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Abstract—As chip feature size decreases, processors are 
getting more and more sensitive to soft errors. To find 
cheaper reliability solutions has attracted the attention of 
many researches. SMT (Simultaneous Multithreading) 
processor permits multiple issues from different threads at 
the same time, which provides nature support for fault-
tolerance by executing threads redundantly. Many RMT 
(Redundant Multithreading) architectures have been 
proposed. In those architectures, IQ (Instruction Queue) is a 
critical resource that affects the performance obviously. 
This paper proposed DDDI (Delay Dispatching Dependent 
Instructions) strategy which can use IQ more efficiently. In 
DDDI, instructions that dependent on load instructions that 
encounter cache miss can't be dispatched in to IQ until the 
load instructions get values from L2 cache or main memory. 
Experiments show that DDDI can avoid the threads that 
encounter cache miss blocking IQ resources, and not only 
IQ, but also the whole pipeline can be used more efficiently. 
Performance is boosted outstandingly. 

Index Terms—Instruction Queue, SRT, cache miss, RMT, 
rename register file 

I.  0 0B BINTRODUCTION  
For many years, most computer architecture 

researchers have pursed one primary goal: performance. 
Recently, however, as chip feature size decreases, the 
number of transistors integrated on the chip increased 
dramatically, and chip supply voltage is getting lower and 
lower. On the one hand it improves the processor 
performance; on the other hand it makes processors 
increasingly sensitive to soft errors [1].  

Radiation-induced errors are termed “soft error” since 
the state of one or more bits in silicon chip could flip 
temporarily without damaging the hardware. Soft errors 
arise from energetic particles, such as alpha particles 
from packaging material [2] and neutrons from 
atmosphere [3]. 

Some studies show that under nano-technology, soft 
error has become the main cause of chip failure [4].  
Almost 80-90% of system failures are caused by soft 
error [5] [6]. 

At present, only machines that run critical mission 
consider the prevention of soft errors. However, 
according to Intel’s prediction, in the next few years, 
even the most low-end processors also need to be 
strengthened in this regard. 

Architecture design for soft error is an efficient 
scheme to reduce SER (Soft Error Rate). Computer 
architecture has long coped with various types of faults, 

including soft errors. The most commonly used 
architecture-based approaches are spatial redundancy, 
information redundancy and time redundancy.  

Spatial redundancy duplicates a module and makes 
the two replicas compare their results. Due to high 
hardware cost and power and energy consumption, this 
approach is mainly used in high-end processors, such as 
IBM S/390 [7], and Compaq Nonstop Himalaya [8].  

The basic principle of information redundancy is to 
add redundant bits to a datum to detect or tolerant an 
error [9]. The method is used primarily for storage 
components (such as Cache, Memory, and Register, etc.), 
and some transmission components (e.g. Bus), which is 
not practical for logical components.  

Temporary redundancy performs an operation twice 
(or more times), one after another, and then compare the 
results. It can cause some damage to the performance. 
Hardly any processor can run at full speed, and the re-
execution can use spare resource, which will mitigate the 
performance damage. Because of the low hardware cost 
(relative to spatial redundancy) and high fault coverage 
(relative to information redundancy), temporary 
redundancy is a cost-effective solution and has attracted 
great attention of computer architects. 

In last century, temporary redundancy is implemented 
primarily through instruction re-execution in super-scalar 
architecture [10]. Each instruction is issued twice, and 
results between them are compared. This scheme only 
detect faults in execute stage, with other pipeline stage 
unprotected. 

Later, SMT (Simultaneous Multithreading) 
architecture was proposed in 1995 by Tullsen [11]. SMT 
is capable of executing multiple instructions from 
different threads simultaneously [12] [13]. Through the 
excavation of the instruction-level parallelism within a 
single-threaded and Inter-thread-level parallelism, SMT 
reduced the horizon waste and vertical waste. SMT 
improves the resource utilization through sharing them 
among threads. SMT allows multiple threads run 
concurrently, which provides nature supports for fault-
tolerance by executing threads redundantly. Fault-
tolerance through redundant execution based on SMT is 
called RMT (Redundant Multi-threading). 

AR-SMT [14] is the firstly proposed SMT-based 
fault-tolerance architecture, which copies the thread into 
two copies (master and slave threads). Results from 
master threads are stored in a buffer to wait for the 
corresponding results from slave threads for comparison. 

