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Abstract—Three-dimensional coordinate transformation 
problem is the most frequent problem in photogrammetry, 
geodesy, mapping, geographical information science (GIS), 
and computer vision. To overcome the drawback that 
traditional solution of the problem based on rotation angles 
depends strongly on initial value of parameter, which makes 
the method ineffective in the case of super-large rotation 
angle, the paper adopts an unit quaternion to represent 
three-dimensional rotation matrix, then puts forward a 
quaternion-based iterative solution of the problem. The 
cases study shows that the quaternion-based solution has no 
dependence on the initial value of parameter and desirable 
result with fast speed. Thus it is valid for three-dimensional 
coordinate transformation of any rotation angle. 
 
Index Terms—three-dimensional coordinate transformation, 
quaternion, rotation matrix, initial value of parameter, 
parameter adjustment with constraint, improved Gauss-
Newton method 
 

I.  INTRODUCTION 

Three-dimensional (3D) coordinate transformation is 
the most common issue in geodesy, photogrammetry, 
geographical information science (GIS), computer vision 
and other research areas. It involves transforming spatial 
data (locations, images, maps, etc.) from an original 
coordinate system to a target coordinate system by means 
of mathematical transformation model.  Presently, the 
most frequently model is the similarity transformation 
model with seven parameters (namely, one scale factor, 
three translation parameter, and three rotation angles.), 
also known as Helmert or conformal group C7(3) 
transformation, which is employed in the paper. To carry 
out coordinate transformation, it is critical to calculating 
the seven parameters, usually by some control points with 
the coordinates in the both systems.   

 In geodesy, because the rotation angles are generally 
very small, namely the two coordinate systems are nearly 
aligned; the similarity transformation model is simplified 
to a linear one (e.g., [1]-[2]), whose parameters are easy 
to solve. A lot of literatures on coordinate transformation 
from World Geodetic System 1984 (WGS84) to a local 
system have been published (e.g., [2]-[5]). It is notable 

that [5] presented a stepwise approach to individually 
calculate the seven parameters by the geometric 
properties of similarity transformation. 

In photogrametry and computer vision, three-
dimensional coordinate transformation is employed to 
relate image space coordinates to object space 
coordinates in the so-called “absolute orientation” 
problem ([6]) or to register multi-station point clouds in a 
LIDAR surveying ([7]). In these cases, the rotation 
angles are almost not small and require the solution of 
nonlinear three-dimensional coordinate transformation 
model. 

Many algorithms have been presented to compute the 
transformation parameters from the nonlinear over-
determined equations of coordinate transformation in 
least-squares (LS) sense. They can be divided into two 
categories, i.e., iterative algorithms and analytical 
algorithms. The former are dominant, e.g., [8]-[11]. The 
major difference between these algorithms is caused due 
to the different representations of rotation matrix, which 
lead to the different linearization models. However, the 
iterative algorithms traditionally need good initial starting 
values of parameters and linearization process. It is 
difficult to implemented in the cases of large rotation 
angles because the initial values are difficult even 
impossible to get in advance. At present, the analytical 
algorithm is rarely seen, of which two key algorithms are 
presented, known as the Procrustes algorithm ([12]) and a 
quaternion-based algorithm ([13]). The authors presented 
a new analytical algorithm based on optimization process 
and the good properties of Rodrigues matrix ([14]).  

To solve the problem that traditional algorithms with 
the mathematical model based on rotation angles depend 
strongly on the initial values of parameters, and calculate 
slowly because of the existing numerous trigonometric 
computation, the paper will investigate the feasibility of 
coordinate transformation model with representation of 
quaternion, and present a efficient algorithm to compute 
the transformation parameters. 

The remainder of the paper is organized as follows.  
Section II briefly reviews the concept and properties of 
quaternion, and then derives the representation of rotation 
matrix by unit quaternion. Section III derives the 
mathematical model of 3D coordinate transformation 
inverse problem based on unit quaternion in detail, and 
presents the solution of transformation parameters. In 
order to speed up the convergence of iterative calculation, 
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we design an improved Gauss-Newton method to 
substitute the most frequently used classical Gauss-
Newton method in the adjustment of geodetic 
photographic data, etc. The simulative and practical cases 
are studied to validate the presented algorithm in the next 
two sections, i.e., Sect. IV and Sect. V respectively. 
Finally, conclusions are made in Sect. VI.  

