

Easing Instruction Queue Competition among
Threads in RMT

Jie Yin, Jianhui Jiang
Department of Computer Science and Technology, Tongji University, Shanghai, China

E-mail: jieyin2008@gmail.com, jhjiang@tongji.edu.cn

Abstract—As chip feature size decreases, processors are
getting more and more sensitive to soft errors. To find
cheaper reliability solutions has attracted the attention of
many researches. SMT (Simultaneous Multithreading)
processor permits multiple issues from different threads at
the same time, which provides nature support for fault-
tolerance by executing threads redundantly. Many RMT
(Redundant Multithreading) architectures have been
proposed. In those architectures, IQ (Instruction Queue) is a
critical resource that affects the performance obviously.
This paper proposed DDDI (Delay Dispatching Dependent
Instructions) strategy which can use IQ more efficiently. In
DDDI, instructions that dependent on load instructions that
encounter cache miss can't be dispatched in to IQ until the
load instructions get values from L2 cache or main memory.
Experiments show that DDDI can avoid the threads that
encounter cache miss blocking IQ resources, and not only
IQ, but also the whole pipeline can be used more efficiently.
Performance is boosted outstandingly.

Index Terms—Instruction Queue, SRT, cache miss, RMT,
rename register file

I. 0 0B BINTRODUCTION
For many years, most computer architecture

researchers have pursed one primary goal: performance.
Recently, however, as chip feature size decreases, the
number of transistors integrated on the chip increased
dramatically, and chip supply voltage is getting lower and
lower. On the one hand it improves the processor
performance; on the other hand it makes processors
increasingly sensitive to soft errors [1].

Radiation-induced errors are termed “soft error” since
the state of one or more bits in silicon chip could flip
temporarily without damaging the hardware. Soft errors
arise from energetic particles, such as alpha particles
from packaging material [2] and neutrons from
atmosphere [3].

Some studies show that under nano-technology, soft
error has become the main cause of chip failure [4].
Almost 80-90% of system failures are caused by soft
error [5] [6].

At present, only machines that run critical mission
consider the prevention of soft errors. However,
according to Intel’s prediction, in the next few years,
even the most low-end processors also need to be
strengthened in this regard.

Architecture design for soft error is an efficient
scheme to reduce SER (Soft Error Rate). Computer
architecture has long coped with various types of faults,

including soft errors. The most commonly used
architecture-based approaches are spatial redundancy,
information redundancy and time redundancy.

Spatial redundancy duplicates a module and makes
the two replicas compare their results. Due to high
hardware cost and power and energy consumption, this
approach is mainly used in high-end processors, such as
IBM S/390 [7], and Compaq Nonstop Himalaya [8].

The basic principle of information redundancy is to
add redundant bits to a datum to detect or tolerant an
error [9]. The method is used primarily for storage
components (such as Cache, Memory, and Register, etc.),
and some transmission components (e.g. Bus), which is
not practical for logical components.

Temporary redundancy performs an operation twice
(or more times), one after another, and then compare the
results. It can cause some damage to the performance.
Hardly any processor can run at full speed, and the re-
execution can use spare resource, which will mitigate the
performance damage. Because of the low hardware cost
(relative to spatial redundancy) and high fault coverage
(relative to information redundancy), temporary
redundancy is a cost-effective solution and has attracted
great attention of computer architects.

In last century, temporary redundancy is implemented
primarily through instruction re-execution in super-scalar
architecture [10]. Each instruction is issued twice, and
results between them are compared. This scheme only
detect faults in execute stage, with other pipeline stage
unprotected.

Later, SMT (Simultaneous Multithreading)
architecture was proposed in 1995 by Tullsen [11]. SMT
is capable of executing multiple instructions from
different threads simultaneously [12] [13]. Through the
excavation of the instruction-level parallelism within a
single-threaded and Inter-thread-level parallelism, SMT
reduced the horizon waste and vertical waste. SMT
improves the resource utilization through sharing them
among threads. SMT allows multiple threads run
concurrently, which provides nature supports for fault-
tolerance by executing threads redundantly. Fault-
tolerance through redundant execution based on SMT is
called RMT (Redundant Multi-threading).

