

where 𝜇 > 0 is a given 𝐻∞ performance index. The
following result is about the 𝐻∞ performance index.

Lemma 1: [7] System (1) is asymptotically stable with
∥𝑇𝑧𝜔(𝑠)∥∞ < 𝜇 for all nonzero 𝜔(𝑡) ∈ ℒ2[0,∞), if there
exists a positive definite matrix 𝑃 ∈ ℛ𝑛×𝑛 and a scalar
𝜇 satisfying⎡⎣ 𝐴𝑇

𝜎𝑃 + 𝑃𝐴𝜎 𝑃𝐵 (𝐶 ⊗ 𝐼𝑛)
𝑇

𝐵𝑇𝑃 −𝜇𝐼𝑛 0
(𝐶 ⊗ 𝐼𝑛) 0 −𝜇𝐼2𝑛

⎤⎦ < 0

C. Problem Formulation

In the paper, suppose that the multi-agent system under
consideration consists of 𝑛 agents. Each agent is regarded
as a node in a directed graph 𝒢. 𝒢 is the graph with a
leader in 𝒢. Assume the 𝑖𝑡ℎ agent (𝑖 ∈ ℐ) has the second-
order dynamics and disturbance is considered as follows{

𝑥𝑖(𝑡) = 𝑦𝑖(𝑡)
𝑦𝑖(𝑡) = 𝑢𝑖(𝑡) + 𝜔𝑖(𝑡)

, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, (2)

where 𝑥𝑖(𝑡) represents the position of the node 𝑣𝑖, 𝑦𝑖(𝑡)
its velocity, 𝑢𝑖(𝑡) its control input and 𝜔𝑖(𝑡) ∈ ℒ2[0,∞)
its disturbance input. The dynamic of the leader is taken
as {

𝑥0(𝑡) = 𝑦0(𝑡)
𝑦0(𝑡) = 0

(3)

where 𝑦0 is the leader’s velocity and keeps unchanged.
The leader of this considered multi-agent system is active,
and its motion only depends on the known input 𝑦0
and does not be influenced by the following agents. But
follower nodes are affected by other followers and the
leader. To the end, the controller 𝑢𝑖 of agent 𝑖 , regarded
as node 𝑖 in a graph, requires state information from a
subset of the agent’s flockmates, called the neighbor set
𝒩𝑖 as above. Take the local control law as follows in case
of non-delay for agent 𝑖(𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛), which bases on
neighbor feedback law and had been proposed by several
references

𝑢𝑖 = 𝑘[
∑

𝑣𝑗∈𝒩𝑖

𝑎𝑖𝑗(𝑡)(𝑥𝑗(𝑡)− 𝑥𝑖(𝑡))

+ 𝑏𝑖(𝑡)(𝑥𝑖(𝑡)− 𝑥0(𝑡))]

+ 𝑘𝑟[
∑

𝑣𝑗∈𝒩𝑖

𝑎𝑖𝑗(𝑡)(𝑦𝑗(𝑡)− 𝑦𝑖(𝑡))

+ 𝑏𝑖(𝑡)(𝑦𝑖(𝑡)− 𝑦0(𝑡))]

(4)

Take the local law as follows in case that there is time-
varying delay,

𝑢𝑖 = 𝑘[
∑

𝑣𝑗∈𝒩𝑖

𝑎𝑖𝑗(𝑡)(𝑥𝑗(𝑡− 𝜏(𝑡))− 𝑥𝑖(𝑡− 𝜏(𝑡)))

+ 𝑏𝑖(𝑡)(𝑥𝑖(𝑡− 𝜏(𝑡))− 𝑥0(𝑡− 𝜏(𝑡)))]

+ 𝑘𝑟[
∑

𝑣𝑗∈𝒩𝑖

𝑎𝑖𝑗(𝑡)(𝑦𝑗(𝑡− 𝜏(𝑡))− 𝑦𝑖(𝑡− 𝜏(𝑡)))

+ 𝑏𝑖(𝑡)(𝑦𝑖(𝑡− 𝜏(𝑡))− 𝑦0(𝑡− 𝜏(𝑡)))]

(5)

Here 𝑘 is ”control” parameter, which is positive con-
stant and will be determined later. 𝑟 is positive weighted
parameter, 𝜏(𝑡) is time-varying delay and it satisfies
0 ≤ 𝜏(𝑡) < 𝑑, 𝜏(𝑡) ≤ 𝑑1 < 1.

At time 𝑡 , the 𝑎𝑖𝑗(𝑡) and 𝑏𝑖(𝑡) are chosen by

𝑎𝑖𝑗(𝑡) =

{
𝛼𝑖𝑗 if agent 𝑖 is connected to agent 𝑗
0 otherwise

(6)

𝑏𝑖(𝑡) =

{
𝛽𝑖 if agent 𝑖 is connected to the leader
0 otherwise

(7)
where 𝛼𝑖𝑗 > 0(𝑖, 𝑗 = 1, ..., 𝑛) is connection weight
constant between agent 𝑖 and agent 𝑗, and 𝛽𝑖 > 0(𝑖 =
1, ..., 𝑛) is connection weight constant between agent 𝑖
and leader.

