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Abstract—A direct adaptive neural network tracking 
control scheme is presented for a class of SISO affine 
nonlinear uncertain systems. Uncertainties meet the match 
conditions. Parameters in neural networks are updated 
using a gradient descent method which designed in order to 
minimize a quadratic cost function of the error between the 
unknown ideal implicit controller and the used neural 
networks controller. No robustifying control term is used in 
controller. The convergence of adaptive parameters and  
tracking error and the boundedness of all states in the 
corresponding closed-loop system are demonstrated by 
Lyapunov stability theorem.Simulation results illustrate the 
availability of this method . 

 
Index Terms—uncertain nonlinear, neural network, 
Lyapunov stability theorem, tracking control 

I.  INTRODUCTION 

There are some inevitable uncertainties in actual 
system which will cause instability and difficulties in 
dealing with system. Therefore, the study of uncertain 
nonlinear system is of vital importance. In recent years, 
control for uncertain nonlinear  systems has aroused 
widespread interests about it [1-19]. Since neural 
networks and fuzzy logic are universal approximators, the 
adaptive control schemes of nonlinear systems that 
incorporate the techniques of fuzzy logic [4, 7, 8, 10, 13, 
16, 17] or neural networks [1, 2, 3, 5, 9] have grown 
rapidly. The stability study in such schemes is performed 
by using the Lyapunov design approach. Conceptually, 
there are two distinct approaches that have been 
formulated in the design of adaptive control system: 
direct and indirect schemes. In the direct scheme, the 
fuzzy system or neural networks is used to approximate 
an unknown ideal controller. On the other hand, the 
indirect scheme uses fuzzy systems or neural networks to 
estimate the plant dynamics and then synthesizes a 
control law based on these estimates. In the above most 
methods the parameter adaptation laws are designed 
based on a Lyapunov approach , where an error signal 
between the desired output and the actual output is used 
to update the adjustable parameters and the control laws 

are composed of three control  terms: a linear control 
term , an adaptive neural network control term and a 
robustifying control term used to compensate for 
disturbances and approximation errors. In the paper , 
according to [4], we introduce a direct adaptive neural 
network control approach for a class of SISO affine 
nonlinear uncertain systems. The basic idea is to use 
neural network to adaptively construct an unknown ideal 
controller and the parameter adaptive laws is designed , 
based on the gradient descent method, to directly 
minimizing the error between the unknown ideal 
controller and the neural network controller And no 
robustifying control term is used in controller. This paper 
proves the availability of the method in both theory and 
simulation experiment. 

The paper is organized as follows. First, the problem 
is formulated in Section II. Designing a control law with 
on-line tuning of neural network weighting factors  is 
given in Section III. In Section IV, convergence and 
stability analysis of control system is given. In Section V, 
simulation results are presented to confirm the 
effectiveness and applicability of the proposed method. 
Finally, conclusions are included. 

II.  Problem Formulation 

Consider the following SISO affine nonlinear 
uncertain system: 

( )( ) ( ) ( ) ( )
( )

x f x f x g x g x u
y h x

= + Δ + + Δ⎧
⎨ =                                            ⎩

          (1) 

Where nx R∈ and ,u y R∈  are system state, system input 
and output respectively. n

x RΩ ⊂ , u RΩ ⊂  are two 
compact sets. ( )f x and ( )g x are  smooth vector fields. 

( )f xΔ and ( )g xΔ are uncertain terms. ( )h x R∈  is smooth 
scalar function. 
Assumption 1: Nominal system(1)possesses a strong 
relative degree n  . 
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( ) ( )
( )

x f x g x u
y h x

= +⎧
⎨ =              ⎩

              (2)   

Assumption 2: Uncertainties meet the match conditions. 