AR-SMT [14] is the firstly proposed SMT-based
fault-tolerance architecture, which copies the thread into
two copies (master and slave threads). Results from
master threads are stored in a buffer to wait for the
corresponding results from slave threads for comparison.

1394 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.7.1394-1401

However, AR-SMT needs to allocate additional memory
space for the slave threads and isn't transparent to the
operating system.

SRT [15] proposed by Mukherjee is a simple and
practical fault-detection architecture, which has become a
lot of follow-up research infrastructure [16]. SRT detects
faults by comparing the corresponding store results
between master threads and slave threads.

Later in SRTR [16], function of restoration is added in
SRT. In SRT, only store instructions are compared, while
other instructions can be committed before comparing,
when architecture register file polluted by some faulty
instruction results, the processor can't restore to a correct
state. While in SRTR, each instruction must be compared
before committing, and no faults can spread to
architecture register file, when meeting faults, only need
to re-fetch the faulty instructions from I-Cache and re-
execute them.

In our previous research, IQ (Instruction Queue) is
proved to be a critical resource that affects the
performance obviously. In RMT, Slave threads can use IQ
more efficiently than master threads. That’s because
master threads may encounter D-cache miss, while slave
threads may not. Slave threads can get the Load results
from master threads. In master threads, the instructions
dependent on Data-cache-miss-load instructions may stay
in IQ for a period of time. In the paper, the instructions of
master threads that dependent on unresolved Load that
encountered cache miss can’t be dispatched into IQ until
the corresponding load instructions get results from L2
Cache or main memory. The method is named DDDI
(Delay Dispatching Dependent Instructions). Experiments
show that the method is effective for improving the IQ
utilization and processor performance

The rest of the paper is organized as follows. Section 2
discusses the background and provides the motivation for
our techniques. Section 3 discusses the DDDI technique.
Section 4 and 5 presents the experimental results and
analysis. Section 5 introduces some related works. Finally
in section 6, we conclude.

II. 11B BBACKGROUND
1) Improve the performance of RMT

Nowadays, to improve the performance of RMT is a
hot topic. The primary goal of RMT optimizations is to
reduce the performance degradation of a single program
caused by the redundant thread.

There exist two methods to improve the performance
of RMT. First, reduce the number of instructions need to
be executed. Second, speed up the flow rate of
instructions in the pipeline, which is realized mainly
through preventing some threads blocking key resources.

Reducing the number of instructions that needs
executing has been researched a lot in superscalar
architecture; many methods have been extended to RMT.
There have been a number of proposals that exploit this:

a) Instruction Reuse:
Sodani and Sohi proposed instructions reuse to

accelerate the execution of a single program [17]. Sodani
and Sohi created an instruction reuse buffer that tracks

one or more instruction's input and output values. If an
instruction or a sequence of instructions is executed again
and can be matched against the instructions present in the
reuse buffer, then the pipeline can simply obtain the
output of the instructions without executing them [17].

In an RMT implementation, the contents of the reuse
buffer can be updated after the output comparator
certifies that an instruction is fault free. In subsequent
executions, the trailing thread can use values being
passed to it by the leading thread (e.g., via an RVQ) to
probe the reuse buffer, obtain the result values in case of
a hit, and thereby avoid executing the instruction itself.
Parashar et al. [18] and Gomaa and Vijaykumar [19] have
explored variants of this scheme.

b) Avoid execution of dynamically dead instructions
In the course of program execution, many dead

instructions are operated. The instructions whose results
will never be used are termed "dead instructions"[20],
such as:

 R1=R2+R3 (1)
 R4=R2*R3 (2)
 R2=R4-R3 (3)
 R1=R4+R2 (4)
 R5=R6+1 (5)
 In the instruction sequence, since the result of the

first instruction will never be used by other instructions,
so they are dead instructions and faults in the instruction
have no effect on the thread correctness.