The main purpose of this paper is to design 𝑘, 𝑟 in
𝑢𝑖𝑗(𝑡) to guarantee that any follower-agent can track the
active leader, i.e.,{

lim
𝑡→∞𝑥𝑖 = 𝑥0

lim
𝑡→∞ 𝑦𝑖 = 𝑦0

, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, (8)

and the closed system has smaller 𝐻∞ performance index.
For the convenience, define

𝑥 :=

⎛⎜⎜⎜⎝
𝑥1

𝑥2

...
𝑥𝑛

⎞⎟⎟⎟⎠ , 𝑦 :=

⎛⎜⎜⎜⎝
𝑦1
𝑦2
...
𝑦𝑛

⎞⎟⎟⎟⎠ , 𝜔 :=

⎛⎜⎜⎜⎝
𝜔1

𝜔2

...
𝜔𝑛

⎞⎟⎟⎟⎠ .

Then we can rewrite the closed-loop system (2-4) as⎧⎨⎩ �̇� = 𝑦
�̇� = −𝑘(𝐿𝜎 +𝐵𝜎)𝑥+ 𝑘𝐵𝜎1⊗ 𝑥0

−𝑘𝑟(𝐿𝜎 +𝐵𝜎)𝑦 + 𝑘𝑟𝐵𝜎1⊗ 𝑦0 + 𝜔
(9)

where 1 = (1, 1, ..., 1)𝑇 . 𝜎 : [0,∞) → 𝒫 = {1, ..., 𝑁}
is a piecewise-constant switching signal with successive
switching times, 𝐿𝜎 is the Laplacian for the 𝑛 agents, 𝐵𝜎

is a 𝑛×𝑛 diagonal matrix whose 𝑖th diagonal element is
𝑏𝑖(𝑡) at time 𝑡 ( 𝑏𝑖(𝑡) is a positive constant if agent 𝑖 is
connected to the leader ).

Denote �̄�(𝑡) = 𝑥(𝑡)−𝑥0(𝑡)1 and 𝑦(𝑡) = 𝑦(𝑡)− 𝑦0(𝑡)1.
For convenience, let 𝐻𝜎 = 𝐿𝜎 +𝐵𝜎 . Due to 𝐿1 = 0, we
can obtain {

˙̄𝑥 = 𝑦
˙̄𝑦 = −𝑘𝐻𝜎�̄�− 𝑘𝑟𝐻𝜎𝑦 + 𝜔

(10)
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Define consensus error vector 𝛿 = (�̄�𝑇 , 𝑦𝑇 )𝑇 . Thus, using
the control law (4), the error dynamics of closed system
can be expressed as follows:

�̇�(𝑡) = 𝐹𝜎𝛿(𝑡) +𝐵𝜔(𝑡) (11)

where

𝐹𝜎 =

[
0 𝐼𝑛

−𝑘𝐻𝜎 −𝑘𝑟𝐻𝜎

]
, 𝐵 =

[
0
𝐼𝑛

]
(12)

As for the time delay case, the error dynamics can be
written as the following form by using the control law
(5):

�̇�(𝑡) = 𝐴𝛿(𝑡)− 𝐸𝜎𝛿(𝑡− 𝜏(𝑡)) +𝐵𝜔(𝑡) (13)

where

𝐸𝜎 =

[
0 0

𝑘𝐻𝜎 𝑘𝑟𝐻𝜎

]
, 𝐴 =

[
0 𝐼𝑛
0 0

]
(14)

Obviously, the multi-agent system achieve consensus if
and only if lim

𝑡→∞ 𝛿(𝑡) = 0. The consensus stability of the
multi-agent system (2, 3) and (4) in non-time delay case is
converted into the stability of error dynamics system (11),
and the consensus stability of the multi-agent system (2,
3) and (5) in time delay case is converted into the stability
of error dynamics system (13)

To quantize the influence of the disturbance input on the
consensus, we should investigation how the disturbance
affect the relative position and relative velocity errors
between each follower and the leader. Therefore, we
consider the following output 𝑧(𝑡) for the error dynamic
systems (11) and (13):

𝑧(𝑡) = (𝐶 ⊗ 𝐼𝑛)𝛿(𝑡) (15)

where

𝐶 =

[
𝑎 0
0 𝑏

]
(16)

The weighted matrix 𝐶 is erroneous scope restraint to
relative position and velocity, the value of the weighted
coefficients 𝑎 and 𝑏 may be different according to the con-
trolled different ranges of relative position and velocity.
Generally speaking, the smaller the controlled range is,
the larger the weighted value is. So we can limit ∥𝑧(𝑡)∥∞
within certain range. That is to say, we can limit relative
position and velocity to the desired scope of the systems.

Since 𝑧(𝑡) = 0 implies that the following agents can
track the leader, the attenuating ability of multi-agent
system on consensus against external disturbances can be
quantitatively measured by the 𝐻∞ norm of closed-loop
transfer function matrix 𝑇𝑧𝜔(𝑡) from external disturbance
𝜔(𝑡) to the controlled output 𝑧(𝑡). From the above trans-
formations, we know that the 𝐻∞ consensus problem of
the multi-agent systems with external disturbances are
converted into the above 𝐻∞ control problem of the
switching systems (11) and (15) or the switching time-
delay system (13) and (15).

III. 𝐻∞ CONSENSUS PROBLEM

Before giving the main results, some useful results are
introduced, which will be used later.