II.  QUATERNION AND 3D ROTATION MATRIX 

A.  Concept and Properties of Quaternion 
Quaternion was a mathematic concept invented by 

Hamilton in 1843, which is represented as follows [15].  
                            1 2 3 4 ,Q q iq jq kq= + + +                        

(1) 
where 1q  is the real part, 2q , 3q  and 4q  are the 

imaginary part, i , j  and k  are imaginary units, and 

they meet the relationships: ① 2 2 2 1i j k= = = − , ②
ij ji k= − = , ③ jk kj i= − = , ④ ki ik j= − = . The 
corresponding conjugate quaternion can be denoted as 

*
1 2 3 4.Q q iq jq kq= − − −                       (2) 

In order to simplify the description, Q  is expressed as 

( )1

TTq q in the column vector form with respect to the 

bases ( )1 i j k , where 

( )2 3 4
Tq q q q= denotes a 3D vector , 1q  denotes a 

scalar, and T  the transpose. The norm of quaternion Q  
is defined as 

           2 2 2 2
1 2 3 4 .Q q q q q= + + +                     

(3) 
If Q =1, Q  is called unit quaternion. 

According to the definition of quaternion, it is easily 
proved that the following properties are satisfied for 
quaternion 

         ( )1 1 ,
TT TP Q p q p q+ = + +                     

(4) 
  1 1 1 1 ,PQ p q p q p q p q q p= − ⋅ + × + +             

(5) 
( ) ( )OPQ OP Q O PQ= = ,                     (6) 

( )O P Q OP OQ+ = + ,                         (7) 

( )OP P O∗ ∗ ∗=  ,                                  (8) 

     QQ Q∗ =  ,                                     (9) 
1Q Q Q− ∗= ,                                  (10) 

where O , P  and Q  are quaternions, 1Q−  denotes the 
inverse of the quaternion Q , and the symbols ⋅  and ×  
stand for the dot product and cross product, respectively. 
The dot and cross product of vectors are defined as 

Tp q p q⋅ = ,                                  (11) 
( )p q c p q× = ,                               (12) 

where 

4 3

4 2

3 2

0
( ) 0

0

p p
c p p p

p p

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

.                   (13) 

The product quaternion PQ  can be expressed in the 
column vector and matrix form as  

        ( ) ( ) ,PQ C P Q C Q P= =                       
(14) 

where 

1

1

( )
( )

Tp p
C P

p p I c p
⎡ ⎤−

= ⎢ ⎥+⎣ ⎦
,

1

1

( )
( )

Tq q
C Q

q q I c q
⎡ ⎤−

= ⎢ ⎥−⎣ ⎦
, and I  denotes a 3× 3 

identity matrix. 

B.  3D Rotation Matrix Represented by Quaternion 
Supposing vector s is produced of vector p  by means 

of rotation angle of θ  around axis OA, and the OA-axis 
unit vector is r  (see Fig. 1), a well-known method to 
represent the rotation of p  to s  is derived with 
quaternion [16] 

             * *( ) ( ) ,S QPQ C Q C Q P= =                  
(15) 

where P  and S  are the quaternion forms of vectors 
p and s  with scalar both as zero, Q  is a unit quaternion 

formed by θ  and r  as  
           cos( / 2) sin( / 2),Q rθ θ= +                  
(16). 
 where, 1 2 3r ir jr kr= + + , and 2 2 2

1 2 3 1r r r+ + = . 

*( ) ( )C Q C Q  in (16) can be expanded as 
1 0
0 R
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

where  
      ( ) ( )2

1 12 ( ) .T TR q q q I qq q c q= − + +         

(17) 
R  in (17) is the 3D rotation matrix, whose elements 

are composed of the unit quaternion Q . 