In RMT, dead instructions are detected during the
execution of master threads, and execution of these
instructions may be omitted in slave threads.

c) Turn slave threads off in high IPC regions.
There exist some instruction regions that need huge

executing resources and the reliability is not important to
the user. Such as some streaming media, we only need to
guarantee its performance, slight errors are permissible.
Therefore, these regions can be ignored in slave threads.

Another method to improve the performance of RMT
is speed up the flow rat of instructions in the pipeline. We
must avoid some instructions blocking key resources. For
example, some instructions may stay in the key resources
for a long time without any progress, while the resources
may be used by other threads.

In SRTR, in order to avoid faults spread to architecture
registers, each instruction must be compared before
committing. The instructions of master threads often need
to wait for the corresponding instructions of slave threads
arriving the comparing stage. The waiting of master
threads will delay the release of resources that occupied
by the master threads. And in SRT, only store instructions
need comparison, which is why it can gain better
performance than SRTR.

The ability of every resource that affects the
performance is analyzed quantitatively in our previous
research. Rename Register File (RRF) and Instruction
Queue (IQ) are two most important resources.

Further studies revealed that, load instructions that
encounter cache miss may block the two key resources
easily. Meeting cache miss, load instructions and the
follow-up instructions dependent on them will stay in the

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1395

© 2011 ACADEMY PUBLISHER

key resources for a period of long time without any
progress. Reference [21] found that when running some
workloads, the IQ is on average 97 occupied when at

least on L2 miss is outstanding, but only 62% occupied at
other times.

Figure 1． Structure of SRT with DDDI

2) SRT (Simultaneous Redundant Threading)

The purpose of DDDI is to prevent above situation
from happening. It can be used in any RMT architecture.
We selected the simple and practical SRT as
infrastructure. This section mainly introduces SRT:

SRT is simple and practical fault-detection
architecture, which has become a lot of follow-up
research infrastructure. SRT detects faults by comparing
the corresponding store results between master threads
and slave threads.

In [15], to aid the analysis, the authors firstly
proposed the concept of sphere of replication. All activity
and state within the sphere is replicated, either in time or
in space. Values that cross the boundary of the sphere of
replication are the outputs and inputs that require
comparison and replication, respectively.

In order to detect faults, store instruction results
produced by master threads must be stored into STB
(Store Buffer) and wait for corresponding results from
slave threads for comparison. Fault may propagate to the
follow-up store instructions and that can’t propagate out
have no effect on the program results. So checking the
store instruction results is enough. Only instructions of
master threads should be committed, while those of slave
threads just for comparison.

For load instructions, the authors propose LVQ (Load
Value Queue) to ensure that master threads and slave
threads can load the same value. Load instructions results
of master threads are stored into LVQ, and are used by
slave threads later. So, slave threads mayn’t encounter D-
cache miss.

The authors also proposed BOQ (Branch of Queue)
and SF (Slack Fetch) to enhance the performance.
Through BOQ, master threads will store the branch
instruction results to BOQ, which may be used by the

corresponding slave threads later. Slack Fetch refers to
keeping a certain distance between the two threads so that
slave threads can get Load instruction results produced by
master threads. So slave threads may not encounter miss-
predicted branches and D-cache-miss-load.

As the original SRT only supports single thread
redundantly execution, the paper firstly extend the
structure to support the execution of multiple independent
threads. Figure 1 is the SRT implemented in the paper:

The architecture can support eight independent
threads simultaneously. In fault-tolerance mode, four
different threads are performed simultaneously and each
of them is copied to two. The shaded sections are added
relative to original SMT.

Like previous studies, this paper mainly studies the
performance in fault-free case. The single-fault detection
rate was 100%.