1394 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.7.1394-1401



 

However, AR-SMT needs to allocate additional memory 
space for the slave threads and isn't transparent to the 
operating system. 

SRT [15] proposed by Mukherjee is a simple and 
practical fault-detection architecture, which has become a 
lot of follow-up research infrastructure [16]. SRT detects 
faults by comparing the corresponding store results 
between master threads and slave threads. 

Later in SRTR [16], function of restoration is added in 
SRT. In SRT, only store instructions are compared, while 
other instructions can be committed before comparing, 
when architecture register file polluted by some faulty 
instruction results, the processor can't restore to a correct 
state. While in SRTR, each instruction must be compared 
before committing, and no faults can spread to 
architecture register file, when meeting faults, only need 
to re-fetch the faulty instructions from I-Cache and re-
execute them. 

In our previous research, IQ (Instruction Queue) is 
proved to be a critical resource that affects the 
performance obviously. In RMT, Slave threads can use IQ 
more efficiently than master threads. That’s because 
master threads may encounter D-cache miss, while slave 
threads may not. Slave threads can get the Load results 
from master threads. In master threads, the instructions 
dependent on Data-cache-miss-load instructions may stay 
in IQ for a period of time. In the paper, the instructions of 
master threads that dependent on unresolved Load that 
encountered cache miss can’t be dispatched into IQ until 
the corresponding load instructions get results from L2 
Cache or main memory. The method is named DDDI 
(Delay Dispatching Dependent Instructions). Experiments 
show that the method is effective for improving the IQ 
utilization and processor performance 

The rest of the paper is organized as follows. Section 2 
discusses the background and provides the motivation for 
our techniques. Section 3 discusses the DDDI technique. 
Section 4 and 5 presents the experimental results and 
analysis. Section 5 introduces some related works. Finally 
in section 6, we conclude. 

II. 11B BBACKGROUND 
1) Improve the performance of RMT 

Nowadays, to improve the performance of RMT is a 
hot topic. The primary goal of RMT optimizations is to 
reduce the performance degradation of a single program 
caused by the redundant thread.  

There exist two methods to improve the performance 
of RMT. First, reduce the number of instructions need to 
be executed. Second, speed up the flow rate of 
instructions in the pipeline, which is realized mainly 
through preventing some threads blocking key resources. 

Reducing the number of instructions that needs 
executing has been researched a lot in superscalar 
architecture; many methods have been extended to RMT. 
There have been a number of proposals that exploit this: 

a) Instruction Reuse: 
Sodani and Sohi proposed instructions reuse to 

accelerate the execution of a single program [17]. Sodani 
and Sohi created an instruction reuse buffer that tracks 

one or more instruction's input and output values. If an 
instruction or a sequence of instructions is executed again 
and can be matched against the instructions present in the 
reuse buffer, then the pipeline can simply obtain the 
output of the instructions without executing them [17].  

In an RMT implementation, the contents of the reuse 
buffer can be updated after the output comparator 
certifies that an instruction is fault free. In subsequent 
executions, the trailing thread can use values being 
passed to it by the leading thread (e.g., via an RVQ) to 
probe the reuse buffer, obtain the result values in case of 
a hit, and thereby avoid executing the instruction itself. 
Parashar et al. [18] and Gomaa and Vijaykumar [19] have 
explored variants of this scheme. 

b) Avoid execution of dynamically dead instructions 
In the course of program execution, many dead 

instructions are operated. The instructions whose results 
will never be used are termed "dead instructions"[20], 
such as: 

        R1=R2+R3      (1) 
        R4=R2*R3      (2) 
        R2=R4-R3       (3) 
        R1=R4+R2      (4) 
        R5=R6+1         (5) 
        In the instruction sequence, since the result of the 

first instruction will never be used by other instructions, 
so they are dead instructions and faults in the instruction 
have no effect on the thread correctness. 

In RMT, dead instructions are detected during the 
execution of master threads, and execution of these 
instructions may be omitted in slave threads. 

c) Turn slave threads off in high IPC regions. 
There exist some instruction regions that need huge 

executing resources and the reliability is not important to 
the user. Such as some streaming media, we only need to 
guarantee its performance, slight errors are permissible. 
Therefore, these regions can be ignored in slave threads.  