Lemma 2: [18] (Schur Complement) Suppose that a
symmetric matrix is partitioned as[

𝐷1 𝐷𝑇
2

𝐷2 𝐷3

]
(17)

where 𝐷1 and 𝐷3 are square. This matrix is positive
definite if and only if 𝐷3 is positive definite and 𝐷1 −
𝐷2𝐷

−1
3 𝐷𝑇

2 is positive definite.
Lemma 3: [9] For any vector 𝑢, 𝑣, and symmetric pos-

itive definite matrix 𝑆, there is 2𝑢𝑇 𝑣 ≤ 𝑢𝑇𝑆−1𝑢+ 𝑣𝑇𝑆𝑣
Lemma 4: [12] If graph 𝒢 is connected and undi-

rected, then the symmetric matrix 𝐻𝜎 is positive definite.
Therefore, define

�̄� := min
𝑝∈𝒫

{𝜆(𝐻𝑝)∣𝒢 𝑖𝑠 𝑐𝑜𝑛𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑}
(18)

Based on lemmas 4 and the fact that the set 𝒫 is finite,
we can obtain that is fixed and greater than zero, which
depends directly on the constants all constants 𝑎𝑖𝑗 and 𝛽𝑖

(𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) given in (6) and (7).

A. Non-time-delay Case

In this subsection, we first solve the problem of 𝐻∞
performance index of the switching system (11) and (15)
under directed switching communication topology based
on the LMI approach. As a special case, the consensus
condition for the switching and undirected interconnection
topology case can be obtained directly.

Theorem 1: For the system (11) and (15), suppose that
the interconnection graph is connected for any interval
[𝑡𝑖, 𝑡𝑖+1). If there exist a positive definite matrix 𝑃 and a
positive constant ℎ such that

𝐻𝑇
𝑖 𝑃 + 𝑃𝐻𝑖 ≥ ℎ𝐼, 𝑖 ∈ 𝒫 (19)

and take a constant

𝑘 >
2𝜆𝑚𝑎𝑥(𝑃 )

ℎ𝑟2
, (20)

then the local control law (4) can guarantee that multi-
agent system in leader-following directed case can achieve
the consensus for any given initial condition 𝑥(0) and
𝑦(0) in case that 𝜔(𝑡) = 0. Furthermore, the 𝐻∞
disturbance attenuation from 𝜔(𝑡) to 𝑧(𝑡) is not greater
than

min
𝑚>0

𝜆max(𝑄
−1Ω),

where the matrices 𝑄 and Ω are expressed respectively
as follows

𝑄 =

(
𝑘𝑚𝑟ℎ𝐼 𝑘𝑚𝑟2ℎ𝐼 − 2𝑚𝑃

𝑘𝑚𝑟2ℎ𝐼 − 2𝑚𝑃 𝑘𝑚𝑟3ℎ𝐼 − 2𝑚𝑟𝑃

)
,

Ω =

(
𝑚2𝑟2𝑃 2 + 𝑎2𝐼 𝑚2𝑟3𝑃 2

𝑚2𝑟3𝑃 2 𝑚2𝑟4𝑃 2 + 𝑏2𝐼

)
.

Proof: To prove the theorem, we consider the dynamics
in each interval at first. Note that, in any interval (say

1264 JOURNAL OF COMPUTERS, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER



[𝑡𝑗 , 𝑡𝑗+1)), the interconnection topology does not change.
Therefore, 𝐹𝜎(𝑡) is a constant matrix for 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1) for
any 𝑗 ≥ 0, and then the solution to equation (11) is well
defined. Choose a positive definite matrix

𝑃 = 𝑚

[
2𝑃 𝑟𝑃
𝑟𝑃 𝑟2𝑃

]
. (21)

We can verify that 𝑃 is positive definite by result of
lemma 2. Consider a common Lyapunov function 𝑉 (𝑡) =
𝛿𝑇 (𝑡)𝑃𝛿(𝑡), where 𝑃 is defined in (21). Then, for any
interval [𝑡𝑙, 𝑡𝑙+1) , we can assume that 𝜎(𝑡) = 𝑖, 𝑖 ∈
𝒫, 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1). To analyze stability of error system (11),
we always assume that 𝜔(𝑡) = 0. For the convenience,
define

Ω𝑖 = 𝐻𝑇
𝑖 𝑃 + 𝑃𝐻𝑖

For any interval [𝑡𝑗 , 𝑡𝑗+1), we can obtain

�̇� (𝑡) = 𝛿𝑇 (𝑡)(𝐹𝑇
𝑖 𝑃 + 𝑃𝐹𝑖)𝛿(𝑡) = −𝛿𝑇 (𝑡)𝑄𝑖𝛿(𝑡)

where 𝑄𝑖 is defined as

𝑄𝑖 := −(𝐹𝑇
𝑖 𝑃 + 𝑃𝐹𝑖)

=

(
𝑘𝑚𝑟Ω𝑖 𝑘𝑚𝑟2Ω𝑖 − 2𝑚𝑃

𝑘𝑚𝑟2Ω𝑖 − 2𝑚𝑃 𝑘𝑚𝑟3Ω𝑖 − 2𝑚𝑟𝑃

)
(22)

Noticing that(
𝑘𝑚𝑟 𝑘𝑚𝑟2

𝑘𝑚𝑟2 𝑘𝑚𝑟3

)
⊗ (Ω𝑖 − ℎ𝐼) ≥ 0,

Thus we obtain

𝑄𝑖 ≥ 𝑄 :=

(
𝑘𝑚𝑟ℎ𝐼 𝑘𝑚𝑟2ℎ𝐼 − 2𝑚𝑃

𝑘𝑚𝑟2ℎ𝐼 − 2𝑚𝑃 𝑘𝑚𝑟3ℎ𝐼 − 2𝑚𝑟𝑃

)
.