III. 22B BMAIN IDEA
In SMT, D-cache-miss degrades the performance

significantly. When load instruction encounters cache
miss, it may stay in the pipeline for almost hundreds of
clock cycles (when encountering L2 cache miss), and the
instructions dependent on the instructions will be clogged
in IQ, too, while the IQ slots may be used by other
threads. The main idea of this paper is to delay the time
the instructions which are dependent on unresolved D-
cache-miss load instructions entering IQ.

Figure 1 is the structure of SRT with DDDI. When
load instruction encounters cache miss, set the new added
bit of the destination rename register to 1 (see Figure 2).
When load instructions is completed or squashed from
the pipeline due to wrong branch prediction, the
corresponding bits of the destination rename register is
set to 0.

1396 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER

During dispatch stage, if we find the bit of any source
operand register of the instruction is 1, which indicates
that it is dependent on a load instruction that encounter
cache miss, and the load instructions has not been
resolved yet. So, stop dispatching instructions from the
thread and select the next thread.

Some scholars have suggested that the threads should
be stopped when cache miss detected. We believe that
this is a rather extreme approach. Even load instructions
encounter cache miss, there may exist no dependency
relationship between them and the follow-up instructions.
We have verified the method before and found that the
performance actually declined. Because it may degrades
the instruction parallelism.

Detecting whether load instructions will encounter
cache miss needs a period of time. However, the cache
access prediction mechanism has become a common
structure yet. Like branch prediction, it can predict
whether the cache access will hit or miss. The structure is
implemented in many general processors, such as the
Alpha 21464. This paper also used the prediction
mechanism. When Load instruction leaves IQ for
execution, predicting whether it will encounter cache
miss, and the corresponding bit can be set timely.

Cache Predictor

bit

Figure 2. Pipeline of SRT with DDDI

IV. 33B BEXPERIMENT SETUP
The original SRT only supported single-thread case.

The author has not studied the redundant multithreading
performance thoroughly, because there isn’t multiple
threads compete for resources in single-thread case. This
paper firstly extended the architecture to support multiple
threads.

In original SRT, Slack size is set to 256, and BOQ,
LVQ and STB are set to 64. We modified the
configurations, because the original configurations may
cause deadlock in multithreading case. When some
master threads which has occupied certain entire key
resources may encounter BOQ full or LVQ full, and the
threads will be halted, while corresponding slave threads
may be also halted because they can't obtain the key
resources. And then, no BOQ or LVQ entry will be freed
by slave threads. Finally, all threads cannot make
forward. So in our experiments, the Slack is set to 128,

followed by three parameters set to 160. The structures
are all FIFO, which cause low hardware overhead.

In this paper, we use simulator M-SIM [19], which is
expansion of simple scalar which is widely used in
computer architecture research. The difference is that M-
SIM uses ROB instead of RUU. The simulator supports
simultaneous multi-threading. M-SIM simulates private
fetch queue, ROB, LSQ, and architecture registers for
each thread. All threads share IQ, and rename registers,
while other simulators simulate shared fetch queue, ROB,
LSQ and so on, in order to further share these resources.
M-SIM is closer to the real situations [9] [10], in practical
case, these structures are often private for each thread to
reduce the hardware complexity. Because sharing these
components, would make the hardware complexity
greatly improved, which in turn increase the processor
frequency constraints. Table 1 shows the detailed
simulator configuration:

TABLE 1． Processor parameters used in simulator

Parameter Value

Machine Width 8-wide fetch, 8-wide issue, 8-wide commit

Rename Register 64

Instruction Queue
Size

32

ROB Size 96

LSQ Size 48

Function Units and
Latency

8 Int ADD(1), 2Int Mult(3)/Div(20),
4Load/Store, 8 FP ADD(2), 2 FP

Mult(4)/Div(12)
L1 I-Cache 32 KB, 2-way set-associative, 512 sets, 32

bsize, 1 cycles hit time
L1 D-Cache 32 KB, 4-way set-associative, 256 sets, 32

bsize, 1 cycles hit time
L2 Cache Unified 4 MB, 8-way set-associative, 1024 sets, 64

bsize, 6 cycles hit time
I_tlb 256 KB, 4-way set-associative, 16 sets, 4096

bsize
D_tlb 512 KB, 4-way set-associative, 32 sets, 4096

bsize
Tlb_miss_lat 30

Mem_bus_width 8

Branch Predictor Bimod bimod_size 2048, btb_sets 512,
btb_assoc 4, retstack_size 8