Another method to improve the performance of RMT 
is speed up the flow rat of instructions in the pipeline. We 
must avoid some instructions blocking key resources. For 
example, some instructions may stay in the key resources 
for a long time without any progress, while the resources 
may be used by other threads. 

In SRTR, in order to avoid faults spread to architecture 
registers, each instruction must be compared before 
committing. The instructions of master threads often need 
to wait for the corresponding instructions of slave threads 
arriving the comparing stage. The waiting of master 
threads will delay the release of resources that occupied 
by the master threads. And in SRT, only store instructions 
need comparison, which is why it can gain better 
performance than SRTR. 

The ability of every resource that affects the 
performance is analyzed quantitatively in our previous 
research. Rename Register File (RRF) and Instruction 
Queue (IQ) are two most important resources.  

Further studies revealed that, load instructions that 
encounter cache miss may block the two key resources 
easily. Meeting cache miss, load instructions and the 
follow-up instructions dependent on them will stay in the 
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key resources for a period of long time without any 
progress.  Reference [21] found that when running some 
workloads, the IQ is on average 97 occupied when at 

least on L2 miss is outstanding, but only 62% occupied at 
other times. 

 

Figure 1． Structure of SRT with DDDI

 
2) SRT (Simultaneous Redundant Threading) 

The purpose of DDDI is to prevent above situation 
from happening. It can be used in any RMT architecture. 
We selected the simple and practical SRT as 
infrastructure. This section mainly introduces SRT: 

SRT is simple and practical fault-detection 
architecture, which has become a lot of follow-up 
research infrastructure. SRT detects faults by comparing 
the corresponding store results between master threads 
and slave threads. 

In [15], to aid the analysis, the authors firstly 
proposed the concept of sphere of replication. All activity 
and state within the sphere is replicated, either in time or 
in space. Values that cross the boundary of the sphere of 
replication are the outputs and inputs that require 
comparison and replication, respectively.  

In order to detect faults, store instruction results 
produced by master threads must be stored into STB 
(Store Buffer) and wait for corresponding results from 
slave threads for comparison. Fault may propagate to the 
follow-up store instructions and that can’t propagate out 
have no effect on the program results.  So checking the 
store instruction results is enough. Only instructions of 
master threads should be committed, while those of slave 
threads just for comparison. 

For load instructions, the authors propose LVQ (Load 
Value Queue) to ensure that master threads and slave 
threads can load the same value. Load instructions results 
of master threads are stored into LVQ, and are used by 
slave threads later. So, slave threads mayn’t encounter D-
cache miss. 

The authors also proposed BOQ (Branch of Queue) 
and SF (Slack Fetch) to enhance the performance. 
Through BOQ, master threads will store the branch 
instruction results to BOQ, which may be used by the 

corresponding slave threads later. Slack Fetch refers to 
keeping a certain distance between the two threads so that 
slave threads can get Load instruction results produced by 
master threads. So slave threads may not encounter miss-
predicted branches and D-cache-miss-load. 

As the original SRT only supports single thread 
redundantly execution, the paper firstly extend the 
structure to support the execution of multiple independent 
threads. Figure 1 is the SRT implemented in the paper:  

The architecture can support eight independent 
threads simultaneously. In fault-tolerance mode, four 
different threads are performed simultaneously and each 
of them is copied to two. The shaded sections are added 
relative to original SMT. 

Like previous studies, this paper mainly studies the 
performance in fault-free case. The single-fault detection 
rate was 100%. 

III. 22B BMAIN IDEA 
In SMT, D-cache-miss degrades the performance 

significantly. When load instruction encounters cache 
miss, it may stay in the pipeline for almost hundreds of 
clock cycles (when encountering L2 cache miss), and the 
instructions dependent on the instructions will be clogged 
in IQ, too, while the IQ slots may be used by other 
threads. The main idea of this paper is to delay the time 
the instructions which are dependent on unresolved D-
cache-miss load instructions entering IQ. 