(23)
By using the Schur Complement lemma 2, we know
that 𝑄 is positive definite only if the inequality (20) is
satisfied. So we have �̇� (𝑡) < 0 when 𝜔(𝑡) = 0. In this
case, we have lim

𝑡→∞ 𝛿(𝑡) = 0, that is, the system can reach
consensus for any given initial state 𝑥(0) and 𝑦(0) when
𝜔(𝑡) = 0.

To consider 𝐻∞ performance index, we always assume
that all initial values are zero and nonzero 𝜔(𝑡) ∈
𝐿2[0,∞). Moreover, by applying the result of lemma 1,
the 𝐻∞ disturbance attenuation of the multi-agent system
is also not greater than 𝜇 if the following inequalities are
satisfied for any 𝑖 ∈ 𝒫⎡⎣ −𝑄𝑖 𝑃𝐵 (𝐶 ⊗ 𝐼𝑛)

𝑇

𝐵𝑇𝑃 −𝜇𝐼𝑛 0
(𝐶 ⊗ 𝐼𝑛) 0 −𝜇𝐼2𝑛

⎤⎦ < 0

which can be guaranteed by⎡⎣ 𝑄 −𝑃𝐵 −(𝐶 ⊗ 𝐼𝑛)
𝑇

−𝐵𝑇𝑃 𝜇𝐼𝑛 0
−(𝐶 ⊗ 𝐼𝑛) 0 𝜇𝐼2𝑛

⎤⎦ > 0,

where the matrices 𝑄𝑖 and 𝑄 are defined by (22) and (23)
respectively.

By using lemma 2 again, the above matrix is positive
definite if and only if

𝜇𝑄− Ω > 0. (24)

It is easy to verify the matrix Ω is positive definite. Thus,
the inequality (24) is satisfied only if 𝜇 > 𝜆max(𝑄

−1Ω).
Therefore, due to 𝑚 > 0, we can obtain that the 𝐻∞

disturbance attenuation from 𝜔(𝑡) to 𝑧(𝑡) is not greater
than

min
𝑚>0

𝜆max(𝑄
−1Ω).

Now, the proof is completed.
Remark 1: For two positive definite matrices 𝑄 and

Ω, we have 𝜆(Ω−1𝑄) = 𝜆(Ω− 1
2𝑄Ω− 1

2 ) [18]. Obviously,
Ω− 1

2𝑄Ω− 1
2 is also a positive definite matrix. Thus, all

eigenvalues of matrix Ω−1𝑄 are positive real number. The
natation 𝜆max(𝑄

−1Ω) used in Theorem 1 is meaningful
and compatible.

As a special case, the undirected switching topology is
discussed in following corollary.

Corollary 1: For the system (11) and (15), suppose that
the interconnection graph is connected and undirected for
any interval [𝑡𝑖, 𝑡𝑖+1). Take the positive constants 𝑘 and
𝑟 satisfied

𝑘 >
1

𝑟2�̄�
. (25)

Then the local control law (4) can guarantee that multi-
agent system in leader-following directed case can achieve
the consensus for any given initial condition 𝑥(0) and
𝑦(0) in case that 𝜔(𝑡) = 0. Furthermore, the 𝐻∞
disturbance attenuation from 𝜔(𝑡) to 𝑧(𝑡) is not greater
than

min
𝑚>0

𝜆max(�̄�
−1Ω̄),

where the matrices �̄� and Ω̄ are expressed respectively
as follows:

�̄� =

(
𝑘𝑚𝑟ℎ 𝑘𝑚𝑟2ℎ− 2𝑚

𝑘𝑚𝑟2ℎ− 2𝑚 𝑘𝑚𝑟3ℎ− 2𝑚𝑟

)
, (26)

Ω̄ =

(
𝑚2𝑟2 + 𝑎2 𝑚2𝑟3

𝑚2𝑟3 𝑚2𝑟4 + 𝑏2

)
. (27)

Proof: Based on lemma 4 and the definition of �̄� in
(18), we have

𝐻𝑇
𝑙 𝐼 + 𝐼𝐻𝑙 ≥ 2�̄�𝐼.

Choose a symmetric matrix

𝑃 = 𝑚

[
2𝐼 𝑟𝐼
𝑟𝐼 𝑟2𝐼

]
(28)

By using similar method as proof of Theorem 1, we can
known that if the positive constants 𝑘 and 𝑟 satisfied

𝑘 >
1

𝑟2�̄�
, (29)

then the local control law (4) can guarantee that multi-
agent system in leader-following directed case can achieve
the consensus for any given initial condition 𝑥(0) and
𝑦(0) in case that 𝜔(𝑡) = 0. Moreover, the 𝐻∞ disturbance
attenuation of the multi-agent system is also not greater
than 𝜇 if

𝜇𝑄− Ω > 0. (30)
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where

𝑄 =

(
𝑘𝑚𝑟ℎ𝐼 𝑘𝑚𝑟2ℎ𝐼 − 2𝑚𝐼

𝑘𝑚𝑟2ℎ𝐼 − 2𝑚𝐼 𝑘𝑚𝑟3ℎ𝐼 − 2𝑚𝑟𝐼

)
,

Ω =

(
𝑚2𝑟2𝐼 + 𝑎2𝐼 𝑚2𝑟3𝐼

𝑚2𝑟3𝐼 𝑚2𝑟4𝐼 + 𝑏2𝐼

)
Obviously, the matrix inequality (30) is equivalent to

𝜇�̄�− Ω̄ > 0, (31)

where the matrices �̄� and Ω̄ are defined in (26) and
(27) respectively. Similarly, we can obtain that the 𝐻∞
disturbance attenuation from 𝜔(𝑡) to 𝑧(𝑡) is not greater
than

min
𝑚>0

𝜆max(�̄�
−1Ω̄).