Experiments selected some SPEC2000 programs,

which is pre-compiled by the M-SIM team. To ignore the
impact of initialization, each thread have neglected the
front part of the programs according to paper [23] [24],
and then simulate the next 100 million instructions, in a
multi-threaded environment, when a thread has
committed 100million instructions, the simulation is
ended.

According to [23], we first categorized the SPEC
benchmarks into either high-ILP or memory-intensive
programs, labeled “ILP” and “MEM,” respectively.
In order to make the study representative, we considered
a variety of load combinations.

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1397

© 2011 ACADEMY PUBLISHER

TABLE 2．Multi-programmed workloads used in the experiments.

name Loads
ILP (4 ILP 0 MEM) Gzip/ Bzip/ Gcc-i/ Fma3d
MIX1 (3 ILP 1 MEM) Gcc-i/ Bzip/ Vpr/ Gzip
MIX2 (2 ILP 2 MEM) Gzip/ Gcc-i/ Swim/ Applu
MIX3 (1 ILP 3 MEM) Gzip/ Equake/ Swim/ Applu
MEM (0 ILP 4 MEM) Art /Swim/Applu/Equake

V. 44B BRESULT ANALYSIS:
1) The impact of cache-miss-load instruction on
performance
 Firstly, the impact of cache-miss-load instructions on
IQ is researched. Figure 3 denotes the average residence
time stayed in IQ of each instruction from ILP workload.
Dark gray column represents the master threads, and light
gray column represents the slave threads.
 Figure 3 reveals that instructions of each slave thread
stayed in IQ about 4 cycles, while instructions of master
threads may stay in IQ much longer.

The difference of instructions between master threads
and slave threads is that, master threads may encounter
load-cache-miss, and the thread will be blocked in IQ for
many cycles, even hundreds of cycles (when meeting L2
Cache miss)，while, slave threads may get load value
from LVQ. So, instructions of slave threads can pass
through IQ quickly.

 Figure 3 The residence time of instructions in IQ for each thread

In RMT, there exists vicious competition among
threads, that is some thread may occupy almost the whole
key resources and cause the other threads can't obtain
appropriate key resources at some time. IQ often
encounters such situation. When some master threads
meet cache miss, above situation will probably happen.
Table 3 shows the probability that one thread occupied
the whole IQ. Form the table, it can be found that about
2.09% the whole running period IQ is occupied by the
master thread of gzip. At that time, no other thread can
make progress, due to the lack of IQ resources.

TABLE 3. The probability that one thread occupied the whole IQ

thread Master Slave
gzip 0.0209 0.0001
gcc 0.0044 0.0001
bzip 0.0001 0.0001
ma3d 0.0001 0

The previous paragraph studied the impact of cache-
miss-load instructions among 8 threads of workload ILP.

When cache miss taking place, flow rate of instructions in
pipeline will be slowed down. Table 4 represents the
relationship between cache-miss-load instructions and the
flow speed in the pipeline of different workload. In table
4, L1 Miss refers to the proportion of the L1-Cache-Miss
load instructions in all instructions. Residence time in
pipeline indicates the average time stayed in pipeline of
one instruction from different workload.

From table 4, it can be concluded that when meeting
cache miss more frequently, instructions will stay in the
pipeline longer.

TABLE 4. Residence time in pipeline Vs. Cache miss

Workload L1 Miss L2 Miss Residence time
in pipeline

ILP 0.008749 0.00447 30.187
MIX1 0.011572 0.007463 42.7699
MIX2 0.023611 0.015703 67.4112
MIX3 0.013946 0.008055 48.349
MEM 0.021938 0.016602 56.1714

2) Performance improvement：

Since NDDI avoids instructions dependent on D-
cache-miss-load staying in IQ too long without any
performance contributions, IQ is used more efficiently to
gain great performance improvement. Figure 4 shows that
the method is effective in increasing processor
performance.