III.  QUATERNION-BASED ITERATIVE SOLUTION OF 3D 
COORDINATE TRANSFORMATION PROBLEM 

A.  Mathematic Model 
The seven-parameter similarity transformation model 

can be expressed as [2] 
                    ,i ia Rb tλ= +                                    

(18) 
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where [ ]Ti i i ia X Y Z=  and [ ]Ti i i ib x y z=  

( 1, 2, ,i n= ) are two sets of co-located 3D 
coordinates in two different systems, tagged as system A 

and system B 
 

 
Figure 1.  Rotation of vector and the physical meaning of quaternion 

respectively, [ ]Tt X Y Z= ∆ ∆ ∆  denotes three 

translation parameters, λ  denotes the scale parameter 
and R  denotes the 3×3 rotation matrix, which contains 
the three rotation angles. It is Obvious that in order to 
determine the seven parameters, the number n  of co-
located coordinates ia , ib  must be greater than or equal 
to three. 

If we substitute (17) into (18), we can obtain the 
quaternion-based non-linear 3D coordinate 
transformation model. In terms of linearization of the 
model, we obtain the observation equation. However, the 
corresponding normal equation in actual adjustment 
usually doesn’t avoid ill-posed property. For this reason, 
we transform (18) to another form by means of baseline 
vector, namely difference of coordinates which 
eliminates the three translation parameters as follows  

                     ,i ia R bλ∆ = ∆                                   (19) 

where 0 ,i ia a a∆ = − 0i ib b b∆ = − , 0a  and 0b  denote 
two sets of co-located 3D coordinates for the starting 
point of all baselines, and the starting point can be often 
supposed to be a point with high accuracy. By means of 
linearization of (19), the observation equation are 
obtained as follows 

                  ,i i iV B x lδ= −                                  
(20) 

where 
T

i xi yi ziV V V V⎡ ⎤= ⎣ ⎦  denotes correction of 

ia∆ , [ ]1 2 3 4
Tx dq dq dq dq dδ λ= denotes 

correction of unkowns [ ]1 2 3 4
Tx q q q q λ= , 

iB  is a 3×5 coefficient matrix as 

11 12 13 14 1

21 22 23 24 2

31 32 33 34 3

i

B B B B K
B B B B B K

B B B B K

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,           (21) 

T

i xi yi zil l l l⎡ ⎤= ⎣ ⎦ is a constant matrix, and the 

elements of iB  and il  are listed in Appendix A. 

Because Q  is a unit quaternion, there is a constraint 
accompanying (20) as follows 

              2 2 2 2
1 2 3 4 1.q q q q+ + + =                       

(22) 
Linearizing (22), we obtain 
                        0,xC x Wδ − =                              

(23) 
where  

[ ]1 2 3 4 0 ,C q q q q=  
2 2 2 2

1 2 3 4(1 ) 2.xW q q q q= − − − −  

B.  Classical Solution of the Transformation Parameters 
When the number of co-located points 3n ≥ , we can 

establish 3( 1)n −  observation equations like (20) as 
,V B x lδ= −                                  (24) 

where 
1

1n

V
V

V −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
1

1n

B
B

B −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
1

1n

l
l

l −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, with a 

constraint, i.e., (23). Then we can solve the 
transformation parameters by means of parameter 
adjustment with constraint [17], and the expression of 
solution xδ  can be written as 

1 1 1 1 1 1( )
bb bb cc bb bb cc

T T
xx N N C N CN W N C N Wδ − − − − − −= − +   

(25) 
where ,T

bbN B B= Σ  TW B l= Σ , ,T
cc bbN CN C=  

Σ  denotes the weight matrix of observations. To 
simplify the calculation, in this paper we suppose the 
weight matrix of observations is an identity matrix, 
namely IΣ = . 

Because it is difficult or even impossible to get the 
initial value (i.e., approximation) of parameter in 
advance, the classic Gauss-Newton method (see [18]) is 
usually employed to solve the parameters iteratively, i.e., 
we firstly give rough approximation of x , then solve the 
correction xδ  by means of parameter adjustment with 
constraint (using (25)), and give the approximation of 
x of next iteration as x xδ+ , then repeat the above 
procedure until the xδ  is less than a given tolerance, or 
other termination conditions are satisfied.  