1 2( ) ( ) ( ) ( )f x g x x g x g x xδ δΔ = ( ),Δ = ( )             (3) 

According to differential geometry theory of 
nonlinear system , we know that there is a nonlinear 
transformation  ( )T xξ = , which turns system(1)to 
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⎧ =   = 1, , −  ⎪
⎪
⎪ = + + +⎨
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=⎪
⎪
⎩

           (4) 

     where 1 ( )i
i fL h xξ −= , ( ) ( )n

fL h xα ξ = and 
1( ) ( ) 0n

g fL L h xβ ξ −= ≠ .The function ( )β ξ  is nonzero and 
bounded for all ( , ) x ux u ∈ Ω × Ω .This implies that ( )β ξ  
is strictly either positive or negative. Without loss of 
generality, it is assumed that it exists a positive constant 
c such that ( ) 0cβ ξ ≥ > for all  ( , ) x ux u ∈ Ω × Ω . 
Assumption 3: For all nx R∈  , we have   

                      21 ( ) ( ) 0x xδ η+ ≥ >                             (5) 

Define the reference vector 
 ( 1)( )n T n

d d d dy y y y R−= ∈  

The reference signal dy and its time derivative are 
assumed to be smooth and bounded. We also define the 
tracking error as  

de y y= −  

 and corresponding error vector as 
( 1)( , , )n T ne e e e R−= ∈  

Then the system (4) can  be transformed into the normal 
form in the new coordinate as follows: 

[ ]{ }( )
0 1 2( ) ( ) ( ) 1 ( )n

de A e b y x x uα ξ β ξ δ δ⎡ ⎤= + − − + +⎣ ⎦                                
(6) 

where 0

0 1 0 0
0 0 1 0

0 0 0 1
0 0 0 0 0

n nA ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 1

0
0
0

1

nb ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Obviously, if ( )0 ,A b can be controllable, then there will 

exist a constant matrix [ ]0 1 1, , T
nK k k k −=  which makes 

eigenvalues of matrix 0
T

cA A bK= −  all have negative 
real part.  Thus, for any given positive definite symmetric 

matrix Q , there exists a unique positive definite 
symmetric solution P  to the following Lyapunov 
algebraic equation: 

                               T
c cA P PA Q+ = −                         (7) 

      The control objective is to design an adaptive neural 
network controller for system (1) such that the system 
output follows a desired trajectory while all signals in the 
closed-loop system remain bounded.  

III.  DESIGN OF CONTROLLER 

Define a signal 

 ( )= tanh
T

n T
d

b Pey K eν λ ⎛ ⎞
+ + ⎜ ⎟Ξ⎝ ⎠

 

 where tanh( )• is the hyperbolic tangent function, 
,λΞ are the positive design parameters tanh( ) ( 1,1)• ∈ − , 

when error +e → ∞  , the value of 
( )tanh +

Te PB lβ⎛ ⎞+ → ∞⎜ ⎟Ξ⎝ ⎠
. And when error -e → ∞ , the 

value of ( )tanh -
Te PB lβ⎛ ⎞+ → ∞⎜ ⎟Ξ⎝ ⎠

. When 0e → ,  

( )tanh 0
Te PB lβ⎛ ⎞+ →⎜ ⎟Ξ⎝ ⎠

.The term tanh
Tb Peλ ⎛ ⎞

⎜ ⎟Ξ⎝ ⎠
is a 

smooth approximation of the discontinuous 
term ( )Tsign b Peλ  usually used in robust control. So, 

λ is selected larger than the magnitude of the uncertainty 
and it will affect the convergence rate of the tracking 
error, and Ξ  is chosen very small to best approximate the 
sign  function and it will affect the size of the residual set 
to which the tracking error will converge. The sign 
function is not used here to avoid problems associated 
with it as chattering and solutions existence.  

 By adding and subtracting ν  in (6), we obtain 

( )
( ){ }

0

1 2

tanh

    ( ) ( ) ( ) 1 ( )

T
T b Pee A bK e b

b x x u

λ

α ξ β ξ δ δ ν

⎛ ⎞
= − − −⎜ ⎟Ξ⎝ ⎠

⎡ ⎤+ + + + −⎣ ⎦

     (8) 

if 1 2( ), ( ), ( ), ( )x xα ξ β ξ δ δ are known, there exists some 
ideal controller * ( )u z satisfying the following equality :                          

[ ]( ) ( )1*
2 1( ) ( ) 1 ( ) ( ) ( ) ( )u z x v xβ ξ δ α ξ β ξ δ−

= + − −  
 (9) 