Figure 4 Throughput Improvement

In figure 4, original (32) represents the original SRT
which IQ size is 32, and IQ size is 48 for original (48).
From figure 4, it can be concluded that DDDI is more
efficient than increasing the size of IQ.

Throughput just indicates the whole performance of
all programs. In order to measure the improvements of
the single thread, this paper also evaluates the weighted
speedup of DDDI, namely, weighted speedup [18], which
is defined as follows:

1

1 'N

i

IPCiweightedspeedup
N IPCi=

= ∑

Which IPCi and IPCi ' indicate the original IPC and
IPC using DDDI for each thread respectively. Figure 5
indicates that the weighted speedup for the proposed
strategy has been improved, too.

1398 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER

Figure 5 Weighted Speedup Improvement

3) The residence time of instructions in IQ:

In original SRT, when load instruction encounters
cache miss time, the follow-up dependent on them will
stay in IQ for a long time. When using DDDI, the
instructions can enter IQ only if the load instructions
obtain data from storage. Therefore, this method can
reduce average residence time in IQ, which can speed up
the flow speed of instructions to improve processor
performance. Figure6 shows changes of residence time
for instructions in IQ:

Figure 6 The residence time of instructions in IQ

Experimental results show that using this method,
the residence time of instructions (including the mis-
predicted instruction) in the IQ significant decreased. The
average residence time is dropped by 14.23%.

In our research, we studied the distribution of
instruction queue utilization in detail (see Figure 7 and 8).
In original SRT, during 28.13% of the running period, IQ
is full used which means no IQ entry is free. While in
SRT with DDDI, the proportion is 36.69%. However, in
original SRT, 9.17% is occupied by one thread, which
means that no other thread can obtain the IQ resources.
And in SRT with DDDI, the proportion is dropped to
4.73%.

Figure 7 Distribution of Instruction Queue Utilization of Original SRT

Figure 8 Distribution of Instruction Queue Utilization of SRT with DDDI

4) The residence time of instructions in pipeline
DDDI not only speedup the flow rate of instructions

in IQ, but also another key resource: rename register file
and the whole pipeline. Because in original SRT, when
master threads encountering cache miss, they will block
the IQ resource, and the flow rate of the whole pipeline
will be slowed down.

Figure 9 illustrates the average residence time of
instructions stay in rename register file. It can be found
that when using DDDI, instructions will stay in rename
register file more short-term.

Figure 9 The residence time of instructions in rename register file

The throughput is affected by the flow rate of
instructions in the pipeline. Figure 10 denotes the average
residence time of instructions in the pipeline. The average
residence time is dropped by 14.88%.

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1399

© 2011 ACADEMY PUBLISHER

Figure 10 The residence time of instructions in pipeline

VI. RELATED WORK
In our previous research, it is found that rename

register file and instruction queue is the most important
resources that play an important role in performance.

Many researches focused on finding better solutions
to make the usage of rename register file more efficiently.
In SMT, to avoid the vicious competition among threads,
static partition [25] and dynamic partition [26] [27] of
rename register file are proposed.

Static partition allocates the rename register file to
each thread evenly, and dynamic partition allocates the
rename register file according the real-time performance
of each thread. Threads that executes more quickly can
get more rename register file resources.

In RMT, RRF is a key factor that affects performance.
How to make better usage of RRF need further research.
Existing techniques in SMT may be not practical for
RMT. Because RMT is a special SMT. in RMT, the
requirements for rename register resources between
master threads and slave threads vary widely, so static
partition strategy is not applicable for RMT. Master
threads and slave threads make progress in the same
speed, but don't require same amount of RRF resources,
thus dynamic partition is not suitable for RMT, too.