Figure 1 is the structure of SRT with DDDI. When 
load instruction encounters cache miss, set the new added 
bit of the destination rename register to 1 (see Figure 2). 
When load instructions is completed or squashed from 
the pipeline due to wrong branch prediction, the 
corresponding bits of the destination rename register is 
set to 0. 
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During dispatch stage, if we find the bit of any source 
operand register of the instruction is 1, which indicates 
that it is dependent on a load instruction  that encounter 
cache miss, and the load instructions has not been 
resolved yet. So, stop dispatching instructions from the 
thread and select the next thread.  

Some scholars have suggested that the threads should 
be stopped when cache miss detected. We believe that 
this is a rather extreme approach. Even load instructions 
encounter cache miss, there may exist no dependency 
relationship between them and the follow-up instructions. 
We have verified the method before and found that the 
performance actually declined. Because it may degrades 
the instruction parallelism.  

Detecting whether load instructions will encounter 
cache miss needs a period of time. However, the cache 
access prediction mechanism has become a common 
structure yet. Like branch prediction, it can predict 
whether the cache access will hit or miss. The structure is 
implemented in many general processors, such as the 
Alpha 21464. This paper also used the prediction 
mechanism. When Load instruction leaves IQ for 
execution, predicting whether it will encounter cache 
miss, and the corresponding bit can be set timely. 

Cache Predictor

bit

 

Figure 2. Pipeline of SRT with DDDI 

IV. 33B BEXPERIMENT SETUP 
The original SRT only supported single-thread case. 

The author has not studied the redundant multithreading 
performance thoroughly, because there isn’t multiple 
threads compete for resources in single-thread case. This 
paper firstly extended the architecture to support multiple 
threads.  

In original SRT, Slack size is set to 256, and BOQ, 
LVQ and STB are set to 64. We modified the 
configurations, because the original configurations may 
cause deadlock in multithreading case. When some 
master threads which has occupied certain entire key 
resources may encounter BOQ full or LVQ full, and the 
threads will be halted, while corresponding slave threads 
may be also halted because they can't obtain the key 
resources. And then, no BOQ or LVQ entry will be freed 
by slave threads. Finally, all threads cannot make 
forward. So in our experiments, the Slack is set to 128, 

followed by three parameters set to 160. The structures 
are all FIFO, which cause low hardware overhead. 

In this paper, we use simulator M-SIM [19], which is 
expansion of simple scalar which is widely used in 
computer architecture research. The difference is that M-
SIM uses ROB instead of RUU. The simulator supports 
simultaneous multi-threading. M-SIM simulates private 
fetch queue, ROB, LSQ, and architecture registers for 
each thread. All threads share IQ, and rename registers, 
while other simulators simulate shared fetch queue, ROB, 
LSQ and so on, in order to further share these resources. 
M-SIM is closer to the real situations [9] [10], in practical 
case, these structures are often private for each thread to 
reduce the hardware complexity. Because sharing these 
components, would make the hardware complexity 
greatly improved, which in turn increase the processor 
frequency constraints. Table 1 shows the detailed 
simulator configuration: 

 
TABLE 1． Processor parameters used in simulator 

Parameter Value 

Machine Width 8-wide fetch, 8-wide issue, 8-wide commit 

Rename Register 64 

Instruction Queue 
Size 

32 

ROB Size 96 

LSQ Size 48 

Function Units and 
Latency 

8 Int ADD(1), 2Int Mult(3)/Div(20), 
4Load/Store, 8 FP ADD(2), 2 FP 

Mult(4)/Div(12) 
L1 I-Cache 32 KB, 2-way set-associative, 512 sets, 32 

bsize, 1 cycles hit time 
L1 D-Cache 32 KB, 4-way set-associative, 256 sets, 32 

bsize, 1 cycles hit time 
L2 Cache Unified 4 MB, 8-way set-associative, 1024 sets, 64 

bsize, 6 cycles hit time 
I_tlb 256 KB, 4-way set-associative, 16 sets, 4096 

bsize 
D_tlb 512 KB, 4-way set-associative, 32 sets, 4096 

bsize 
Tlb_miss_lat 30 

Mem_bus_width  8 

Branch Predictor Bimod bimod_size 2048, btb_sets 512, 
btb_assoc 4, retstack_size 8 

 
Experiments selected some SPEC2000 programs, 

which is pre-compiled by the M-SIM team. To ignore the 
impact of initialization, each thread have neglected the 
front part of the programs according to paper [23] [24], 
and then simulate the next 100 million instructions, in a 
multi-threaded environment, when a thread has 
committed 100million instructions, the simulation is 
ended. 