Remark 2: It is easy to verify the two matrices �̄� and
Ω̄ are positive definite. The two eigenvalues of matrix
�̄�−1Ω̄ are positive, which can be obtained by directed
calculation. Although the close-system have 𝑛-dimension,
the estimation of 𝐻∞ disturbance attenuation only based
on two-dimension matrix.

B. Time-delay Case

In this section, we mainly study 𝐻∞ control problem in
the directed network of multi-agents with switching and
time-varying delay.

Theorem 2: Assume that the interaction graph 𝒢 is
connected, for given positive constants 𝑘, 𝑟 > 0 and the
time-varying time-delay 𝜏(𝑡) which satisfies 0 ≤ 𝜏(𝑡) < 𝑑
and 𝜏(𝑡) ≤ 𝑑1 < 1, the system (13) and (15) is stable for
𝜔(𝑡) = 0 with the given 𝐻∞ disturbance attenuation at
least 𝜇, if there exist a positive constant 𝑚 and positive
definite matrices 𝑃 ,𝑄1, 𝑄2, 𝑅1, 𝑅2 such that⎡⎢⎢⎣

Θ11 Θ12 Θ13 Θ14

∗ Θ22 Θ23 Θ24

∗ ∗ Θ33 Θ34

∗ ∗ ∗ Θ44

⎤⎥⎥⎦ < 0 (32)

where

Θ11 = −𝑘𝑚𝑟𝑃𝐻𝑖 − 𝑘𝑚𝑟𝐻𝑇
𝑖 𝑃 +𝑄1 + 𝑎2𝐼𝑛,

Θ12 = 2𝑚𝑃 − 𝑘𝑚𝑟2𝑃𝐻𝑖 − 𝑘𝑚𝑟2𝐻𝑇
𝑖 𝑃

Θ13 = 𝑘𝑚𝑟𝑃𝐻𝑖,

Θ14 = 𝑘𝑚𝑟2𝑃𝐻𝑖,

Θ22 = 2𝑚𝑟𝑃 − 𝑘𝑚𝑟3𝑃𝐻𝑖 − 𝑘𝑚𝑟3𝐻𝑇
𝑖 𝑃

+𝑄2 + 𝑑𝑅1 + 𝑏2𝐼𝑛

Θ23 = 𝑘𝑚𝑟2𝑃𝐻𝑖

Θ24 = 𝑘𝑚𝑟3𝑃𝐻𝑖,

Θ33 = − 𝑑

1− 𝑑1
𝑅1 − 𝜇𝐼𝑛

Θ34 = 0,

Θ44 = − 𝑑

1− 𝑑1
𝑅2 − 𝜇𝐼𝑛

.

Proof: Choose a common Lyapunov function as

𝑉 (𝑡) =𝛿𝑇 (𝑡)𝑃𝛿(𝑡) +

∫ 𝑡

𝑡−𝜏(𝑡)

𝛿𝑇 (𝑠)𝑄𝛿(𝑠)𝑑𝑠

+

∫ 0

−𝜏(𝑡)

∫ 𝑡

𝑡+𝜃

�̇�𝑇 (𝑠)𝑅�̇�(𝑠)𝑑𝑠𝑑𝜃

where 𝑄 =

[
𝑄1 0
0 𝑄2

]
, 𝑅 =

[
𝑅1 0
0 𝑅2

]
, 𝑃 =[

2𝑚𝑃 𝑚𝑟𝑃
𝑚𝑟𝑃 𝑚𝑟2𝑃

]
.

For any 𝑇 > 0, also define a performance function as

𝐽(𝑡) =

∫ 𝑇

0

[𝑧𝑇 𝑧 − 𝜇2𝜔𝑇𝜔]𝑑𝑡.

By calculating the derivation of 𝑉 (𝑡) about the time 𝑡,
we can get

�̇� (𝑡) = 2𝛿𝑇 (𝑡)𝑃 �̇�(𝑡) + 𝛿𝑇 (𝑡)𝑃𝛿(𝑡)

− (1− 𝜏(𝑡))𝛿𝑇 (𝑡− 𝜏(𝑡))𝑄𝛿(𝑡− 𝜏(𝑡))

+ 𝜏(𝑡)�̇�𝑇 (𝑡)𝑅�̇�(𝑡)

+ (𝜏(𝑡)− 1)

∫ 𝑡

𝑡−𝜏(𝑡)

(�̇�𝑇 (𝑠)𝑅�̇�(𝑠))𝑑𝑠

(33)

According to the system (13) and (15), using Lemma 3
and noticing the fact that 𝛿(𝑡− 𝜏) = 𝛿(𝑡)− ∫ 𝑡