VII. 5 B5 BCONCLUSIONS:
According previous research, Instruction Queue

affects the performance obviously. In RMT, IQ may be
blocked by threads that encounter cache-miss easily. Just
like coins have two sides, resources sharing among
threads improve the resource usage on one hand and on
other hand, and it may cause vicious competition.

In any processor, D-cache-miss load instructions
make damage to performance. In redundant multi-
threaded architecture, due to slave threads never
encounter D-cache-miss, only master threads need special
treatment.

This paper proposed DDDI, instructions of master
threads that dependent on unresolved D-cache-miss-load
instructions can’t be dispatched into IQ until the load
instruction is completed. Experiments show that the
method is effective in improving the utilization of IQ, the
processor's throughput has been significantly improved,
and the weighted speedup used to measure single thread
performance gain great increase, too.

ACKNOWLEDGMENT
The work is supported by the National Natural

Science Foundation of China under Grant No. 60903033
and the National Basic Research and Development (973)
Program of China (No. 2005CB321604).

8 B8 BREFERENCES
[1] Daniel Sorin, Fault Tolerant Computing Architecture[M].

Morgan&Claypool publishers. 2009.
[2] T. C. May and M. H. Woods, "Alpha-Particle-Induced Soft

Errors in Dynamic Memories," IEEE Transactions on
Electronic Devices, vol. 26, Issue1, pp: 2-9, January 1979.

[3] J. F. Ziegler and W. A. Lanford, "The effect of Cosmic
Rays on Computer Memories," Science, vol. 206, No. 776,
1979.

[4] S. Mitra, N. Seifert, et,al, "Robust system design with
built-in soft-error resilience," IEEE Computer, 2005, 38(2):
43-52.

[5] Karlsson, J., Liden, P., Dahlgren, P., Johansson, R.,
Gunneflo, U., "Using heavy-ion radiation to validate fault-
handling mechanisms," Micro, IEEE Volume 14, Issue
1, Feb. 1994 Page(s):8 - 23

[6] Sosnowski,J., "Transient fault tolerance in digital systems,"
Micro, IEEE, Volume 14, Issue 1, Feb. 1994 Page(s):24 -
35

[7] D. C. Bossen, A. Kitamorn, K. F. Peick, and M. S. Floyd,
"Fault-Tolerant Design of the IBM pSeries 690 Using
POWER4 Processor Technology," IBM Journal of
Research and Development, vol. 46, No. 1, pp:77-96, 2002.

[8] A. Wood. Data integrity Concepts, "Features and
Technology," White paper, Tandem Division, Compaq
Computer Corporation.

[9] W. W. Peterson and E. J, Weldon. Error-Correcting Codes,
MIT Press, 1961.

[10] A Mendelson and N Suri, "Designing high-performance &
reliable superscalar architectures: The out of order reliable
superscalar (O3RS) approach," In: Proc of IEEE/IFIP Int’l
Conf on Dependable Systems and Networks, New York,
2000, 473-481

[11] D. M. Tullsen, S. J. Eggers and H. M. Levy, "Simultaneous
Multithreading: Maximizing On-Chip Parallelism". In:
Proc. of 22nd Annual International Symposium on
Computer Architecture, Santa Marguerite Liguria, Italy,
1995, pp: 392-403.

[12] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty,
J. A. Miller, and M. Upton. Hyper-Threading Technology
Architecture and Microarchitecture [J]. Intel Technology
Journal, Vol. 6, No. 1. February 2002, pp: 4-15.

[13] R. P. Preston et al, "Design of an 8-Wide Superscalar RISC
Microprocessor with Simultaneous Multithreading," In:
Proc. Of IEEE International Solid-State Circuits
Conference, San Francisco, USA, February 2002, pp: 334
–335.

[14] Eric Rotenberg, "AR-SMT: A Microarchitectural
Approach to Fault Tolerance in Microprocessors," In: Proc.
Of 29th International Symposium on Fault-Tolerant
Computing, Madison, Wisconsin, 15-18 June, 1999, pp:
84-91.