C.  Improved Solution of the Transformation Parameters 
Whereas the classic Gauss-Newton method depends 

strongly on the initial value of parameter, i.e., if the 
initial values of parameters are poor, the solution will fail 
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because of iterative non-convergence. For the sake, a 
improved Gauss-Newton method is presented, which uses 
the k-th iterative solution kxδ of classic Gauss-Newton 
method, then adds a adaptive variable step-size ks  in the 
next iteration as follows 

                  1 ,k k k kx x s xδ+ = +                              (26) 

which satisfies 1 1( ) ( ) ( ) ( )T k k T k kV x V x V x V x+ + <  , 

where ( )kV x  is the k-th iterative correction of 

coordinates. The calculation formula of ks  is as follows 
[19] 

0.5 0.25[ ( ) ( )] /
[ ( ) ( ) 2 ( 0.5 )],

k k k k

k k k k k

s R x R x x
R x R x x R x x

δ

δ δ

= + − +

+ + − +
  

(27) 
where ( )kR x  is k-th iterative objective function as 
follows 

( ) ( ) ( ) 2 ( ) ( ),k T k k T k kR x f x f x f x l x= −             
(28) 

where 

1

1

( )
( )

( )

k

k

k
n

f x
f x

f x−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, ( ) ,k k k
i i if x a R bλ= ∆ − ∆  

1

1

( )
( )

( )

k

k

k
n

l x
l x

l x−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, ( )k
il x  is the k-th iterative il , 

( 1, 2, , 1i n= − ). 

The quaternion-based solution of non-linear 3D 
coordinate transformation parameters (hereinafter, 
“quaternion method”) is finally summarized as 

Step 1. Initiate x , e.g., set the initial value of λ  to 1, 
and the initial values of 1q , 2q , 3q  and 4q  to 0.5 
respectively, or set one of them to 1 and the others to 0. 

Step 2. Establish observation equation and constraint 
equation, and solve xδ  by means of parameter 
adjustment with constraint (using (25)), if every element 
of xδ  is less than given tolerance τ  (in this paper, τ  is 
given 1.0×10-9), turn to Step 5. 

Step 3. Firstly Compute ( )kR x  by using (28), then 

compute ks  by using (27), lastly compute 1kx +  by using 
(26). 

Step 4. Calculate 1( )kR x +  by using (28), and if 
1( ) ( ) ,k kR x R x ε+ − <  where ε  is a given tolerance, 

(in the paper, it is set to 1.0×10-9), turn to Step 5, else 
initiate x  with 1kx + , continue Step 2. 

Step 5. Substitute the solution of x  and the 
coordinates 0a  and 0b  into (18), obtain t , finally output 
x  and t . 

Substituting the solution of the unit quaternion Q  into 
(17), we obtain the rotation matrix R . Supposing R  is 
formed by rotating angles α , β , γ  counterclockwise 
around the Cartesian X,  Y and Z axes respectively, then 
R  can be expressed by rotation angles as 

cos cos sin cos cos sin sin sin sin cos sin cos
sin cos cos cos sin sin sin cos sin sin sin cos .

sin cos sin cos cos
R

γ β γ α γ β α γ α γ β α
γ β γ α γ β α γ α γ β α
β β α β α

+ −⎡ ⎤
⎢ ⎥= − − +⎢ ⎥
⎢ ⎥−⎣ ⎦

                      (29) 

Using (29), the rotation angles α , β , γ  can be 
computed as 

1 1 132 21
31

33 11

tan , sin ( ), tanR RR
R R

α β γ− − −= − = = − . 

(30) 
where ijR  is the element of R  in the i-th row and j-th 
column. 

If we substitute (29) into (19), we obtain the 
transformation model based on rotation angle. Further we 
can also establish the observation equation with the 
rotation angle in terms of linearization, and gain the least 
squares solution by means of parameter adjustment. 
Similarly to the 5 steps of quaternion method, finally we 
can get solution of the seven transformation parameters. 
This method is the classical one based on rotation angle 
(hereinafter, “angle algorithm”). 

IV.  SIMULATIVE CASE STUDY AND DISCUSSION  

The simulative data and demonstrative process are 
made as follows. Firstly, the simulative true values of 
coordinates in system B and transformation parameters 
are given. Secondly, coordinates in system A (simulative 
true values) are computed by using (18). Thirdly, the 
transformation parameters (calculated values) are solved 
with quaternion method using the above simulative 
coordinates. Finally, the correctness of the method is 
proved by comparing the calculated values and simulated 
values of the parameters and the transformation residuals 
of coordinates.  