     The closed-loop error dynamic is reduced to (10) 

            ( )0 tanh
T

T b Pee A bK e bλ ⎛ ⎞
= − − ⎜ ⎟Ξ⎝ ⎠

               (10) 

     Let us consider the following positive function:  

                                      TV e Pe=                          (11)    

     Using (7) and (10), the time derivative of (11) 
becomes 
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       2 tanh
T

T T b PeV e Qe b Peλ ⎛ ⎞
= − − ⎜ ⎟Ξ⎝ ⎠

                (12) 

     Since the term tanh
T

T b Peb Pe
⎛ ⎞
⎜ ⎟Ξ⎝ ⎠

 is always  positive , 

we conclude that 0V ≤  , and only when 0e = , 0V =  
which means lim | | 0

t
e

→∞
= . 

      However, when 1 2( ), ( ), ( ), ( )x xα ξ β ξ δ δ are unknown  
in ideal controller (9), * ( )u z  is not available. In what 
follows, a neural network will be used to construct the 
unknown ideal implicit controller. 
   In control engineering , radial basis function(RBF) NNs 
are usually used as a tool for modeling nonlinear 
functions because of their good capabilities in function 
approximation. In this paper, the following RBF NN 
based on GGAP-RBF[20] algorithm is used to approximate 
the continuous function ( ) ( )Tu z zφ θ= , where 

,
TTz vξ⎡ ⎤= ⎣ ⎦ , weight vector 1( , , )T

Mθ θ θ= , the NN 

node number 1M > ;and 1( ) ( ( ) ( ))T
Mz z zφ φ φ= with 

( ) ( )
2( ) exp , 1,2, ,
T

i i
i

i

z z
z i M

μ μ
φ

η

⎡ ⎤− − −
= =⎢ ⎥

⎢ ⎥⎣ ⎦
 

Where 
1 2 q

T

i i i iμ μ μ μ⎡ ⎤= ⎣ ⎦ is the center of the 

receptive field and iμ is the width of the Gaussian 
function. 
     It has been proven that network can approximate any 
smooth function over a compact set q

Z RΩ ⊂ to 
arbitrarily any accuracy as  

* *( ) ( ) ( )Tu z z zφ θ δ= +                  (13) 

with bounded function approximation error ( )zδ  
satisfying ( )zδ δ≤ .Where *θ  is an ideal parameter 

vector which minimizes the function ( )zδ .In this paper , 
we assume that the used neural network does not violate 
the universal aproximtion property on the compact set 

ZΩ , which is assumed large enough so that the variable 
z remains inside it under closed-loop control. 
     RBFNN represents a class of linearly parameterized 
approximators  and can be replaced by any other linearly 
parameterized approximators such as spline functions[21] 
or fuzzy systems[22]. Moreover, nonlinearly 
parameterized approximators, such as multilayer neural 
network(MNN), can be linearized as linearly 
parameterized approximators, with the higher order terms 
of  Taylor series expansions being taken as part of the 
modeling error, as shown in [23], [24]. 
   Let us define the error between the controllers ( )u z and 

* ( )u z  as 

                              * ( ) ( )ue u z u z= −                        

Using (13), it becomes 

* ( ) ( ) ( ) ( )T
ue u z u z z zφ θ δ= − = +           (14) 

Where *θ θ θ= −  is the parameter estimation error 
vector. 
      By substituting * ( )u z  into the equation(8) and 
considering (9), we get 

[ ]

[ ] [ ]
[ ]

[ ]( )

1

*
2 2

*
2

*
2

c

c

tanh ( ) ( ) ( )

     - ( ) 1 ( ) ( ) 1 ( ) ( )

     - ( ) 1 ( ) ( )

  = tanh ( ) 1 ( ) ( ) ( )

T

T

b Pee A e b b x v

b x u x u z

x u z

b PeA e b b x u z u z

λ α ξ β ξ δ

β ξ δ β ξ δ

β ξ δ

λ β ξ δ

⎛ ⎞
= − − + − −⎜ ⎟Ξ⎝ ⎠

⎡ + + + −⎣
⎤+ ⎦

⎛ ⎞
− − + −⎜ ⎟Ξ⎝ ⎠

                                                                                 (15) 

  which can be rewritten as 

      [ ]( )
2tanh ( ) 1 ( )