[15] S. K. Reinhardt and S. S. Mukherjee, "Transient Fault
Detection via Simultaneous Multithreading," In: Proc. Of
the 27th International Symposium on Computer
Architecture, Vancouver, British Columbia, Canada, 10-14
June, 2000, pp: 25-36.

[16] T.N. Vijaykumar, Irith Pomeranz and Karl Cheng,
"Transient-Fault Recovery Using Simultaneous

1400 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER

Multithreading," In: Proc. Of the 29th Annual
International Symposium on Computer Architecture,
Anchorage, Alaska, 25-29 May, 2002, pp: 87-98.

[17] A. Sodani and G. S. Sohi, "Dynamic Instruction Reuse," In:
Proceedings of 24th Annual International Symposium on
Computer Architecture (ISCA), Denver, Colorado, USA,
June 1997, pp: 194-205.

[18] A. Parashar, S. Gurumurthi, and A. Sivasubramaniam, "A
Complexity-Effective Approach to ALU Bandwidth
Enhancement for Instruction-Level Temporal
Redundancy,” In: 31st Annual International Symposium
on Computer Architecture (ISCA), pp. 376–386, June
2004.

[19] M. A. Gomaa and T. N. Vijaykumar, “Opportunistic Fault
Detection,” In: 32nd Annual International Symposium on
Computer Architecture (ISCA), pp. 172–183, Madison,
Wisconsin, USA, June 2005

[20] A. Parashar, S. Gurumurthi, and A. Sivasubramaniam,
“SlicK: Slice-Based Locality Exploitation for Efficient
Redundant Multithreading,” In: 12th Annual International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 95–105,
October 2006

[21] Dean M. Tullsen and Jeffery A. Brown, "Handling Long-
latency Loads in a Simultaneous Multithreading
Processor," In: Proc. Of the 34th IEEE International
Symposium on Microarchitecture, Austin, USA, 1-5 Dec
2001, pp: 318-327.

[22] J. Sharkey, "M-Sim: A Flexible, Multi-threaded
SimulationEnvironment," Tech. Report CS-TR-05-DP1,
Department of Computer Science, SUNY Binghamton,
2005.

[23] Seungryul Choi and Donald Yeung, "Learning-Based SMT
Processor Resource Distributing via Hill-Climbing," In:
Proc. of the 33rd International Symposium on Computer
Architecture, Boston, MA, USA, 17-21 June, pp: 239-251.

[24] T. Sherwood, et al, "Automatically Characterizing Large
Scale Program Behaviour," In: Proc. of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose,
California, 5-9 October, pp: 47-57.

[25] Steven E. Raasch and Steven K. Reinhardt, "The impact of
resource partitioning on SMT processors ," In: Proc of the
12th International Conference on Parallel Architecture
and Compilation Techniques, New Orleans, Louisiana,
2003 , pp: 15-25.

[26] Francisco J. Cazorla, Alex Ramirez, Mateo Valero et al,
"Dynamically controlled resource allocation in SMT
processors ," In: Proc of the 37th International Symposium
on Microarchitecture, Portland, 2004, pp: 171-182.

[27] Hua Yang, Gang Cui and Xiaozong Yang, "Eliminating
inter-thread interference in register file for SMT
processors,". In: Proc of the 6th International Conference
on Parallel and Distributed Computing, Applications and
Technologies, Dalian, 2005, pp: 40-45.

Jie Yin, born in 1981. She received the
B.S. degree in computer science and
technology from the Tong Ji University in
2004, Now he is a Ph D candidate of Tongji
University. His current research interests
include fault-tolerant computing and
microprocessor architecture.

Jianhui Jiang, born in 1964, Ph D,

professor. He is currently Chairman of
Department of computer science and
technology at Tong Ji University. His
research interests include fault-tolerant
computing, software reliability engineering,
microprocessor architecture, digital system
design and testing, performance evaluation

of computer systems. He is a senior member of Chinese
Computer Federation (CCF).

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1401

© 2011 ACADEMY PUBLISHER