Simulated true values of coordinates in system B in 
system A are listed in Table I. The simulative 
transformation parameters have three sets, tagged as set 
1, set 2, and set 3 corresponding small rotation angle, 
large rotation angle and super-large rotation angle in 
Table II. Simulated true values of coordinates in system 
A are listed Table III.  

Supposing that point 1 is the starting point of baselines 
and then solving the transformation parameters with 
quaternion method using the simulative coordinates of 
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point 1, 2, 4, 6, 8, (the other four points are reserved for 
residual calibration of coordinate), we obtain the result as 
shown in Table IV. To compare quaternion method with 
angle method, the solution of angle method is also listed 
in Table IV. The transformation residuals of coordinates 
in Table IV (using all 9 points) are the differences 
between the simulative true values and calculated values 
of coordinates in system A, of which the latter is obtained 
by substituting coordinates in system B and calculated 
transformation parameters into (18). 

It is clearly seen in Table IV that although the errors 
and transformation residuals get larger and larger with 
the increase of rotation angles (from set 1 to set 2 and to 
set 3), it doesn’t change the validation of the quaternion 
method (all the errors and residuals are too small to be 
neglectable), and the iteration keep a fast speed (9 to 11 
times) regardless of the increase of rotation angles. For 
small and large angles transformation (set 1 and set 2), 
rotation angle method is correct, and its solution speed is 
fast (less than 16 times), but for super large angle 
transformation (set 3), it can not solve the parameters 
because of its strong dependence on initial values of 
parameters. 

To validate the superiority of the improved Gauss-
Newton method to the classic Gauss-Newton method, the 
iterative process of them are compared in Fig. 2. The left 
column is about the relationship of step-size with 
iteration times, and the right column is about the 
relationship of objective function with iteration times in 
Fig. 2. As seen in Fig. 2, for small angle case (set 1), the 
classic Gauss-Newton method failed after iterative 30 
times, showing divergent trend, and with two fluctuations 
in a few steps of iteration, but the improved Gauss-
Newton method converged after iterative 11 times, and 
with no fluctuations. For large angle case (set 2), the 
classic Gauss-Newton method succeeded in convergence 
after iterative 13 times with fluctuations in a few steps of 
iteration, however the improved Gauss-Newton method 
converged after iterative 11 times, and with no 
fluctuations. For super large angle case (set 3), the classic 
Gauss-Newton method succeeded in convergence after 

iterative 18 times with fluctuations, however the 
improved Gauss-Newton method converged after 
iterative 9 times with no fluctuations. The analysis above 
indicates that the adaptive step-size strategy is very 
important, which accelerates the convergence rate and 
avoids the iterative fluctuation. Thus, the improved 
Gauss-Newton method is valid compared to the classic 
Gauss-Newton method. 

V.  ACTUAL CASE STUDY AND DISCUSSION  

In order to demonstrate the application of the 
presented algorithm in the paper and compare it with the 
famous Procrustes algorithm presented by E. W. 
Grafarend and J. L. Awange (see [12]), an actual case is 
investigated in this section. The Cartesian coordinates of 
seven stations, as listed in Table V, are taken from [12]. 
Using these coordinates, the transformation parameters 
are computed with the presented algorithm, as shown in 
Table VI. In the process, the barycenter of all seven 
stations is selected as the starting point of baselines to 
keep consistence with [12]. To compare with the 
Procrustes algorithm, the results reported in [12] are also 
listed in Table VI. The rotation angles corresponding to 
the Procrustes algorithm are not directly obtained from 
[12] but calculated by the authors according to the 
computed result of rotation matrix. The residuals are 
given in Table VII. 

TABLE I.  SIMULATIVE TRUE VALUES OF COORDINATES IN 
SYSTEM B  

Point no. 
System B (m) 

x  y
 

z  
1 10.000 30.000 5.000 
2 20.000 30.000 12.500 
3 30.000 30.000 15.000 
4 10.000 20.000 9.500 
5 20.000 20.000 11.000 
6 30.000 20.000 10.000 
7 10.000 10.000 14.500 
8 20.000 10.000 4.500 
9 30.000 10.000 4.000 

TABLE II.  SIMULATIVE TRUE VALUES OF TRANSFORMATION PARAMETERS 

Set no. X∆  (m) Y∆  (m) Z∆  (m) α β γ λ  
Set 1 30 30 10 47′ 32′ 55′ 1.000016 
Set 2 30 30 10 27° 21° 24° 1.000016 
Set 3 30 30 10 71° 78° 73° 1.000016 