T
n T

u
b Pee K e x eλ β ξ δ⎛ ⎞

+ + = +⎜ ⎟Ξ⎝ ⎠
   (16) 

  We notice here that * ( )u z is an unknown quantity , so 
the signal ue defined in (14) is not available. Eq.(16) will 
be used to overcome the difficulty. Indeed , from(16), we 
see that even if the signal ue is not available for 
measurement, the quantity [ ]2( ) 1 ( ) ux eβ ξ δ+ is 
measureable. This fact will be exploited in the design of 
the parameters adaptive law.  

Now, consider a quadratic cost function defined as  

[ ] [ ]( )22 *
2 2

1 11 ( ) 1 ( ) ( ) ( )
2 2

T
uJ x e x u z zθ δ δ φ θ= + = + −                       

(17) 
By applying the gradient descent method, we obtain as 
an adaptive law for the parameters θ  

[ ]2( ) 1 ( ) ( ) uJ x z eθθ γ θ γ δ φ= − ∇ = +             (18) 

Since ue and 2 ( )xδ  are not available, the adaptive law 
(18) can not be implemented. In order to render (18) 
computable , from Eq.(16), we select the design 
parameter ( )θγ γ β ξ= , where θγ  is a positive constant. 
At the same time , to improve the robustness of adaptive 
law in the presence of the approximation error , we 
modify it by introducing a σ -modification term as 
follows: 

[ ]( )2

( )

( ) ( ) 1+ ( )  

  = ( ) tanh

u

T
n T

z x e

b Pez e K e

θ

θ θ

θ γ φ β ξ δ σθ

γ φ λ γ σθ

= −

⎧ ⎫⎛ ⎞⎪ ⎪+ + −⎨ ⎬⎜ ⎟Ξ⎪ ⎪⎝ ⎠⎩ ⎭

    (19) 

where σ  is a small positive constant 
   Because the aim of the σ -modification adaptive law is 
to avoid parameter drift, it does not need to be active 
when the estimated parameters are within some 
acceptable bound. The proposed adaptive controller is 
only composed of a neural network part without 
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additional control terms and the system stability relies 
entirely on the neural network. The term 

tanh
Tb Peλ ⎛ ⎞

⎜ ⎟Ξ⎝ ⎠
in the parameter adaptive law(19)plays , 

in some way , the role of a robustifying control term. 
Thus , the robustness of the controller can be improved 
by selecting a large positive value for the design 
parameter λ  and a small positive value for the 
parameter Ξ . 

IV.  CONVERGENCE AND STABILITY ANALYSIS 
OF CONTROL SYSTEM 

Firstly, let us consider the convergence of neural 
network parameters. Considering the following positive 
function:                             

                               1=
2

TVθ
θ

θ θ
γ

                    (20) 

Using (14) and (19), the time derivative of (20) can be 
written as  

( ) ( )2
2 2( ) 1 ( ) ( ) 1 ( ) ( ) T

u uV x e x z eθ β ξ δ β ξ δ δ σθ θ= − + + + +
(21) 

Using the inequalities 

2 22

2 2*

2 2 2

        
2 2

        

T σ σ σσθ θ θ θ θ θ

σ σθ θ

= − − + +

≤ − +       (22) 

( )22 2 2

2 2

1 1 1( ) ( ) ( )
2 2 2
1 1                   ( )
2 2

                     

u u u u

u

e z e e z e z

e z

δ δ δ

δ

− + = − + − −

≤ − +    (23) 

Eq.(21) can be bounded as  
 

( ) ( )2 2
2 2

2 2*

1 1( ) 1 ( ) ( ) 1 ( ) ( )
2 2

      
2 2

uV x e x zθ β ξ δ β ξ δ δ

σ σθ θ

≤ − + + + −

− +
                   

                                           (24) 
Since the parameters *θ  are constants, and the functions 

( )zδ and 2( ), ( )xβ ξ δ are assumed bounded  in this paper,     
   so we can define a positive constant bound ψ  as 