𝑡−𝜏
𝛿(𝑠)𝑑𝑠,

we can obtain

�̇� (𝑡) ≤ 2𝛿𝑇 (𝑡)𝑃𝐴𝛿(𝑡)− 2𝛿𝑇 (𝑡)𝑃𝐸𝑖𝛿(𝑡)

+
𝑑

1− 𝑑1
𝛿𝑇 (𝑡)𝑃𝐸𝑖𝑅

−1𝐸𝑇
𝑖 𝑃𝛿(𝑡)

+ 2𝛿𝑇 (𝑡)𝑃𝐵𝜔(𝑡) + 𝛿𝑇 (𝑡)𝑄𝛿(𝑡)

− (1− 𝑑1)𝛿
𝑇 (𝑡− 𝜏(𝑡))𝑄𝛿(𝑡− 𝜏(𝑡))

+ 𝑑𝛿𝑇 (𝑡)𝐴𝑇𝑅𝐴𝛿(𝑡) + 𝑑𝛿𝑇 (𝑡)𝐴𝑇𝑅𝐵𝜔(𝑡)

+ 𝑑𝛿𝑇 (𝑡− 𝜏(𝑡))𝐸𝑇
𝑖 𝑅𝐸𝑖𝛿(𝑡− 𝜏(𝑡))

+ 𝑑𝜔𝑇 (𝑡)𝐵𝑇𝑅𝐴𝛿(𝑡) + 𝑑𝜔𝑇 (𝑡)𝐵𝑇𝑅𝐵𝜔(𝑡)

(34)

we rewrite (34) in a compact form as follows

�̇� (𝑡) ≤
⎡⎣ 𝛿(𝑠)

𝛿(𝑠− 𝜏)
𝜔(𝑠)

⎤⎦𝑇

𝑀𝑖

⎡⎣ 𝛿(𝑠)
𝛿(𝑠− 𝜏)

𝜔(𝑠)

⎤⎦ (35)

where 𝑀𝑖 has the following structure

𝑀𝑖 :=

⎛⎝ Φ11 0 𝑃𝐵 + 𝑑𝐴𝑇𝑅𝐵
0 Φ22 0
∗ 0 𝑑𝐵𝑇𝑅𝐵

⎞⎠ (36)

with

Φ11 = 𝑃𝐴+𝐴𝑇𝑃 − 𝑃𝐸𝑖 − 𝐸𝑖𝑃

+
𝑑

1− 𝑑1
𝑃𝐸𝑇

𝑖 𝑅
−1𝐸𝑇

𝑖 𝑃 +𝑄+ 𝑑𝐴𝑇𝑅𝐴

Φ22 = −(1− 𝑑1)𝑄+ 𝑑𝐸𝑇
𝑖 𝑅𝐸𝑖
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Due to zero initial conditions and using the above inequal-
ity, we know

𝐽(𝑇 ) =

∫ 𝑇

0

[𝑧𝑇 𝑧 − 𝜇2𝜔𝑇𝜔]𝑑𝑡

=

∫ 𝑇

0

[𝑧𝑇 𝑧 − 𝜇2𝜔𝑇𝜔 + �̇� (𝑡)]𝑑𝑡− 𝑉 (𝑇 ) + 𝑉 (0)

≤
∫ 𝑇

0

(

⎡⎣ 𝛿(𝑡)
𝛿(𝑡− 𝜏(𝑡))

𝜔(𝑡)

⎤⎦𝑇

(Υ +𝑀𝑖)

⎡⎣ 𝛿(𝑡)
𝛿(𝑡− 𝜏(𝑡))

𝜔(𝑡)

⎤⎦)𝑑𝑡
− 𝑉 (𝑇 ) + 𝑉 (0)

(37)
where Υ has the following form:

Υ :=

⎛⎝ 𝐶𝑇𝐶 ⊗ 𝐼𝑛 0 0
0 0 0
0 0 −𝜇2𝐼𝑛

⎞⎠ (38)

Due to 𝑉 (𝑇 ) > 0 and 𝑉 (0) = 0, if (Υ+𝑀𝑖) < 0, then
we have 𝐽(𝑇 ) < 0. That is to say, 𝑧𝑇 𝑧 < 𝜇2𝜔𝑇𝜔, which
implies ∥𝑇𝑧𝜔(𝑠)∥∞ = 𝑠𝑢𝑝 ∥𝑧∥2

∥𝜔∥2
< 𝜇. Following that, we

provide the conditions of (Υ +𝑀𝑖) < 0. (Υ +𝑀𝑖) can
divide into Ξ1 + Ξ2, where

Ξ1 :=

⎛⎝ Φ11 + 𝐶𝑇𝐶 ⊗ 𝐼𝑛 0 𝑃𝐵
0 −(1− 𝑑1)𝑄 0

𝐵𝑇𝑃 0 −𝜇2𝐼𝑛

⎞⎠
(39)

and

Ξ2 :=

⎛⎝ 0 0 𝑑𝐴𝑇𝑅𝐵
0 −𝑑𝐸𝑇

𝑖 𝑅𝐸𝑖 0
𝑑𝐵𝑇𝑅𝐴 0 𝑑𝐵𝑇𝑅𝐵

⎞⎠ (40)

Noticing that Ξ2 ≥ 0, so (Υ +𝑀𝑖) < 0 is equivalent to
Ξ1 < 0.