TABLE III.  SIMULATIVE TRUE VALUES OF COORDINATES IN SYSTEM A  

Point no.  
System A (Set 1) (m)  System A (Set 2) (m)  System A (Set 3) (m) 

x  y
 

z   X Y Z  X Y  Z
1 40.437  59.903  14.682   53.325  51.360  5.028   52.116  7.239  14.222  
2 50.367  59.847  22.275   61.051  51.648  14.850   58.807  9.608  24.512  
3 60.343  59.721  24.867   69.312  49.212  20.514   61.443  9.072  34.463  
4 40.235  49.967  19.319   47.733  46.333  13.009   49.949  17.746  16.493  
5 50.219  49.828  20.911   56.101  43.353  17.841   51.773  16.629  26.376  
6 60.227  49.654  20.005   64.737  39.011  20.593   51.570  14.060  36.090  
7 40.028  40.038  24.455   42.087  41.578  21.407   48.187  28.543  18.797  
8 50.117  39.740  14.549   51.686  32.334  16.672   40.683  20.745  27.902  
9 60.120  39.573  14.142   60.269  28.265  19.840   40.886  18.466  37.650  
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TABLE IV.  DIFFERENCES BETWEEN CALCULATED VALUES AND SIMULATIVE TRUE VALUES OF TRANSFORMATION PARAMETERS  

Transformation  
Parameters 

Set 1  Set 2  Set 3 
Quaternion 

method  
Angle 

 method 
 Quaternion 

method  
Angle  

method 
 Quaternion 

method  
Angle  

method 

X∆  (m) 3.8×10-10 5.2×10-6  4.6×10-7 -5.7×10-6  4.4×10-7  

Y∆  (m) -7.9×10-11 -9.2×10-7  8.3×10-8 -2.2×10-5  1.8×10-7  

Z∆  (m) -2.7×10-10 -3.3×10-6  7.1×10-8 -6.3×10-6  1.2×10-7  

α  (″) -1.5×10-6 -3.2×10-2  -7.7×10-4 -5.8×10-2  -1.4×10-3  

β  (″) 9.4×10-7 -2.7×10-2  5.0×10-5 2.6×10-2  -9.1×10-4  

γ  (″) -2.4×10-6 -3.8×10-2  -1.9×10-3 -6.3×10-2  4.0×10-3  

λ  -3.0×10-13 -1.0×10-8  -1.1×10-8 5.7×10-7  -5.6×10-9  

max. order of 
magnitude 

 of residuals (m) 
10-10 10-6  10-7 10-5  10-7  

Iteration times 11 12  11 16  9 divergence 
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Figure 2.  Iterative process comparison of the improved Gauss-Newton method with the classic Gauss-Newton method 

TABLE V.  CARTESIAN COORDINATES IN SYSTEM B AND A  

Station Name  
System B (local system) (m)  System A (WGS-84) (m) 

x y
 z  X Y  Z

Solitude 4157222.543 664789.307 4774952.099  4157870.237 664818.678 4775416.524 
Buoch Zeil 4149043.336 688836.443 4778632.188  4149691.049 688865.785 4779096.588 
Hohenneuffen 4172803.511 690340.078 4758129.701  4173451.354 690369.375 4758594.075 
Kuehlenberg 4177148.376 642997.635 4760764.800  4177796.064 643026.700 4761228.899 
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Ex Mergelaec 4137012.190 671808.029 4791128.215  4137659.549 671837.337 4791592.531 
Ex Hof Asperg 4146292.729 666952.887 4783859.856  4146940.228 666982.151 4784324.099 
Ex Kaisersbach 4138759.902 702670.738 4785552.196  4139407.506 702700.227 4786016.645 

TABLE VI.  TRANSFORMATION PARAMETERS RESULTS OF THE PRESENTED ALGORITHM IN THIS PAPER AND I-LESS PROCRUSTES ALGORITHM  

 The presented algorithm in this paper  Procrustes algorithm 
Rotation matrix        

R  1.000000000 0.000004815 -0.000004333  0.999999999 -0.000004332 0.000004814 
 -0.000004815 1.000000000 -0.000004841  -0.000004814 0.999999999 -0.000004841 
 0.000004333 0.000004841 1.000000000  0.000004332 0.000004841 0.999999999 