( ) 22 *
2

1sup ( ) 1 ( ) ( )
2 2t

x z σψ β ξ δ δ θ⎛ ⎞= + +⎜ ⎟
⎝ ⎠

  (25) 

Then 

                                  

( ) 2
2

1 1 ( ) 1 ( )   
2 2

   

uV V x e

V

θ θ

θ

ρ ψ β ξ δ

ρ ψ

≤ − + − +

≤ − +
       (26)    

where θρ σγ= .Eq.(26) implies that for Vθ
ψ

ρ> , 

0Vθ <  and , therefore, θ  is bounded. By integrating (26), 
we can establish that:                         

2 2
(0) 2te ρ

θ
ψθ θ γ
ρ

−≤ +                       (27) 

 From (27)  we have   
                       0.5(0) 2te ρ

θθ θ γ ψ ρ−≤ +       (28)    

Using (28) and the fact that ( )zδ and 2( ), ( )xβ ξ δ are 
bounded, we can write 

( )( )
( )
( )
( )

( )

2

2

2

2

2

( , ) 1 ( ) ( ) ( )

                      ( , ) 1 ( ) ( ) +

                       + ( , ) 1 ( ) ( )

                      ( , ) 1 ( ) ( ) +

                       + ( , ) 1 ( ) ( )

   

T

T

T

x z z

x z

x z

x z

x z

β ξ η δ φ θ δ

β ξ η δ φ θ

β ξ η δ δ

β ξ η δ φ θ

β ξ η δ δ

+ +

≤ +

+

≤ +

+

( )
( )
( )

0.5
2

2

2

0.5
0 1

                   ( , ) 1 ( ) ( ) (0)

                       ( , ) 1 ( ) ( ) 2 +

                        + ( , ) 1 ( ) ( )

                      

T t

T

t

x z e

x z

x z

e

ρ

θ

ρ

β ξ η δ φ θ

β ξ η δ φ γ ψ ρ

β ξ η δ δ

ψ ψ

−

−

≤ + +

+ +

+

≤ +
(29) 

where 0 1,ψ ψ  are some finite positive constants. 

Theorem 1: Consider the system (1).Suppose that 
Assumption1-3 are satisfied and the neural network 
approximation error in (14) is bounded , then the neural 
network controller and adaptation law given by (19) 
guarantees the convergence of the neural network 
parameters and the boundedness of all the signal in the 
closed-loop system, and the convergence of the tracking 
error to the residual set: 

( ){ }1 min| 2 ( )e c ee e K Pψ λ αΩ ≤ ≤ Ξ . 

Proof: Consider the Lyapunov function candidate:    

           ( ) TV e e Pe=                                  (30) 

Differentiating (30) with respect to time and using 
(7), (14), (29), and inequality  

0 tanh cKςς ς ⎛ ⎞≤ − ⋅ ≤ Ξ⎜ ⎟Ξ⎝ ⎠
 

 with 0.2785cK = , we obtain  

1172 JOURNAL OF COMPUTERS, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER



( )
( )

( ) ( )

*
2

2

0.
0

( ) 2 tanh

          +2 ( ) 1 ( ) ( )

       2 tanh

           +2 ( ) 1 ( ) ( ) ( )

       2 tanh 2

T
T T T

c c

T

T
T T

T T

T
T T T

b PeV e e A P PA e b Pe

b Pe x u u

b Pee Qe b Pe

b Pe x z z

b Pee Qe b Pe b Pe e

λ

β ξ δ

λ

β ξ δ φ θ δ

λ ψ −

⎛ ⎞
= + − +⎜ ⎟Ξ⎝ ⎠

+ −  

⎛ ⎞
=− − +⎜ ⎟Ξ⎝ ⎠

+ +  

⎛ ⎞
≤− − +⎜ ⎟Ξ⎝ ⎠

( )5
1

0.5
0 1       2 2         

t

T T t
ce Qe b Pe e K

ρ

ρ

ψ

ψ ψ−

+

≤− + + Ξ

 (31) 