According to [23], we first categorized the SPEC 
benchmarks into either high-ILP or memory-intensive 
programs, labeled “ILP” and “MEM,” respectively. 
In order to make the study representative, we considered 
a variety of load combinations.  
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TABLE 2．Multi-programmed workloads used in the experiments. 

name Loads 
ILP    (4 ILP 0 MEM) Gzip/ Bzip/ Gcc-i/ Fma3d 
MIX1  (3 ILP 1 MEM) Gcc-i/ Bzip/ Vpr/ Gzip 
MIX2  (2 ILP 2 MEM) Gzip/ Gcc-i/ Swim/ Applu 
MIX3  (1 ILP 3 MEM) Gzip/ Equake/ Swim/ Applu 
MEM  (0 ILP 4 MEM) Art /Swim/Applu/Equake 

V. 44B BRESULT ANALYSIS: 
1) The impact of cache-miss-load instruction on 
performance 
      Firstly, the impact of cache-miss-load instructions on 
IQ is researched. Figure 3 denotes the average residence 
time stayed in IQ of each instruction from ILP workload. 
Dark gray column represents the master threads, and light 
gray column represents the slave threads. 
      Figure 3 reveals that instructions of each slave thread 
stayed in IQ about 4 cycles, while instructions of master 
threads may stay in IQ much longer. 

The difference of instructions between master threads 
and slave threads is that, master threads may encounter 
load-cache-miss, and the thread will be blocked in IQ for 
many cycles, even hundreds of cycles (when meeting L2 
Cache miss)，while, slave threads may get load value 
from LVQ. So, instructions of slave threads can pass 
through IQ quickly. 

 
 Figure 3 The residence time of instructions in IQ for each thread 

In RMT, there exists vicious competition among 
threads, that is some thread may occupy almost the whole 
key resources and cause the other threads can't obtain 
appropriate key resources at some time. IQ often 
encounters such situation. When some master threads 
meet cache miss, above situation will probably happen. 
Table 3 shows the probability that one thread occupied 
the whole IQ. Form the table, it can be found that about 
2.09% the whole running period IQ is occupied by the 
master thread of gzip. At that time, no other thread can 
make progress, due to the lack of IQ resources. 

TABLE 3.  The probability that one thread occupied the whole IQ 

thread Master Slave 
gzip 0.0209 0.0001 
gcc 0.0044 0.0001 
bzip 0.0001 0.0001 
ma3d 0.0001 0 

The previous paragraph studied the impact of cache-
miss-load instructions among 8 threads of workload ILP. 

When cache miss taking place, flow rate of instructions in 
pipeline will be slowed down. Table 4 represents the 
relationship between cache-miss-load instructions and the 
flow speed in the pipeline of different workload. In table 
4, L1 Miss refers to the proportion of the L1-Cache-Miss 
load instructions in all instructions. Residence time in 
pipeline indicates the average time stayed in pipeline of 
one instruction from different workload.  

From table 4, it can be concluded that when meeting 
cache miss more frequently, instructions will stay in the 
pipeline longer. 

TABLE 4.  Residence time in pipeline Vs. Cache miss 

Workload L1 Miss L2 Miss Residence time 
in pipeline 

ILP 0.008749 0.00447 30.187 
MIX1 0.011572 0.007463 42.7699 
MIX2 0.023611 0.015703 67.4112 
MIX3 0.013946 0.008055 48.349 
MEM 0.021938 0.016602 56.1714 

 
2) Performance improvement： 

Since NDDI avoids instructions dependent on D-
cache-miss-load staying in IQ too long without any 
performance contributions, IQ is used more efficiently to 
gain great performance improvement. Figure 4 shows that 
the method is effective in increasing processor 
performance. 

 
Figure 4 Throughput Improvement 

In figure 4, original (32) represents the original SRT 
which IQ size is 32, and IQ size is 48 for original (48). 
From figure 4, it can be concluded that DDDI is more 
efficient than increasing the size of IQ. 