By using the lemma 2, Ξ1 is converted into Ξ3 + Ξ4.
Ξ3 and Ξ4 are expressed respectively as follows:

Ξ3 :=

(
Φ11 + 𝐶𝑇𝐶 ⊗ 𝐼𝑛 0

0 −(1− 𝑑1)𝑄

)
(41)

Ξ4 :=
1

𝜇2

(
𝑃𝐵
0

)
∗ ( 𝐵𝑇𝑃 0

)
(42)

Since Ξ4 ≥ 0, we can get Ξ3 < 0. Thus, (Φ11+𝐶𝑇𝐶⊗
𝐼𝑛) < 0, by using the lemma 2 again, the inequality can
rewrite as Δ that has the following structure:

Δ :=

(
Δ11 𝑃𝐸𝑖

∗ − 𝑑
1−𝑑1

𝑅− 𝜇𝐼2𝑛

)
< 0 (43)

where Δ11 = 𝑃𝐴+𝐴𝑇𝑃−𝑃𝐸𝑖−𝐸𝑇
𝑖 𝑃+𝑄+𝑑𝐴𝑇𝑅𝐴+

𝐶𝑇𝐶 ⊗ 𝐼𝑛
From above analysis, we can obtain the LMI condition

given in the theorem 2 by substituting the block expres-
sion of 𝐴,𝑃,𝑄,𝑅,𝐸𝑖 into Δ. The proof is completed
now.

IV. SIMULATION EXAMPLES

In this section, two numerical simulations will be given
to illustrate the theoretical results obtained in the previous
section. Without loss of generality, in case that there is
no time-delay, we take 𝑎 = 1, 𝑏 = 1, 𝑘 = 10, 𝑟 =
2, ℎ = 1. Consider a multi-agent system with one leader
and six followers. The interconnection directed topology
is arbitrarily switched with switching period 1 among
three graphs 𝒢𝑖(𝑖 = 1, 2, 3). The Laplacian matrices
𝐿𝑖(𝑖 = 1, 2, 3) for the three subgraphs 𝒢𝑖(𝑖 = 1, 2, 3)
are

𝐿1 =

⎡⎢⎢⎢⎢⎢⎢⎣
3.5 −1.5 0 0 0 −2
−1 5.5 −2.5 0 −2 0
0 −1 2 −1 0 0
0 0 −2 5 −1 −2
0 −2 0 −1 5 −2

−1 0 0 −1 −2 4

⎤⎥⎥⎥⎥⎥⎥⎦

𝐿2 =

⎡⎢⎢⎢⎢⎢⎢⎣
5 −1 −2 0 −2 0

−1.5 4.5 −1 0 0 −2
−2 −1 4 0 −1 0
0 0 0 2 0 −2

−1 0 −1 0 2 0
0 −2 0 −2 0 4

⎤⎥⎥⎥⎥⎥⎥⎦

𝐿3 =

⎡⎢⎢⎢⎢⎢⎢⎣
3 0 0 −2 0 −1
0 2 0 −1 −1 0
0 0 2 0 0 −2

−2 −1 0 5 −2 0
0 −1 0 −2 3 0

−2 0 −2 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎦
and the diagonal matrices for the interconnection relation-
ship between the leader and the followers are

𝐵1 = 𝑑𝑖𝑎𝑔{1, 0, 0, 1, 0, 0}
𝐵2 = 𝑑𝑖𝑎𝑔{0, 1, 0, 1, 0, 0}
𝐵3 = 𝑑𝑖𝑎𝑔{1, 0, 0, 0, 1, 1}.

From matrices 𝐿𝑖 and 𝐵𝑖 (𝑖 = 1, 2, 3), we know that the
interconnection graph 𝒢𝑖 is connected.

The positive definite

𝑃 =

⎡⎢⎢⎢⎢⎣
3.411 0.236 0.094 0.348 0.727 0.209
0.236 3.092 0.668 0.273 0.524 0.489
0.094 0.668 5.303 0.363 0.475 1.20
0.348 0.273 0.363 3.046 0.420 0.487
0.727 0.524 0.475 0.420 4.618 0.389
0.209 0.489 1.203 0.487 0.389 3.794

⎤⎥⎥⎥⎥⎦
satisfies condition (19). Its Maximum and minimum
eigenvalues are 𝜆𝑚𝑎𝑥(𝑃 ) = 6.72 and 𝜆𝑚𝑖𝑛(𝑃 ) = 2.71
respectively.

To verify 𝐻∞ performance index, we choose distur-
bance model 𝜔(𝑡) = 𝑠𝑖𝑛(5 ∗ 𝑡). The initial positions and
velocity of the all agents are randomly produced. The
position errors in Fig. 1 are defined as ∣∣𝑥𝑖(𝑡)−𝑥0(𝑡)∣∣ and
the velocity errors in Fig. 2 are defined as ∣∣𝑦𝑖(𝑡)−𝑦0(𝑡)∣∣
. This two figures show that the follower-agents can track
the leader.