Using the inequality  
220.5 2

0 02 0.5 2T t T tb Pe e e b P eρ ρψ ψ− −≤ +  

Eq.(31) becomes 

( ) 22 2
min 0 1( ) ( ) 0.5 2 2   T t

cV e Q e b P e Kρλ ψ ψ−≤ − − + + Ξ                                  
(32) 

where min ( )Qλ  denotes the minimum eigenvalue of the 
matrix Q  and it is assumed chosen such that 

min ( ) 0.5Qλ > . 
Eq. (32) can be written as :    

2 2
0 1( ) ( ) 2 2   T t

e cV e V e b P e Kρα ψ ψ−≤ − + + Ξ     (33) 

where ( )min max( ) 0.5 ( )e Q Pα λ λ= −  with max ( )Pλ  is the 
maximum eigenvalue of the matrix P. Eq.(33) implies 
that for  

( )2 2
0 1( ) 2 2   T t

c eV e b P e Kρψ ψ α−≥ + Ξ  

( ) 0V e < . Therefore, the tracking error vector is bounded, 
together with the boundedness of the desired trajectory 
and its derivatives, imply that the state vector x  is 

bounded. Moreover , since the term 
2 2

02 0T tb P e ρψ − → , 

when t → ∞ , we can conclude that the function ( )V e  
will be asymptotically bounded , and therefore the 
tracking error will converge asymptotically to the residual 
set  

( ){ }1 min| 2 ( )   e c ee e K Pψ λ αΩ ≤ ≤ Ξ .              

This completes the proof. 

VI.  SIMULATION STUDY 

In this section, to illustrate the validity of the 
proposed adaptive neural network controller, the 
following SISO affine nonlinear uncertain system  is 
simulated. The affine nonlinear system is described by 
the following differential equation: 

1 2

2 1

1

0
( ) ( )

-sin ( ) 1
x x

f x g x u
x x t

y x

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + Δ + + Δ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎝ ⎠
=

    (34) 

where 
1

0
( )

sin( )sin ( )
f x

t x t
⎡ ⎤

Δ = ⎢ ⎥−⎣ ⎦
, 

0
( )

0
g x ⎡ ⎤

Δ = ⎢ ⎥
⎣ ⎦

.The 

control objective is to force the system output y  to track 
the desired trajectory 2sin 0.5dy t= （ ） . We 
know 1 1( ) sin( )sin ( )x t x tδ = − , 2 ( ) 0xδ = , ( ) 0gL h x = , 

2( )fL h x x= , ( ) 1 0g fL L h x = ≠ , 1( ) sin ( )x x tα = − , 
( ) 1xβ = .The system initial conditions are 

[ ](0) 0.2 0.6 Tx = .The design parameters used in this 
simulation are selected as follows [10,10]Q diag= , 

15 5
5 5

P ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, [ ]1,2 TK = , 0.01Ξ = , 9θγ = , 

0.05σ = .The simulation result is shown in Fig1, 2, 3, 4. 
 

 
Figure 1. Plots of output tracking of system 

 

 
Figure 2.   Node Number of Hidden Layer 
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Fig.3    Plots of Control input 

 

 
Fig 4.  Norm of the weight vectorsθ 

The simulation result for the output is shown in 
Fig.1, the node changes are shown in Fig.2, and the 
control input signal is shown in Fig.3.Fig.4 shows the 
evolution of the Euclidian norm of the parameter 
estimates It can be seen that the actual trajectories 
converge rapidly to the desired ones. The control signal 
and the estimated parameters are bounded. These 
simulation results demonstrate the tracking capability of 
the proposed controlled and its effectiveness for control 
tracking of uncertain nonlinear systems. 

V.  CONCLUSIONS 

      In this paper, we proposed a new neural network 
adaptive control method for a class of SISO affine 
nonlinear uncertain systems.The scheme consists of an 
adaptive neural network control term with its adaptive 
law, and no robustifying control term is used in controller 
to compensate the influence of error between ideal 
controller and neural network controller which adjustable 
parameters are updated  by using the gradient descent 
method . Simulation results demonstrate the feasibility of 
the proposed control scheme. 
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