Throughput just indicates the whole performance of 
all programs. In order to measure the improvements of 
the single thread, this paper also evaluates the weighted 
speedup of DDDI, namely, weighted speedup [18], which 
is defined as follows: 

1

1 'N

i

IPCiweightedspeedup
N IPCi=

= ∑  

Which IPCi and IPCi ' indicate the original IPC and 
IPC using DDDI for each thread respectively. Figure 5 
indicates that the weighted speedup for the proposed 
strategy has been improved, too. 
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Figure 5 Weighted Speedup Improvement 

3) The residence time of instructions in IQ: 

In original SRT, when load instruction encounters 
cache miss time, the follow-up dependent on them will 
stay in IQ for a long time. When using DDDI, the 
instructions can enter IQ only if the load instructions 
obtain data from storage. Therefore, this method can 
reduce average residence time in IQ, which can speed up 
the flow speed of instructions to improve processor 
performance. Figure6 shows changes of residence time 
for instructions in IQ: 

 
Figure 6 The residence time of instructions in IQ 

Experimental results show that using this method, 
the residence time of instructions (including the mis-
predicted instruction) in the IQ significant decreased. The 
average residence time is dropped by 14.23%. 

In our research, we studied the distribution of 
instruction queue utilization in detail (see Figure 7 and 8). 
In original SRT, during 28.13% of the running period, IQ 
is full used which means no IQ entry is free. While in 
SRT with DDDI, the proportion is 36.69%. However, in 
original SRT, 9.17% is occupied by one thread, which 
means that no other thread can obtain the IQ resources. 
And in SRT with DDDI, the proportion is dropped to 
4.73%. 

 
Figure 7 Distribution of Instruction Queue Utilization of Original SRT 

 
Figure 8 Distribution of Instruction Queue Utilization of SRT with DDDI 

4) The residence time of instructions in pipeline 
DDDI not only speedup the flow rate of instructions 

in IQ, but also another key resource: rename register file 
and the whole pipeline. Because in original SRT, when 
master threads encountering cache miss, they will block 
the IQ resource, and the flow rate of the whole pipeline 
will be slowed down. 

Figure 9 illustrates the average residence time of 
instructions stay in rename register file. It can be found 
that when using DDDI, instructions will stay in rename 
register file more short-term. 

 
Figure 9 The residence time of instructions in rename register file 

The throughput is affected by the flow rate of 
instructions in the pipeline. Figure 10 denotes the average 
residence time of instructions in the pipeline. The average 
residence time is dropped by 14.88%. 
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Figure 10 The residence time of instructions in pipeline  

VI. RELATED WORK 
In our previous research, it is found that rename 

register file and instruction queue is the most important 
resources that play an important role in performance. 

Many researches focused on finding better solutions 
to make the usage of rename register file more efficiently. 
In SMT, to avoid the vicious competition among threads, 
static partition [25] and dynamic partition [26] [27] of 
rename register file are proposed.  

Static partition allocates the rename register file to 
each thread evenly, and dynamic partition allocates the 
rename register file according the real-time performance 
of each thread. Threads that executes more quickly can 
get more rename register file resources.  

In RMT, RRF is a key factor that affects performance. 
How to make better usage of RRF need further research. 
Existing techniques in SMT may be not practical for 
RMT. Because RMT is a special SMT. in RMT, the 
requirements for rename register resources between 
master threads and slave threads vary widely, so static 
partition strategy is not applicable for RMT. Master 
threads and slave threads make progress in the same 
speed, but don't require same amount of RRF resources, 
thus dynamic partition is not suitable for RMT, too. 

VII. 5 B5 BCONCLUSIONS: 
According previous research, Instruction Queue 

affects the performance obviously. In RMT, IQ may be 
blocked by threads that encounter cache-miss easily. Just 
like coins have two sides, resources sharing among 
threads improve the resource usage on one hand and on 
other hand, and it may cause vicious competition.  

In any processor, D-cache-miss load instructions 
make damage to performance. In redundant multi-
threaded architecture, due to slave threads never 
encounter D-cache-miss, only master threads need special 
treatment. 

This paper proposed DDDI, instructions of master 
threads that dependent on unresolved D-cache-miss-load 
instructions can’t be dispatched into IQ until the load 
instruction is completed. Experiments show that the 
method is effective in improving the utilization of IQ, the 
processor's throughput has been significantly improved, 
and the weighted speedup used to measure single thread 
performance gain great increase, too.  
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