In addition, by simple calculations, we know that the
disturbance attenuation 𝜇 is not greater than 𝜇0 = 2.3077
if 𝑚 = 0.05.
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Fig. 1. Position tracking errors of followers
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Fig. 2. Velocity tracking errors of followers

Consider a multi-agent system with six agents. The
interconnection topology is also arbitrarily switched with
switching period 1 among three graphs 𝒢𝑖(𝑖 = 1, 2, 3).
The Laplacian matrices 𝐿𝑖(𝑖 = 1, 2, 3) for the three
subgraphs 𝒢𝑖(𝑖 = 1, 2, 3) are also defined as above.
Consider time-varying time-delay case, we take 𝑎 =
1, 𝑏 = 1, 𝑘 = 10, 𝑟 = 5,𝑚 = 1, the disturbance model
𝜔(𝑡) = 𝑠𝑖𝑛(5 ∗ 𝑡) too. The initial positions and velocity
of the all agents are randomly produced. At the same
time, we can take the maximum time-delay is not greater
than 𝑑 = 0.7 and the maximum value of the derivation
of time-delay is 𝑑1 = 0.92. so we can get that the
disturbance attenuation 𝜇 is not greater than 𝜇0 = 3.6766.
By using the Matlab LMI Control Toolbox, we can get
𝑃,𝑄1, 𝑄2, 𝑅1, 𝑅2 as follows, which satisfy the condition
(32).

𝑃 = 10−4×⎡⎢⎢⎢⎢⎣
7.037 0.665 0.308 0.264 0.113 0.467
0.665 6.311 0.848 −0.084 0.767 0.680
0.308 0.848 9.117 0.375 0.421 1.499
0.264 −0.084 0.375 6.057 0.631 0.427
0.113 0.767 0.421 0.631 8.075 0.741
0.467 0.680 1.499 0.427 0.741 7.537

⎤⎥⎥⎥⎥⎦

𝑄1 = 10−4×⎡⎢⎢⎢⎢⎣
2.464 0.135 0.067 0.052 0.027 0.096
0.135 2.321 0.172 −0.014 0.157 0.139
0.067 0.172 2.886 0.076 0.091 0.304
0.052 −0.014 0.076 2.271 0.125 0.090
0.027 0.157 0.091 0.125 2.676 0.150
0.096 0.139 0.304 0.090 0.150 2.569

⎤⎥⎥⎥⎥⎦

𝑄2 = 10−3×

⎡⎢⎢⎢⎢⎣
2.2 0.3 0.1 0.1 0.0 0.2
0.3 1.9 0.4 −0.0 0.4 0.3
0.1 0.4 3.2 0.2 0.2 0.7
0.1 −0.0 0.2 1.8 0.3 0.2
0.0 0.4 0.2 0.3 2.7 0.3
0.2 0.3 0.7 0.2 0.3 2.5

⎤⎥⎥⎥⎥⎦

𝑅1 = 10−3×

⎡⎢⎢⎢⎢⎣
3.2 0.5 0.2 0.2 0.1 0.3
0.5 2.6 0.6 −0.1 0.5 0.5
0.2 0.6 4.7 0.2 0.2 1.1
0.2 −0.1 0.2 2.5 0.4 0.3
0.1 0.5 0.2 0.4 3.9 0.5
0.3 0.5 1.1 0.3 0.5 3.5

⎤⎥⎥⎥⎥⎦
𝑅2 = 10−3×⎡⎢⎢⎢⎣

1380 −139.5 323.9 −72.50 7.20 −311.9
−139.5 1215 −190.2 −51.5 −183.7 −110.2
−323.9 −190.2 1315 −239 −185.8 49.1
−72.50 −51.5 −239 1284 −145.3 −277.2

7.20 −183.7 −185.8 −45.3 1373 −201.5
−311.9 −110.2 49.1 −277.2 −201.5 1443

⎤⎥⎥⎥⎦
The position errors in Fig. 3 are defined as ∣∣𝑥𝑖(𝑡) −

𝑥0(𝑡)∣∣ and the velocity errors in Fig. 4 are defined as
∣∣𝑦𝑖(𝑡) − 𝑦0(𝑡)∣∣. This two Figures show the multi-agent
system in time-delay case can achieve consensus.
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Fig. 3. Position errors of followers with time-delay network

V. CONCLUSION

This paper studied consensus problems for directed net-
works of agents with external disturbances on switching
topologies. Each agent regulated its position and velocity
based on its “neighbors” with the proposed consensus
protocol on the premise that the systems satisfied the
𝐻∞ performance index in the leader-following case.
Both switching networks with and without time-delay are
taken into consideration. In engineering applications, the
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Fig. 4. velocity errors of followers with time-delay network

extreme value of the controlled output is confined and the
confined ranges are different. The weighted coefficients
are designed respectively according to the controlled
output of the position and the velocity. A sufficient
condition for the directed graph without time-delay is
presented to ensure all agents to reach consensus and
the system satisfies the 𝐻∞ performance which provides
a theoretical basis to design consensus protocol. Also,
a sufficient condition is given for the directed graph
with time-delay to make the system achieve the desire
results. By using the similar method, it may be possible
to probe 𝐻∞ consensus problem of multi-agent systems
under leaderless case, which will be our future work. Due
to conservativeness of the common Lyapunov function
method, we should probe less conservative method. In this
paper, the assumption that agent’s state are 1-dimension
is for notational simplicity and will not lost generality.
Although the dimension of agent considered in this paper
is one, all results of this paper is also true for high di-
mension, and we can revise the expressions via kronecker
product. Finally, the simulation examples also show the
effectiveness of our theoretical results.
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