Rotation angles (″)        
α   -0.998502748     -0.998527928  

β   
 0.893691145    0.893539141  

γ   0.993093503    0.992958778  
Translation (m)        

X∆    641.8804    641.8804  

Y∆    68.6554     68.6553  

Z∆    416.3982     416.3982  
Scale        

λ   1.000005583    1.000005583  

TABLE VII.  TRANSFORMATION RESIDUALS OF THE PRESENTED ALGORITHM IN THIS PAPER AND I-LESS PROCRUSTES ALGORITHM (M) 

 The presented algorithm in this paper  Procrustes algorithm 
Station Name X Y  Z  X Y  Z
Solitude 0.0940  0.1351  0.1402   0.0940  0.1351  0.1402  
Buoch Zeil 0.0588  -0.0497  0.0137   0.0588  -0.0497  0.0137  
Hohenneuffen -0.0399  -0.0879  -0.0081   -0.0399  -0.0879  -0.0081  
Kuehlenberg 0.0202  -0.0220  -0.0874   0.0202  -0.0220  -0.0874  
Ex Mergelaec -0.0919  0.0139  -0.0055   -0.0919  0.0139  -0.0055  
Ex Hof Asperg -0.0118  0.0065  -0.0546   -0.0118  0.0065  -0.0546  
Ex Kaisersbach -0.0294  0.0041  0.0017   -0.0294  0.0041  0.0017  

 

VI.  CONCLUDING REMARKS 

To overcome the drawback that angle method depends 
strongly on initial value of parameter, especially on 
rotation angles, which makes the method ineffective in 
the case of super-large rotation angle due to the beyond 
estimation in advance, this paper uses quaternion to 
represent 3D rotation matrix, then presents the 
quaternion-based iterative method in terms of 
linearization. The iterative method designs an adaptive 
step-size based on the classic Gauss-Newton method, 
which accelerates the convergence rate and avoids the 
iterative fluctuation. The cases study shows that the 
method has no dependence on initial value of parameter 
and satisfactory result with fast speed, and is suitable for 
coordinate transformation of any rotation angle. 

APPENDIX  THE ELEMENTS OF iB  AND il  

11 4 32 ( )i iB q x q zλ= − ∆ + ∆ , 

12 3 42 ( )i iB q y q zλ= ∆ + ∆ , 

13 3 2 12 ( 2 )i i iB q x q y q zλ= − ∆ + ∆ + ∆ , 

14 4 1 22 ( 2 )i i iB q x q y q zλ= − ∆ − ∆ + ∆ , 

21 4 22 ( )i iB q x q zλ= ∆ − ∆ , 

22 3 2 12 ( 2 )i i iB q x q y q zλ= ∆ − ∆ − ∆ , 

23 2 42 ( )i iB q x q zλ= ∆ + ∆ , 

24 1 4 32 ( 2 )i i iB q x q y q zλ= ∆ − ∆ + ∆ , 

31 3 22 ( )i iB q x q yλ= − ∆ + ∆  , 

32 4 1 22 ( 2 )i i iB q x q y q zλ= ∆ + ∆ − ∆ , 

33 1 4 32 ( 2 )i i iB q x q y q zλ= − ∆ + ∆ − ∆ , 

34 2 32 ( )i iB q x q yλ= ∆ + ∆ , 
2 2

1 3 4 2 3 1 4

1 3 2 4

[1 2( )] 2( )
2( )

i i

i

K q q x q q q q y
q q q q z

= − + ∆ + − ∆

+ + ∆
, 

2 2
2 1 4 2 3 2 4

3 4 1 2

2( ) [1 2( )]
2( )

i i

i

K q q q q x q q y
q q q q z

= + ∆ + − + ∆
+ − ∆

, 

3 2 4 1 3 1 2 3 4

2 2
2 3

2( ) 2( )

[1 2( )]
i i

i

K q q q q x q q q q y

q q z

= − ∆ + + ∆

+ − + ∆
, 

1xi il X Kλ= ∆ − , 

2yi il Y Kλ= ∆ − ,  

3zi il Z Kλ= ∆ − .  
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